Supplementary Information

Evaluating the origin and virulence of a *Helicobacter pylori* cagA-positive strain isolated from a non-human primate

Kana Hashi, Chihiro Imai, Koji Yahara, Kamrunnesa Tahmina, Takeru Hayashi, Takeshi Azuma, Takako Miyabe-Nishiwaki, Hideyuki Sato, Masao Matsuoka, Sachi Niimi, Munehiro Okamoto and Masanori Hatakeyama

Supplementary methods

RNA isolation and qPCR. Total RNA was isolated from H. pylori-infected AGS cells and COS7 cells using Trizol reagent (Invitrogen). Reverse transcription was performed with 4 µg RNA using SuperScriptTM II Reverse Transcriptase (Invitrogen) according to the manufacturer's protocol. The qPCR was performed using SYBR[®] Premix *Ex Taq*[™] II (Tli RNaseH plus) (Takara) on a StepOnePlus Real-Time PCR System (Applied Biosystems). Analysis was performed using the $\Delta\Delta Ct$ method. PCR primers were designed using Primer 3 plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). Following primers were used; AGS IL-8, 5'cctgatttctgcagctctgtgtgaag 3' 5'attgcatctggcaaccctac3'; and AGS GAPDH.

5'tgaaggtcggagtcaacggatttggt3' and 5'catgtgggccatgaggtccaccac3'. COS7 IL-8, 5'agaactgagagtgattgagagtgg3' and 5'ctcagccctcttcacaaacttc3'; COS7 GAPDH, 5'atcatctctgccccctctgctgac3' and 5'agtgagcttcccgttcagctc3'.

Construction of the Hp_TH2099 $\triangle cagA$ isogenic strain. The Hp TH2099 cagA gene was amplified from the Hp TH2099 genome by polymerase chain reaction (PCR) using specific primers and then cloned into in the pBlueScript II SK(+) vector. A targeting vector of the Hp TH2099 cagA gene was constructed by insertion of а kanamycin-resistance gene cassette derived from the pENTR3c plasmid into the Hp TH2099 cagA gene according to a standard protocol¹. The resulting targeting vector (50 µg) was added to 2 ml of the Hp TH2099

2

strain suspension (5 x 10^8 /ml) in Brucella Broth medium. After incubation for 12 h, bacteria were plated and grown on blood agar plates consisting of Trypticase Soy agar (BD) with 5% horse blood (Colorado Serum Company) containing 30 µg/ml Kanamycin to select for the kanamycin-resistant transformant obtained after 5 days according to a standard procedure¹. The grown colony was isolated and further expanded on plates. The *cagA* gene disruption and the lack of CagA expression were confirmed by sequencing, PCR analysis and an anti-CagA immunoblotting.

Differentiation of ES-cell derived organoids to definitive endoderm. The mouse ES cell line EB3 (derived from 129/Ola strain, 9 passages) was kindly provided by Dr. Hitoshi Niwa (Center for Developmental Biology, RIKEN, Japan) and was cultured in Glasgow's MEM (GMEM) containing 10% FBS, 0.1 mM non-essential amino acids (NEAA; Sigma-Aldrich), 0.1 mM β -mercaptoethanol (Nacalai Tesque), and 1x penicillin/streptomycin (Wako) supplemented with 1 unit/ml mouse recombinant leukemia inhibitory factor (LIF) (Nacalai Tesque), 3 μ M CHIR99021, 2 μ M Y27632, and 1 μ M PD0325901 at 37°C in 5% CO2. There was no sign of mycoplasma contamination by a test using a Micoalart Kit (Lonza). For EB formation, mouse ES cell colonies were dissociated completely into single cells with a 0.25% trypsin–EDTA solution (Wako). Floating ES cells were collected and seeded at 2.5 x 10⁵ cells on a low-attachment 10 cm petri dish in EB medium [IMDM

3

containing 10% FBS, 200 μ g/ml transferrin, 0.45 mM 1-thioglycerol, 50 μ g/ml ascorbic acid, 2 mM l-glutamine and 1x penicillin/streptomycin (Wako)]. For differentiation, EBs were accumulated in a 15 ml falcon tube per dish and were re-suspended and plated in a Matrigel-coated 24-well dish using 0.25% Trypsin-EDTA. On the next day, stem cells were differentiated to the definitive endoderm.

Supplementary Figures

Supplementary Figure S1. Amplification of *cagA* fragment from gastric juices of rhesus macaques. The *cagA* fragment was amplified by PCR from DNA samples derived from gastric juice of rhesus macaques and run by using agarose gel. Mm1689, Mm1874 and Mm1887 are DNA samples obtained from each of the macaques. "NCTC11637" indicates DNA isolated from the *H. pylori* standard strain NCTC11637, which carries the ABCCC-type Western CagA, as a positive control. The arrow indicates the position of ~1000-bp fragment, which is specifically amplified by the *cagA* primers. M; 1kb-ladder marker.

M 1 2 3 4 5 6 7 8 9 10 11 12 13

Supplementary Figure S2. Colony directed PCR of the *H. pylori cagA* **gene.** A *cagA* gene fragment was specifically amplified by PCR from bacterial colonies that were isolated from gastric juices of a Japanese macaque TH2099. The arrow indicates the position of the amplified *cagA* fragment (762-bp). M; 1kb ladder marker. Thirteen bacterial colonies (numbered from 1 to 13) were randomly picked up and subjected to the PCR analysis.

