Table S8 (parts A, B, C). Muscle functions based on muscle moment arms and co-occurrence of activation and kinematics. Behaviors: WAIR = wing-assisted incline running, AF = ascending flight. Kinematics: DEP = depression, ELEV = elevation, RET = retraction, PROT = protraction, PRO = pronation, SUP = supination, FLEX = flexion, EXT = extension, ADD = adduction, ABD = abduction; DS = downstroke, US = upstroke. Superscripts: A = adult model (>100 days), J = juvenile model (18-20 days), B = baby model (7-8 days); if no superscript, kinematic rotation occurs in all models. Text color, potential function column: black = consistent w/ previously suggested function, red = inconsistent w/ previously suggested function; blue = no previously suggested function; bold = main function. Cell color, right column: green = DS muscle or muscle not active during DS-US transition, blue = US muscle, active during DS-US transition. **: biarticular muscle. *: not tested here (digit kinematics). A | | Muscle | EMG timing (colored lines = WAIR simulations, Adult, Juvenile, or Baby model; gray bars = AF, from Dial | Moment arms (Adult solid
Baby small dash) + tin
simulated; AF from Dial 1
(from Heers | Potential function based on moment arms and phys x-sectional area (Table 2) (black: consistent with previous data, blue: no previous data, red: inconsistent with previous data) | | Relative importance (average % torque from Table 2) | | Reason for discrepancy with previous work (Dial 1992, Poore 1997, Biewener 2011, Berg & Biewener 2012) on flight? | | Suggested function based on moment arms and co-
occurrence of EMG and kinematics; green =
downstroke muscle, blue = upstroke muscle | | |----------|-----------------------------------|--|--|--|--|---|---------------------------------|---|---|---|---| | | | 1992) | WAIR | AF | WAIR | AF (adult only) | WAIR | AF (adult only) | | | | | | Pectoralis | 0.4 Pectorals 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | ## NOTIONALE ** TOTAL | Garage 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | DEP
RET or PROT
PRO | same | 97-100
52-59, 19-24
73-79 | 96
51, 13
76 | Consistent | | decelerate ELEV -> DEP;
PROT -> RET;
decelerate SUP -> PRO | | | Supracoracoideus | 0.5 d | 0.20
0.20
0.20
0.20
0.20
0.35 | ### Open Control of the t | ELEV
PROT
SUP | same | 54-75
67-74
84-91 | 50
80
72 | | Consistent | decelerate DEP + RET + PRO ->
ELEV + SUP | | | Coracobrachialis
posterior | 0.4 Corrodorchistis protestor of the pro | BIS DESCRIPTION OF THE PROPERTY PROPERT | (A) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1 | ELEV or DEPJ
RET
SUP or PRO | mainly DEP
RET
SUP or PRO | x, x
10-23
4-12, x | x
19
38, x | WAIR kinematics:
humerus kept elevated ->
ELEV instead of DEP | | DEP (AF) or opposes DEP (AF, WAIR); decelerate PROT -> RET; PRO or opposes PRO | | | Coracobrachialis
anterior | Very low activation | COMMONMONIA NT 40 60 80 100 | Star states to the star state to the star state to the star state to the star state to the star star star star star star star star | DEP or ELEV
PROT
SUP or PRO ^B | same | x, x
x
x, x | x, x
x
x | No previou | isly suggested functions | does not seem to contribute much — mainly
stabilization | | SHOULDER | Subcoracoideus | 5.0coracoldeus 5.0coracoldeus 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 | Section 100 to 1 | ### OLD | ELEV or DEPJ
RET
PRO or SUPBJ | ELEV or DEP
RET
PRO or SUP | x, x
6-11
x, x | x, x
9
x, 16 | No previously suggested functions | | opposes DEP;
decelerate PROT -> RET;
mainly PRO | | 10HS | Latissimus dorsi | 1.00 + Latisamus dors 0.5 0.5 0.5 0.1 0.4 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | DEC 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | ELEV
RET
PRO or SUP | same | 8-23
14-26
x, x | 19
12
x, x | No previou | isly suggested functions | opposes DEP -> ELEV;
decelerate PROT -> RET | | | Scapulohumeralis
caudalis | Scapabhymenals countils 0.4 Scapabhymenals countils 0.3 0.1 0.0 20 40 Magazinate (KCycky) 100 | Marina Ma | ## Parameter Par | ELEV or DEPBJ
RET or PROT
PRO | same | 4-21, x
17-22, 5-30
17-30 | 24
18, 14
21 | WAIR kinematics: humerus