С

Biological Test	Results on Hp_TH2099
Urease	Positive
Oxidase	Positive
Catalase	Positive

Supplementary Figure S3. Investigation of the characteristics of Hp_TH2099. (a) Gram staining of Hp_TH2099 and 26695 strains. (b) Growth curve of Hp_TH2099, 26695, 11637 and G27 *H. pylori* strains in Brucella Broth with 10% FBS. OD: optical density. (c) Results of biological tests of Hp_TH2099. Urease activity was measured by EB-20 (Nissui). Oxidase activity was measured by Oxidase Swabzyme (EY Laboratories) and catalase activity was measured by adding 3% H_2O_2 to the Hp_TH2099 culture.

1 ATMACTACIALACCATTRINGGETTERINCOGACCATTRINGATACTEMINATACTERINGACTITECTERINGATURACCENTONTICALINACCATORICALINACCATORIANSI ETACAGACACTITRINGATURACCENTONIASIA 141 TRICTOMETABABCICATIONAMICATIONACIANCIANCIANCIATTITICCALCITITICUMATABABCIATUMITANCIALCIANCIANCICALCITICUMALAGUICATITICUALCITICUMALAGUICUTUTUTUTULAL 141 TRICTAMETABABCIANTIANAMINATAMETABATTITICCALCITITICUMATABABCIATUMITANCIALCIANCIANTICUALCIANCIANCIANTICUALCIT антиристири и предоктавляет и п Предоктавляет и предоктав Предоктавляет и 721 CAGO TRACCCCTAMONTANTANTANTANTANTITETANTITETANTITECTANTICATOR TO CONTRACTANTANTANTI ANTICATATI ANTICATATI AND A CONTRACTANTI AND A CONT 124: TYCOMARKENTHAGGTANTTERAGGCCTANGGATAGTCCCTTGTTTTTTTAAAAAACACAAAACATERENTTAGTAATTTGGTAAGGCATTGACTEGACTTGACTEGACTTGACTEGACGGAAAAACAGT 41: F g H s K K Y L D K L g K D K I A F V S K D T H S K L I T D F G H G D S S T F F S T G K K A D K K A D K K L 141 ATATEMAGENETAMACHARANGENEMMETERETATETEMATTATECENTRAMACCOLAMAGENCECHARANGESENTHEMATENSEENTHEMANGENEMETERAMACTERATEMACHARANCESENTHEMATENSEENTHEMANGESENTHEMANETEMACTERATEMANETEMATTECHARANCESENTHEMANESENTHEMANETEMACTERATEMANETEMATTECHARANCESENTHEMANESENTHEMANESENTHEMANETEMATTECHARANCESENTHEMANESENTHEM 1212 ATOCTATETTEREMOZAMANTEREMAZATMANTOFFECTAMAMOZATORECCAMATCALACCENTRACTALACTICALACCENTRACTALACTORECTEREMACTORECTALACCENTRACTACENTRACTALACCENTRACTALACCENTRACTACENTRACTALACCENTRACTACENTRACTALACCENTRACTACENTRACTALACCENTRACTAC 1919 IARGODDOCKTETALGUTTODANGTETADADGUTTOTADALAGUTTADAANTETTATAANTETTATA 3421 ACTMATATAAAASGTGGTTTOCAAAAASCTTWA 1141 7 N I K G G F Q K S *

Supplementary Figure S4. Nucleotide sequences of Hp_TH2099 *cagA* gene. The full-length sequence of the Hp_TH2099 *cagA* gene and its product were extracted from whole genome sequences and translated. Blue, EPIYA-A segment; Green, EPIYA-B segment; Purple, EPIYA-C segment. Colored boxes indicate the EPIYA motifs and underlines indicate CM sequences.

Hp_TH2099 ----NTGAO Mm1874 cagA ATGGCTAACGAAACCATTAAO Mm1887 cagA ATGACTAACGAAACCATTAAO 26695 cagA ATGACTAACGAAACTATTGAS Hp_TH2099 CAAGCTITTAA Mm1874 cagA CAAGCTITTAA Mm1887 cagA CAAGCTITTAA 26695 cagA CAAGCTITTAA Hp_TH2099 CGTTACCAAATTT Hm1874 cagA CGTTACCGAATTT Hm1887 cagA CGTTACCGAATTT 26695 cagA CGTTACCGAATTT 26695 cagA Hp_TH2099 ATCCGAACAGAT Mm1874 cagA ATCCGAACGGAC Mm1887 cagA ATCCGAACGGAT 26695 cagA ATCCGAACGGAT Hp_TH2099 GTCCAACCAG Nm1874 cagA GTCCAACCAG Nm1887 cagA GTCCAACCAG 26695 cagA GTCCAACCAG Hp_TH2099 AATAACAC Mm1874 cagA AATAACAC Mm1887 cagA AATAACAC Mm1887 cagA AATAACAC Mm1887 cagA AATAACAC Hp_TH2099 GGCAGTGG Mm1874 cagA GGCAGTGG Mm1887 cagA GGCAGTGG 26695 cagA GGCAGTGG Hp_TH2099 AAAGA Mm1874 cagA AAAGA Mm1887 cagA AAAGA 26695 cagA AAAGA Hp_TH2099 AAAGCAGATAAAGC Mm1874 cagA AAAGCAGATAAAGG Mm1887 cagA AAAGCAGATAAAG 26695 cagA AAAGCAGATAAAG Hp_TH2099 GCTATCTTTAATT Mm1874 cagA GCTGTCTTTAATT Mm1887 cagA GCTATCTTTAATT 26695 cagA GCTGTCTTTAATT Hp_TH2099 GCTGAAGCTAAJ Mm1874 cagA GCTGAAGCTAAJ Mm1887 cagA GCTGAAGCTAAJ 26695 cagA GCTGAAGCTAAJ Hp_TH2099 TTTGCGTTGAT Mm1874 cagA TTTGCGCTTAT Mm1887 cagA TTTGCGTTGAT 26695 cagA TTTGCGTTGAT Hp_TH2099 GAAGAAACAC Mm1874 caga GAAGAAACAC Mm1887 caga GAAGAAACAC 26695 caga GAAGAAACAC Hp_TH2099 ATCAATCAAA Mm1874 caga ATCAATCAAA Mm1887 caga ATCAATCAAA 26695 caga ATCAATCAAA Hp_TH2099 ATATACC Nm1874 cagA ATATACC Nm1887 cagA ATATACC 26695 cagA CTATAC Нр_ТН2099 GCTAAA Mm1874 cagA GCTAAA Mm1887 cagA GCTAAA 26695 cagA GCTAAA Hp_TH2099 AGTAAGGTA Mm1874 cagA AGTAAGGTA Mm1887 cagA AGTAAGGTA 26695 cagA AGTAAGGTA Hp_TH2099 GCAGGTTCTTTTCG Mm1874 csgA GCAGGTTCTTTTCG Mm1887 csgA GCAGGTTCTTTTCG 26695 csgA GCAGGTTTTTTTGG Np_TH2099 ATCAATGAAAAAA Mm1874 caga ATCAATGAAAAAA Mm1887 caga ATCAATGAAAAAA 26695 caga ATCAATGAAAAAA Hp_TH2099 AACAATGCTG Mm1874 cagA AACAATGCTG Mm1887 cagA AACAATGCTG 26695 cagA AACAATGCTG

Identity (%)							
	Hp_TH2099	Mm1874 cagA	Mm1887 <i>cagA</i>	26695 <i>cagA</i>			
Hp_TH2099		96	97	92			
Mm1874 <i>cagA</i>			98	92			
Mm1887 <i>cagA</i>				92			
26695 cagA							

а

b

Hp_TI2099
Inc. 2009. Introdemontpackage/approximation in and introdemond in an introdemontpackage/approximation in an introdemontpackage/approximation in an introdemontpackage/approximation/a
Hp_TH2039 GSUVIAGGENGINNESYLIKEDQLIGGRALGGELUNVUMEFLAGNNALULISEKEKEKETE EINPORSKALDALGNDELEYSKUTHEISALIDFGNGULSTFRUYGKNARALDRERVTIGGSLAUDOWIVVISIFXTINASINFINKOVOVINVSIELAGENKV Mei 14 C.csp. GSUVIAGGENINFETLIKEDQLIGGRALGGELINVUMEFLAGNNALULISEKEKEKETE EINPORSKALDALGNDELEYSKUTHEISALIDFGNGULSTFRUYKANARALDRERVTIGGSLAUDOWIVVISIFXTINASINFINKOVOVINVSIELAGENKV Mei 14 C.csp. GSUVIAGGENINFETLIKEDQLIGGRALGGELINVUMEFLAGNNALULISEKEKEKETE EINPORSKALDALGNELIYFKOTHEISALIDFGNGULSTFRUYKANARALDRERVTIGGSLAUDOWIVVISIFXTINASINFINKOVOVINVSIELAGENKV Mei 14 C.csp. GSUVIAGGENINFETLIKEDQLIGGRALGGELINVUMEFLAGNNALULISEKEKEKETE EINPORSKALDALGNELIYFKOTHEISALIDFGNGULSTFRUYKANARALDRERVTIGGSLAUDOWIVVISIFXTINASINFINKOVINVISIELAGENKV Mei 14 C.csp. GSUVIAGGENINFETLIKEDQLIGGRALGGELINVUMEFLAGNNALULISEKEKEKEGE EINPORSKALDALGNELIYFKOTHEISALIDFGNGULSTKOVKANARALDRERVTIGGSLAUDOWIVVISIELAGENKV 2665 C.gs.
Bg_TH2039 A TRUE POINTER TO LEGAL LEGAL LEGAL LANGEL LAGVEL HAVEN ADAM TO THE VAN AND THE
Bg_TROPS _ ETILATLACKROLINESES SPECIMALESES AND SECTION AND SEC
IEP_TROSP. VINCENCE/SAUGUST INVESTIGATION CONTRACTOR AND

Identity (%)							
	Hp_TH2099	Mm1874 CagA	Mm1887 CagA	26695 CagA			
Hp_TH2099		92	94	86			
Mm1874 CagA			96	86			
Mm1887 CagA				86			
26695 CagA							

С

d	EPIYA-C segment-coding region							
Hp_TH2099 Mm1874 cagA Mm1887 cagA UM067 cagA 26695 cagA	TTCCCTTTGAAAGGGCATGATAAAGTTGATGATATCAGTAAGGTAGGGCTTTCAGCTAGCT							
Hp_TH2099 Mm1874 cagA Mm1887 cagA UM067 cagA 26695 cagA	TTCCCTTTGAAAAGGCATGATAAAGTTGATGATCTCAGTAAGGTAGGGCGATCGGTTAGCCCT GAACCCATCTATGCT ACGATTGATGATGTCTCGGCGGACCT							