very retracted -> PROT
instead of RET | | oppose DEP ^A -> ELEV ^A (esp. WAIR);
RET -> oppose RET -> PROT;
mainly PRO or oppose PRO | | | Subscapularis | 0.055 Subsceptures 0.050 0.03 0.03 0.03 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | ELEV
Mainly RET
PRO | ELEV
RET
PRO | x
x
x | X
X
X | Disagree w/ previous work:
muscle pulls "down", but
elevates an already
elevated humerus | | does not seem to contribute much: opposes DEP; decelerate PROT -> RET; decelerate SUP (AF) -> PRO | | | Deltoideus major | 0.4 Destroidence magazi 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | BASE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | 0.00 | ELEV
PROT or RET ^{BJ}
SUP | ELEV
PROT
PRO or SUP | 4-6
3-5, x
x | 7
x
x, x | WAIR kinematics: humerus
very retracted -> PROT
instead of RET | | decelerate DEP -> ELEV; opposes RETA -> PROTA (WAIR); decelerate PRO -> SUP (WAIR), or opposes long axis rotation (AF) | | | Tensor
propatagialis
brevis | Tentor procuraçadas 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0. | ### No. 10 | BE 100 000 000 000 000 000 000 000 000 00 | DEP or ELEV
PROT or RET ^B
SUP or PRO ^B | same | x, x
7-12, x
5-6, x | x, x
9
x | cannot account for the r | functions (at shoulder); note that SIMM
ole of the propatagialis in tensing the
propatagium | ELEV ^A (WAIR) or DEP (AF), stabilization; PROT (WAIR) or opposes RET (AF) SUP or opposes PRO (AF) | | | Scapulotriceps | 0.3 - Superiorcept (out) Superio | ### ### ### ### ### ### ### ### ### ## | 40 miles in a service serv | ELEV
RET
PRO or SUPBJ | same | 4-7
5-11
x, x | 7
x
x | | Consistent | opposes DEP -> ELEV; RET ~ no long axis rotation | ## Table S8 (parts A, B, C). Muscle functions based on muscle moment arms and co-occurrence of activation and kinematics. Behaviors: WAIR = wing-assisted incline running, AF = ascending flight. Kinematics: DEP = depression, ELEV = elevation, RET = retraction, PROT = protraction, PRO = pronation, SUP = supination, FLEX = flexion, EXT = extension, ADD = adduction, ABD = abduction; DS = downstroke, US = upstroke. Superscripts: A = adult model (>100 days), J = juvenile model (18-20 days), B = baby model (7-8 days); if no superscript, kinematic rotation occurs in all models. Text color, potential function column: black = consistent w/ previously suggested function, red = inconsistent w/ previously suggested function; blue = no previously suggested function; bold = main function. Cell color, right column: green = DS muscle or muscle not active during DS-US transition, blue = US muscle, active during DS-US transition. **: biarticular muscle. *: not tested here (digit kinematics). | | EMG timing (colored lines = WAIR simulations, Adult, Juvenile, or Baby model; gray bars = AF, from Dial 1992) Moment arms (Adult solid lines, Juvenile large dash, Baby small dash) + timing of activity (WAIR, simulated; AF from Dial 1991 & 1992) + kinematics (from Heers et al. 2016) | | Potential function based on moment arms and phys x-sectional area (Table 2) (black: consistent with previous data, blue: no previous data, red: inconsistent with previous data) | | Relative importance
(average % torque from
Table 2) | | Reason for discrepancy with previous work (Dial 1992, Poore 1997, Biewener 2011, Berg & Biewener 2012) on flight? | Suggested function based on moment arms and co-
occurrence of EMG and kinematics; green =
downstroke muscle, blue = upstroke muscle | | | |-------|---|--|--|--|--|---------------------------|---|---|--|---| | | | 1992) | WAIR | AF | WAIR | AF (adult only) | WAIR | AF (adult only) | | | | | Tensor
propatagialis
brevis | Tentor processgales 0.2 Tentor processgales 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | THEOR POWER PARKETS IN THE I | # Company | FLEX
ADD ^{BJ} or ABD
PRO | FLEX
ADD or ABD
PRO | 39-49
15-16, 19-24
47-55 | 37
17, 33
53 | Consistent; note that SIMM cannot account for the role of the propatagialis in tensing the propatagium | FLEX (AF) or opposes FLEX (WAIR); mainly opposes ADD and ABD (WAIR, AF); PRO or opposes SUP | | | Biceps brachii | 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 | 100 | Motion 1 100 100 100 100 100 100 100 100 100 | FLEX