Hp_TH2099	T
Mm1874 cagA	T
Mm1887 cagA	T
UM067 cagA	T
26695 cagA	T
	_

	********** ****** ****
A	TTCCCTTTGAAAAGGCATGATAAAGTTGATGATCTCAGTAAGGTAGGG
A	TTCCCTTTGAAAAGGCATGATAAAGTTGATGATCTCAGTAAGGTAGGG
дA	TTCCCTTTGAAAGGGCATGGTAAAGTTGATGATCTCAGTAAGGTAGGG
дA	TTCCCTTTGAAAGGGCATGGTAAAGTTGATGATCTCAGTAAGGTAGGG
	TTCCCTTTGAAAGGGCATGGTAAAGTTGATGATCTCAGTAAGGTAGGG

second CM sequence-coding region

Identity (%)							
	Hp_TH2099	Mm1874 <i>cagA</i>	Mm1887 <i>cagA</i>	UM067 cagA	26695 <i>cagA</i>		
Hp_TH2099		100	100	91	95		
Mm1874 <i>cagA</i>			100	91	95		
Mm1887 <i>cagA</i>				91	95		
UM067 cagA					96		
26695 cagA							

е

Identity (%)							
	Hp_TH2099	Mm1874 CagA	Mm1887 CagA	UM067 CagA	26695 CagA		
Hp_TH2099		100	100	82	86		
Mm1874 CagA			100	82	86		
Mm1887 CagA				82	86		
UM067 CagA					96		
26695 CagA							

Figure S5. Supplementary Comparison of macaque-isolated cagA/CagA with canonical ABC-type Western cagA/CagA. Pair-wise alignments were carried out by Clustal W software. (a) Alignment of full-length nucleotide sequences between Hp TH2099, Mm1874, Mm1887, and 26695 cagA genes. (b) Alignment of full-length amino acids sequences between Hp TH2099, Mm1874, Mm1887, and 26695 CagA proteins. (c) A phylogenetic tree was constructed by adding full-length sequences of Hp TH2099, Mm1874, Mm1887 cagA genes to the 199 reference cagA genes used in Figure 2c. Red circle indicated the positions of Hp TH2099, Mm1874, and Mm1887 cagA genes (left). Magnified view of the black dotted box in the phylogenetic tree (right). (d) Alignment of nucleotide sequences of Hp_TH2099, Mm1874, Mm1887, UM067, and 26695 cagA gene segments encoding the EPIYA-C segment and the second (distal) CM sequence. Notably, the UM067 cagA gene contains tandem duplication of the nucleotide sequence encoding the EPIYA-C segment. Identical sequences are highlighted in purple. Nucleotide identities (%) are shown in the table. (e) Alignment of amino acid sequences of Hp_TH2099, Mm1874, Mm1887, UM067, and 26695 CagA protein regions that correspond to the EPIYA-C segment and the second (distal) CM sequence. The UM067 CagA protein is an ABCC-type Western CagA containing two identical EPIYA-C segments in tandem. Identical amino acid sequences are highlighted in purple. Amino acid identities (%) are shown in the table.

Supplementary Figure S6. Role of the Leu residue at the 12th position from the N-terminus of the canonical CM sequence in binding of CagA with PAR1b. Structural basis for the interaction of PAR1b (grey) with Leu959 *H. pylori* 26695 CagA, which is located at the 12th position from the N-terminus in the second CM sequence (yellow) The binding interface was created using the data of the previous work reported by Nesić and co-workers (*Nat. Struct. Mol. Biol.* **17**, 130–132, 2010, PDB ID: 3IEC) (left). Carbons in the side chain of Leu959 were represented by ball models with distinct colors; β -, γ - and δ 1/2-carbons are shown in purple, dark grey and green, respectively (right). Main chain of Leu959 was fixed by the hydrogen bond formation (cyan dashed line) with Phe209 residue in PAR1b. The sequence corresponding to Leu959 in 26695 CagA is replaced by Ile (Ile922) in Hp_TH2099 CagA.

Supplementary Figure S7. Expression and tyrosine phosphorylation of transfected CagA in AGS cells. (a) Immunoblot analysis of transfected ABC'-CagA-FLAG and ABC-CagA-FLAG in AGS cells used for the hummingbird assay in Fig. 4d. Full-length blots are presented in Supplementary Figure S12. (b, c) Intensities of each protein bands were quantitated by ImageJ software. The FLAG/Actin ratios (b) and the phosphotyrosine (pTyr)/FLAG ratios (c) were then calculated and statistically analyzed by using Student's *t*-test. Error bars represent \pm S.D. (n = 3), **: p < 0.01.

Supplementary Figure S8. IL-8 mRNA expression analysis in Hp_TH2099 infected COS7 cells. Hp_TH2099, G27 Δ cagPAI and G27 strains were infected with African green monkey derived COS7 cells. RNAs were extracted from COS7 cells after 5 hours of infection and quantitative RT-PCR analysis was performed for measuring IL-8 mRNA expression levels. G27 is the *H. pylori* standard strain and G27 Δ cagPAI is an isogenic strain of G27 that lacks the functional cagPAI. N.D.: not detected.