ADD or ABD ^B
PRO or SUP ^A | same | 22-32
6-7, x
5-17, 5 | 32
9
6, 19 | Consistent | opposes EXT, or FLEX (AF) ADD or opposes ABD; SUP (AF) or opposes PRO (AF) | | | Scapulotriceps | Scapularinceps (solid) Scapularinceps (solid) Rummericops (solid) Superiority Sup | SONATION | Motion | EXT
ADD
SUP or PROB | EXT
ADD
SUP or PRO | 29-43
6-11
11-26, x | 41
9
8, 8 | Consistent | opposes FLEX, or EXT (WAIR); ADD or opposes ABD; opposes PRO -> SUP | | | Humerotriceps | Scapulatriceps (salid) Namericiceps | Seaton shelded to the | Meson plants of the | EXT
ADD
PRO ^A or SUP | same | 33-48
10-14
x, 4-21 | 45
12
7, 6 | Consistent | EXT (AF) -> opposes FLEX; ADD or opposes ABD SUP or opposes PRO (AF) | | | Brachialis | 0.20 Brachels 0.15 0.00 0 40 60 80 100 Wingstrote (Ncycle) | Station and statio | fluino estados proprios de la companya del companya del companya de la d | FLEX or EXTB
ADDBJ>A
SUPBJ>A | same | x, x
x
x | x
x
x | No previously suggested functions | opposes EXT -> FLEX;
opposes PRO | | ELBOW | Pronator sublimis,
profundus | 1.0 Provider politicular subdimus 0.8 Provider subdimus 0.0 O O O O O O O O O O O O O O O O O O | # Gastra production 100 10 | (B) 0.00 - 1 | FLEX or EXT ^{AB} ADD SUP | FLEX
ADD
SUP | 8-18, x
42-58
3-41 | 12
46
44 | Disagree: activated during PRO but actually stabilizes against PRO; misnomer from human anatomy. Bird position left, human position right. | P. profundus: mainly EXT; P. sublimis: FLEX or opposes EXT mainly ADD; opposes PRO, or SUP (AF) | | | Entepicondylo-
ulnaris | 0.6 f | 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 | Feetin | EXT ^{BA} or FLEX ^{BJ}
ADD
SUP | same | x, x
7-12
14-21 | x
7
20 | No previously suggested functions | EXT; ADD or opposes ABD; opposes PRO | | | Supinator | 0.2 | Station and statio | Marian Parameter | FLEX or EXTB
ABD
SUP or PROBJ | same | x, x
5-10
x, x | x
12
x | Consistent; PRO in B and J models is only brief and occurs when the muscle is not activated | FLEX ABD or opposes ADD | | | Anconeus | 0.8 - Anconsus 0.8 - Anconsus 0.8 - Anconsus 0.8 - Anconsus 0.9 - Anconsus 0.9 - Anconsus 0.9 - Anconsus 0.9 - Anconsus Norganists (Noycks) 80 100 | 100 | 100 - | FLEXAJ>B or EXTB
ABD
PRO | same | x, x
25-32
22-39 | x
28
33 | No previously suggested functions | FLEX; ABD or opposes ADD; opposes SUP | | | Flexor carpi
ulnaris** | Flexor carps 0.4 10 10 10 10 10 10 10 10 10 1 | 6 Case of | School of the state stat | FLEX ^J or EXT
ADD
SUP | same | x, 11-26
8-11
21-36 | 13
7
18 | No previously suggested functions (at elbow) | EXT -> opposes FLEX;
ADD or opposes ABD;
opposes PRO, or SUP | | | Extensor
metacarpi
radialis** | 0.8 | | 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | FLEX
ABD
PRO or SUP | same | 9-16
26-38
x, x | 11
27
x | No previously suggested functions (at elbow) | FLEX or opposes EXT;
ABD or opposes ADD | | | Extensor
digitorum
communis** | 0.3 - | ### ################################## | Miscon - Mis | FLEX or EXT ^B ABD PRO | same | x, x
5-8
x | x
6
x | No previously suggested functions (at elbow) | mainly ABD | | | Extensor carpi
ulnaris** | 0.5 0.4 Extensor carpli unions 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | Share | Mean | FLEX or EXT ^B ABD PRO | same | x, x
7-9
x | x
10
x | No previously suggested functions (at elbow) | ABD, or opposes ADD | B ## Table S8 (parts A, B, C). Muscle functions based on muscle moment arms and co-occurrence of activation and kinematics. Behaviors: WAIR = wing-assisted incline running, AF = ascending flight. Kinematics: DEP = depression, ELEV = elevation, RET = retraction, PROT = protraction, PRO = pronation, SUP = supination, FLEX = flexion, EXT = extension, ADD = adduction, ABD = abduction; DS = downstroke, US = upstroke. Superscripts: A = adult model (>100 days), J = juvenile model (18-20 days), B = baby model (7-8 days); if no superscript, kinematic rotation occurs in all models. Text color, potential function column: black = consistent w/ previously suggested function, red = inconsistent w/ previously suggested function; blue = no previously suggested function; bold = main function. Cell color, right column: green = DS muscle or muscle not active during DS-US transition, blue = US muscle, active during DS-US transition. **: biarticular muscle. *: not tested here (digit kinematics). | С | Muscle | Juvenile, or Baby model; (from Heers et al. 2016) gray bars = AF, from Dial | | Potential function based on moment arms and phys x-sectional area (Table 2) (black: consistent with previous data, blue: no previous data, red: inconsistent with previous data) | | Relative importance