Supplementary Figure S9. Generation and characterization of **Hp TH2099**∆*cagA*. The nucleotide of **(a)** cagA sequence Hp TH2099 $\Delta cagA$ was read to confirm the disruption of the cagA coding region. (b) AGS cells were infected with the *H. pylori* Hp TH2099 $\Delta cagA$ for 24 hours at MOI of 300. Scale bars: 100 µm. (c) IL-8 mRNA expression in AGS cells. AGS cells were infected with the Hp_TH2099 $\triangle cagA$, parental Hp_TH2099, G27 $\triangle cagPAI$, or parental G27 strain. RNAs were extracted from AGS cells at 5 hours after the onset of H. pylori infection and were subjected to quantitative RT-PCR analysis for the expression of IL-8 mRNA.

Figure S10. Induction Supplementary of the hummingbird phenotype by infection with the H. pylori TH2099 strain. AGS cells were infected with the H. pylori Hp TH2099 for 24 hours at MOI of 300. Microscopic views of AGS cells with or without Hp TH2099 infection. White arrows indicate cells showing the hummingbird phenotype. Scale bars: 100 µm (left). Saponin (0.1%) extracts of non-infected (N.I.) or Hp TH2099-infected AGS cells were immunoblotted with an anti-CagA or an anti-Actin antibody. The Hp TH2099 strain cultured without AGS cells in RPMI medium were also collected and lysed by 0.1% saponin as a negative control. Full-length blots are presented in Supplementary Figure S12.

а Day 8 Day 11 Day 0 Day 4 Day 26~ Activin+NOG+LiCI FGF4+NOG+RA Γ EGF EB DE PF ES Organoid b d С DAPI DAPI DAPI Sox2 E-cad DAPI/E-cad DAPI/ Goosecoid β-actin 2 ES EB

Supplementary Figure S11. Identification of ES cells, definitive endoderm, and posterior foregut. (a) A schematic view of the generation of organoids from mouse embryonic stem (ES) cells. Time line of the induction of organoids is shown. EB, embryonic body; DE, definitive endoderm; PF, posterior foregut, NOG: noggin, FGF4: mouse fibroblast growth factor 4, RA: retinoic acid, EGF: mouse epidermal growth factors. (b) Alkaline phosphatase assay of mouse ES cells. Scale bar; 200 µm (upper). Immunostaining analysis for the expression of embryonic stem cell markers, Oct3 and Nanog, in mouse ES cells. Scale bar; 50 µm (lower). (c) A microscopic image of definitive endoderm. Scale bar; 200 µm (upper). Immunostaining analysis for the expression of definitive endoderm-specific markers, E-cadherin and Sox17. Scale bar; 50 µm (middle). RT-PCR analysis of Goosecoid expression. ES, embryonic stem cells; DE, definitive endoderm (lower). (d) A microscopic image of the ES-derived spheroids at day 11. Scale bar; 200 µm (upper). Immunostaining analysis for the expression of the posterior foregut markers, Sox2 and Hnf1 β , in the spheroids at day 11. Scale bar; 50 µm (lower).

а

Supplementary Figure S12. Generation of gastric organoids from mouse ES cells. (a) A microscopic image of an ES cell-derived organoid at day 40. Scale bars: 200 μ m. (b) HE staining (upper) and Alcian blue-PAS staining (lower) of an organoid at day 40. All scale bars: 200 μ m. (c) A heat map representation of microarray data obtained using RNAs prepared from the ES-cell derived organoids at day 26, two fetal mouse stomach samples and an adult mouse stomach sample. E16 pylorus: RNA extracted from the pyloric region of the stomach of embryonic day 16 mouse. E16 stomach: RNA extracted from the stomach of embryonic day 16 mouse. Adult stomach: RNA extracted from the adult mouse stomach. (d, e) Immunostaining analysis of ES-cell derived organoids at day 40. Muc5ac, Mucin 5ac; Muc6, Mucin 6; E-cad, E-cadherin; β -cat, β -catenin; α -SMA, α -smooth muscle actin. Scale bars: 10 μ m for e, 50 μ m for f.

Supplementary Figure S13. Full length blots for Figure 3b, 4a, 4c, Supplementary Figure S7a and S10. Full scans of western blotting panels. Red squares indicate where the images were cropped. Supplementary Table S1. Detailed information of isolates used for population assignment, ordered based on fineSTRUCTURE.

Inclute ID	Coornerbiastermen	Countrie	City/marian	Assigned repulation	Defense es
	South A frice	Mnumalanaa	Ogies Maumalanga	Assigned population	Didelot et al. 2013
SA102A SA227A	South Africa	Mnumalanga	Ogies, Mpumalanga	hspAfrical SAfrica	Didelot et al. 2013
SA22/A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrical SAfrica	Didelot et al. 2013
SA301A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrical SAfrica	Didelot et al. 2013
SA220A	South Africa	Mpumalanga	Ogies, Mpumalanga	nspAmcal SAmca	Didelot et al. 2013
SA161A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfricalSAfrica	Didelot et al. 2013
SA214A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA156A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA226A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA168A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA146A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA46C	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA30A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA158A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA35A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA45A	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA170C	South Africa	Mpumalanga	Ogies, Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
SA157A	South Africa	Mpumalanga	Ogies. Mpumalanga	hspAfrica1SAfrica	Didelot et al. 2013
Gambia94/24	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM260Bi	West Africa	Gambia	n/a	hsnAfrica1WAfrica	Human Microbiome Project
GAM120Aj	West A frica	Gambia	n/a	hsnA frica1WA frica	Human Microbiome Project
GAM119D	West A frien	Gambia	n/a	hen A frice 1 WA frice	Human Mierobiome Project
GAM118BI	West Africa	Gampia	n/d	han A frice 1 WAITICA	Human Miarthan Dr
GAM245A1	west Africa	Gambia	n/a	nspAtrica i WAtrica	Human Microbiome Project
GAM260ASi	West Atrica	Gambia	n/a	nspAtrical WAfrica	Human Microbiome Project
GAM112Ai	West Africa	Gambia	n/a	hspAtrica1WAfrica	Human Microbiome Project
GAM115Ai	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM119Bi	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAMchjs136i	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM246Ai	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM263BFi	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
HP116Bi	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM121Aii	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM114Ai	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM80Ai	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM103Bj	West A frica	Gambia	n/a	hsp/filea1WA frica	Human Microbiome Project
GAM240T	West Africa	Gambia	n/a	hspAfrical WAfrica	Human Microbiome Project
GAM2491	West Africa	Gambia	ii/a	hspAnical WAnica	Human Microbionie Project
GAMII/AI	West Africa	Gambia	n/a	nspAmcal wAmca	Human Microbiome Project
GAMI05Ai	West Africa	Gambia	n/a	hspAfrical WAfrica	Human Microbiome Project
GAM265BS11	West Africa	Gambia	n/a	hspAfrical WAfrica	Human Microbiome Project
GAM254Ai	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM100Ai	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM270ASi	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM101Biv	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAMchjs114i	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM239Bi	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM71Ai	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAMchis106B	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAMchis124i	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM231Ai	West Africa	Gambia	n/a	hsnAfrica1WAfrica	Human Microbiome Project
GAMchis1174i	West Africa	Gambia	n/a	hsnA frica1WA frica	Human Microbiome Project
GAM260DC:	West A fries	Gambia	n/a	hen A frice 1 WA frice	Human Microbiome Project
GAIVI200B51	West Affica	Gambia	n/a	hspAmeat wAmea	
GAM96A1	west Amca	Gambia	n/a	nspAtrica i WAtrica	ruman Microbiome Project
GAM201A1	west Africa	Gambia	n/a	nspAtrical WAfrica	Human Microbiome Project
GAM244Ai	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM264Ai	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
GAM83Bi	West Africa	Gambia	n/a	hspAfrica1WAfrica	Human Microbiome Project
SA29A	South Africa	South Africa	Ogies, Mpumalanga	hpAfrica2	Didelot et al. 2013
SA194A	South Africa	South Africa	Ogies, Mpumalanga	hpAfrica2	Didelot et al. 2013
SouthAfrica7	South Africa	South Africa	Soweto, Bantu origin	hpAfrica2	Duncan et al. 2013
SouthAfrica20	South Africa	South Africa	Soweto, Bantu origin	hpAfrica2	Duncan et al. 2013
SouthAfrica50	South Africa	South Africa	Soweto, Bantu origin	hpAfrica2	Duncan et al. 2013
SA144A	South Africa	South Africa	Ogies. Mpumalanga	hpAfrica2	Didelot et al. 2013
SA253A	South Africa	South Africa	Ogies Mnumalanga	hpAfrica?	Didelot et al. 2013
SA160A	South Africa	South A friend	Ogies Mnumelance	hp A frice?	Didelot et al. 2013
SA155A	South A fairs	South Africa	Ogies, Mpumaianga	hpAmea2	Didelet et al. 2013
SAISSA	South Affica	South Africa	Ogles, Mpumalanga	npAmea2	Didelot et al. 2013
SA4/A	South Africa	South Africa	Ogies, Mpumalanga	npAtrica2	Didelot et al. 2013
SA34A	South Africa	South Africa	Ogies, Mpumalanga	npAtrica2	Didelot et al. 2013
SA175A	South Africa	South Africa	Ogies, Mpumalanga	hpAfrica2	Didelot et al. 2013
SA169C	South Africa	South Africa	Ogies, Mpumalanga	hpAfrica2	Didelot et al. 2013
SA233A	South Africa	South Africa	Ogies, Mpumalanga	hpAfrica2	Didelot et al. 2013