(average % torque from
Table 2) | | Reason for discrepancy with previous work (Dial 1992, Poore 1997,
Biewener 2011, Berg & Biewener 2012) on flight? | Suggested function based on moment arms and co-
occurrence of EMG and kinematics; green =
downstroke muscle, blue = upstroke muscle | | |-------|--|--|--|--|--|---|--|--|--|---| | | | 1992) | WAIR | AF | WAIR | AF (adult only) | WAIR | AF (adult only) | | | | | Flexor carpi
ulnaris** | Feror cary 0.4 0.2 0.2 0.2 0.2 0.3 0.4 0.60 0.100 | 100 00 00 00 00 00 00 00 00 00 00 00 00 | 1 | FLEX or EXT ^J ADD or ABD ^J PRO or SUP ^{AB} | FLEX
ADD or ABD
PRO or SUP | 89-99, x
22-53, 8-87
46-64, 8-25 | 94
37, 69
27, 65 | Consistent; EXT moment in J small and brief | FLEX or opposes EXT; ADD or opposes ABD; PRO or opposes SUP | | | Flexor digitorum
sublimis,
profundus | Finer digitorum podinodo (ostid) Plesor digitorum audieno (osted) Plesor digitorum audieno (osted) O d d d d d d d d d d d d d d d d d d d | ###################################### | 1 | EXT ^{BJ} or FLEX ^A
ADD
PRO or SUP ^B | EXT or FLEX
ADD
PRO | 11-15, x
38-64
17-83, 29 | x
52
35 | No previously suggested functions (at wrist); main function may be to ADD phalanges (FLEX in human anatomy) | EXTBJ, opposes FLEX, FLEXA, opposes EXTA; mainly opposes ABD; PRO or opposes SUP | | | Ulnimetacarpalis
ventralis | EMG very low | BOATO 20 40 60 80 100 | Manufacture (1) | FLEX or EXT
ADD or ABD ^B
PRO or SUP ^{AB} | same | 4-60, x
4-6, x
8-32, 13-20 | 6, x
x
17, 80 | No previously suggested functions | does not seem to contribute much during WAIR: FLEX; ADD | | WRIST | Extensor
metacarpi
radialis** | 1.0 Extensor metacarps 1.0 | 1 | 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | EXT
ADD or ABD ^{AB}
PRO ^J or SUP | EXT
ADD or ABD
PRO or SUP | 59-67
11-36, 21-24
14-31, 65-79 | 60
23, 12
50, 58 | Consistent | EXT, also opposes FLEX; ABD or opposes ABD (WAIRJ, AF); SUP or opposes PRO | | | Extensor
digitorum
communis** | 0.1 | #fination and additional ad | figure - separation of separat | EXT
ADD ^J or ABD
PRO ^{BJ} or SUP | EXT
ADD or ABD
PRO or SUP | 3-6
x, 28-30
x, 8-10 | 5
x, 24
x, x | Consistent - ADD moment in J brief and does not occur when muscle is activated. Should also ABD phalanges (EXT in human anatomy) | mainly opposes FLEX;
mainly opposes ADD;
SUP or opposes PRO | | | Extensor carpi
ulnaris** | 0.1 | # flates | ### ### ### ### ### ### ### ### ### ## | EXT
ADD ^J or ABD
PRO ^{AB} or SUP ^B | same | 3-9
x, 33-52
6-14, x | 8
34
8 | Some texts say EXT, some say FLEX; activated during wrist flexion but actually serves to stabilize wrist - tendons of Extensor digitorum communis and Extensor carpi ulnaris pass through retinaculum on distal ulna, preventing flexion | EXT but mainly opposes FLEX ABD but mainly opposes ADD; PRO but mainly opposes SUP | | | Extensor pollicis longus | EMG very low | 60 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | Section Sect | EXT
ABD ^{AB} or ADD ^{J>BA}
PRO ^J or SUP | same | 3-16
8, x
x, 6-57 | 16
7, 8
9, 32 | No previously suggested functions (at wrist); main function may be to extend pollex* | does not seem to contribute much to wrist movement during WAIR: EXT or opposes FLEX; ABD or opposes ADD; opposes PRO | | | Extensor indices longus | EMG very low | 1 | Manual Ma | EXT or FLEX ^B
ADD ^J or ABD
PRO ^J or SUP | same | 3-7, x
x, 9-13
x, 10-38 | 6
23
7 | No previously suggested functions (at wrist). Should also ABD interphalangeal joints* (EXT in human anatomy) | does not seem to contribute much to wrist movement during WAIR: EXT or opposes FLEX; ABD or opposes ADD; opposes PRO |