SA172C	South Africa	South Africa	Ogies, Mpumalanga	hpAfrica2	Didelot et al. 2013
SA166A	South Africa	South Africa	Ogies, Mpumalanga	hpAfrica2	Didelot et al. 2013
SA40A	South Africa	South Africa	Ogies Mnumalanga	hpAfrica2	Didelot et al. 2013
SA36C	South A frien	South A frice	Ogios Mnumalanga	hp A frice 2	Didelet et al. 2013
SASOC	South Africa	South Africa	Ogies, Mpunaianga	iipAnicaz	Didelot et al. 2013
SA303C	South Africa	South Africa	Ogies, Mpumalanga	hpAfrica2	Didelot et al. 2013
UM054	Asia	Malaysia		hpAsia2	Kumar et al. 2014
NAB47	Asia	India	n/a	hpAsia2	-
UM067	Asia	Malaysia	Malaysian-Indian	hpAsia2	Rehvathy et al. 2013
FD423	Asia	Malaysia	Malaysian-Indian	hnAsia?	Rehvathy et al. 2013
110.024	Agio	Malaysia	Malay origin	hp. tota2	Rohvethy et al. 2013
0101084	Asia	Malaysia	Malay origin	npAsiaz	Renvality et al. 2015
UM114	Asia	Malaysia	Malaysian-Indian	hpAsia2	Rehvathy et al. 2013
UM018	Asia	Malaysia	Malaysian-Indian	hpAsia2	Kumar et al. 2014
FD430	Asia	Malaysia	Malaysian-Indian	hpAsia2	Rehvathy et al. 2013
FD703	Asia	Malaysia	Malay origin	hpAsia2	Rehvathy et al. 2013
Vangon100	Asia	Myanmar		hpAsia?	*
	Asia		0 . 1	InpAsia2	D:11 + + 1 0010
SA222A	Asia	South Africa	Ogies, Mpumalanga	hpAsia2	Didelot et al. 2013
FD535	Asia	Malaysia	Malaysian-Indian	hpAsia2	Rehvathy et al. 2013
Hp_TH2099					
NAK7	Asia	India	n/a	hpAsia2	-
SNT49	Asia	India	Santal tribe	hnAsia?	
Vencen170	A sis	Maan	Suntar 1100	hp/15/02	*
Yangon1/9	Asia	Myanmar		npAsia2	
Yangon233	Asia	Myanmar		hpAsia2	*
Myanmar52	Asia	Myanmar		hpAsia2	*
Myanmar51	Asia	Myanmar		hpAsia2	*
Yangon142	Asia	Myanmar		hnAsia?	*
Museuman(6	A sis	Maanman		hp/15/02	*
Myanmaroo	Asia	wyannar		npAsiaz	
Mandalay30	Asia	Myanmar		hpAsia2	*
Mandalay03	Asia	Myanmar		hpAsia2	*
Yangon202	Asia	Myanmar		hpAsia2	*
India7	Asia	India	n/a	hpAsia2	-
3754	Furope	France	Bordeaux	hn Asia3	*
3734 ND05	Autope	Namel	Negal	hpAsia3	*
NP05	Asia	Nepai	Nepai	npAsia2	
NP04	Asia	Nepal	Nepal	hpAsia2	*
NP05-107	Asia	Nepal	Nepal	hpAsia2	*
NP05-105	Asia	Nepal	Nepal	hpAsia2	*
NP05-278	Asia	Nepal	Nenal	hnAsia?	*
ND05 270	A sis	Negal	Nepal	hp/15/02	*
NP05-272	Asia	Nepal	Nepal	hpAsia2	*
NP05-250	Asia	Nepal	Nepal	hpAsia2	*
NP05-121	Asia	Nepal	Nepal	hpAsia2	*
NP05-112	Asia	Nepal	Nepal	hpAsia2	*
SSR4	Europe	Ireland	Dublin	hspEuropeN	*
SSP13	Europe	Ireland	Dublin	henEuropeN	*
SSKIS	Europe	Tietalid	Dubili		
SSR8	Europe	Ireland	Dublin	hspEuropeN	*
26695	Europe	UK	n/a	hspEuropeN	Tomb et al. 1997
SSR14	Europe	Ireland	Dublin	hspEuropeN	*
HPKX 483 AG0C1	Europe	Sweden	Kalix, Norrland	hspEuropeN	Yannikis et al. 2008
SSR23	Furope	Ireland	Dublin	hsnEuroneN	*
55R25		T 1 1	D 11		ىد
SSR40	Europe	Ireland	Dublin	hspEuropeN	*
SW7A	Europe	Wales	Swansea	hspEuropeN	*
SSR20	Europe	Ireland	Dublin	hspEuropeN	*
SW21A	Europe	Wales	Swansea	hspEuropeN	*
SSR22	Europe	Ireland	Dublin	hspEuropeN	*
UDAC1	Europe	Sundan	Kalin Namland	han Europei N	Oh at al. 2006
HPAGI	Europe	Sweden	Kalix, Normand	Inspeuropen	On et al. 2006
Lithuania75	Europe	Lithuania	n/a	hspEuropeN	-
SSR3	Europe	Ireland	Dublin	hspEuropeN	*
SSR2	Europe	Ireland	Dublin	hspEuropeN	*
SSR5	Europe	Ireland	Dublin	hspEuropeN	*
SSD7	Europa	Iroland	Dublin	henEuropaN	*
33K/	Europe	incland	Duomi	Inspectoperv	
SSR9	Europe	Ireland	Dublin	hspEuropeN	*
SSR33	Europe	Ireland	Dublin	hspEuropeN	*
SSR17	Europe	Ireland	Dublin	hspEuropeN	*
SSR43	Europe	Ireland	Dublin	hspEuropeN	*
BON 254	Furope	France	Bordeaux	hsnFuroneN	*
SCD 10	Europe	Index	Dublin	harEurop	*
55K12	Europe	Ireland	Duolin	nspEuropeN	· .
G27	Europe	Italy	n/a	hspEuropeN	Baltrus et al. 2009
3745	Europe	France	Bordeaux	hspEuropeN	*
B38	Europe	France	n/a	hspEuropeN	Thiberge et al. 2010
P12	Furope	Germany	n/a	hsnFuroneN	Fischer et al. 2010
 N6	Europe	Energy		harEuropen	*
INO	Ешоре	r rance	n/a	nspEuropein	•
3843	Europe	France	Bordeaux	hspEuropeN	*
SW23Ai	Europe	Wales	Swansea	hspEuropeN	*
PHI 092	Europe	France	Bordeaux	hspEuropeN	*

CHA 185	Europe	France	Bordeaux	hspEuropeN	*
3746	Europe	France	Bordeaux	hspEuropeN	*
OK113	East Asia	Japan	n/a	hpEastAsia	Yahara et al. 2013
52	East Asia	South Korea	n/a	hpEastAsia	-
X7274	Asia	China	n/a	hnEastAsia	Guo et al 2012
51	East Asia	South Korea	n/a	hnEastAsia	-
HI IHP193	Asia	China	inu	hpEastA sia	_
E22	Foot Agio	Ionon	n/o	hpEastAsia	- Kowai at al. 2011
F 52	East Asia	China	11/a	hpEastAsia	Rawai et al. 2011
HLJHF255	Asia	China		hpEastAsia	-
HLJHP256	Asia	China		npEastAsia	-
HLJHP2/I	Asia	China		npEastAsia	-
Yangon244	Asia	Myanmar		hpEastAsia	*
Yangon222	Asia	Myanmar		hpEastAsia	*
OK310	East Asia	Japan	n/a	hpEastAsia	Yahara et al. 2013
CPY1962	East Asia	Japan	n/a	hpEastAsia	Blanchard et al. 2013
CPY6271	East Asia	Japan	n/a	hpEastAsia	Blanchard et al. 2013
83	East Asia	unknown	n/a	hpEastAsia	David Graham
CPY6261	East Asia	Japan	n/a	hpEastAsia	Blanchard et al. 2013
CPY1124	East Asia	Japan	n/a	hpEastAsia	Blanchard et al. 2013
CPY3281	East Asia	Japan	n/a	hpEastAsia	Blanchard et al. 2013
F30	East Asia	Japan	n/a	hpEastAsia	Kawai et al. 2011
Oct-98	East Asia	Japan	n/a	hpEastAsia	-
35A	East Asia	Japan	n/a	hpEastAsia	David Graham
F16	East Asia	Japan	n/a	hpEastAsia	Kawai et al. 2011
CPY1313	Fast Asia	Ianan	n/a	hnFastAsia	Blanchard et al. 2013
E57	East Asia	Japan	n/a	hpEastA sia	Kawai et al. 2011
CDV6081	East Asia	Japan	n/a	hpEastAsia	Rawar et al. 2011
CP 10081	East Asia	Japan	n/a	hpEastAsia	Dianchard et al. 2013
CP 10511	East Asia	Japan	n/a	hpEastAsia	Blanchard et al. 2013
Yangon 159	Asia	Myanmar	E 1 (1	npEastAsia	T 2004 K 2011
8A3	East Asia	unknown	Experimental	hpEastAsia	Graham 2004, Kenneman 2011
Manado-I	Asia	Indonesia	Manado	hpEastAsia	-
Taiwan-47	East Asia	Taiwan	n/a	hpEastAsıa	-
UM077	Asia	Malaysia	Chinese Malay	hpEastAsia	Rehvathy et al. 2013
UM085	Asia	Malaysia	Chinese Malay	hpEastAsia	Rehvathy et al. 2013
UM111	Asia	Malaysia	Chinese Malay	hpEastAsia	Rehvathy et al. 2013
Mandalay38	Asia	Myanmar		hpEastAsia	*
UM007	Asia	Malaysia	Chinese Malay	hpEastAsia	Kumar et al. 2014
CPY1662	East Asia	Japan	n/a	hpEastAsia	-
Yangon173	Asia	Myanmar		hpEastAsia	*
FD506	Asia	Malaysia	Chinese Malay	hpEastAsia	Rehvathy et al. 2013
UM038	Asia	Malaysia	Chinese Malay	hpEastAsia	Rehvathy et al. 2013
UM032	Asia	Malaysia	?	hpEastAsia	Khosravi et al. 2013
UM023	Asia	Malaysia	Chinese Malay	hpEastAsia	Rehvathy et al. 2013
UM065	Asia	Malavsia	Chinese Malay	hpEastAsia	Rehvathy et al. 2013
UM066	Asia	Malaysia	Chinese Malay	hnEastAsia	-
UM034	Asia	Malaysia	Chinese Malay	hpEastAsia	Kumar et al 2014
ED577	Asia	Malaysia	Chinese Malay	hpEastA sia	Rehvathy et al. 2013
ED549	Asia	Malaysia	Chinese Malay	hpEastAsia	Rehvathy et al. 2013
PD508	Asia South Amonion	Dama		IIpEastAsia	Relivality et al. 2015
PeCall4	South America	Peru			-
Sat464	Ind. America	Peru	Satipo region	hspAmerind	-
Shi470	Ind. America	Peru	Shimaa village	hspAmerind	-
Shi169	Ind. America	Peru	Shimaa village	hspAmerind	-
Shi417	Ind. America	Peru	Shimaa village	hspAmerind	-
Cuz20	Ind. America	Peru	Cuzco	hspAmerind	-
Shi112	Ind. America	Peru	Shimaa village	hspAmerind	-
Aklavik117	North America	Canada	Aklavik	hspAmerind	-
v225d	South America	Venezuela	Piaroan indian	hspAmerind	-
Puno135	Ind. America	Peru	Puno	hspAmerind	-
Puno120	Ind. America	Peru	Puno	hspAmerind	-

References

 Haas, R., Meyer, T.F., Van Putten, J.P.M. A flagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. *Mol. Microbiol.* 8, 753-760 (1993).