1 Supplementary Information

2

Variable training but not sleep improves consolidation of motor adaptation

- 5 Benjamin Thürer^{1*†}, Frederik D. Weber^{2,3*†}, Jan Born²[‡], Thorsten Stein¹[‡]
- ¹BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131
 Karlsruhe, Germany
- ²Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074
 Tübingen, Germany
- ³Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EN
 Nijmegen, the Netherlands
- 12 *Corresponding authors: benjamin.thuerer@gmail.com, research@frederikweber.com
- 13 [†]these authors contributed equally to this work
- 14 *these authors contributed equally to this work*
- 15

20 and their interactions in mixed-model ANOVAs analyzing the consolidation effect from Training to

ANOVA results of different behavioral parameters.

<i>n</i> = 48		Angle	Vp	PDmax		PDVmax		FeedbackPD	
		F	р	F	р	F	р	F	р
Adaptation	time	262.5	<0.001	133.6	<0.001	57.9	<0.001	56.9	<0.001
	time*sleep	0.6	0.457	1.1	0.301	0.8	0.388	0.1	0.711
	time*practice	< 0.1	0.847	2.3	0.134	2.9	0.096	0.5	0.489
	time*practice* sleep	<0.1	0.94	0.1	0.73	<0.1	0.896	<0.1	0.881
	sleep	0.1	0.748	0.1	0.793	0.7	0.398	< 0.1	0.96
	practice	1.2	0.274	1.3	0.261	3.9	0.054	0.1	0.73
	sleep*practice	0.1	0.74	1.5	0.232	0.3	0.861	0.4	0.509
Consolidation	time	15.4	<0.001	1.2	0.273	13.6	<0.001	0.2	0.644
	time*sleep	0.5	0.484	1.8	0.189	0.5	0.479	0.1	0.756
	time*practice	< 0.1	0.897	4.6	0.037	10.0	0.003	0.1	0.739
	time*practice* sleep	<0.1	0.847	1.2	0.288	3.0	0.088	0.1	0.801
	sleep	0.3	0.568	< 0.1	0.928	3.8	0.056	0.4	0.526
	practice	0.9	0.346	9.0	0.004	8.9	0.005	< 0.1	0.951
	sleep*practice	< 0.1	0.891	1.0	0.317	0.8	0.386	0.3	0.61
Generalization	time	618.9	<0.001	435.4	<0.001	351.2	<0.001	235.8	<0.001
	time*sleep	0.4	0.525	0.2	0.627	4.2	0.045	4.3	0.044
	time*practice	1.9	0.171	13.7	<0.001	19.8	<0.001	5.2	0.028
	time*practice* sleep	1.4	0.242	0.4	0.525	< 0.1	0.849	0.9	0.361
	sleep	1.4	0.240	0.8	0.365	8.1	0.007	3.4	0.073
	practice	1.2	0.282	0.7	0.394	0.6	0.453	2.5	0.118
	sleep*practice	0.5	0.472	0.1	0.745	< 0.1	0.938	0.3	0.569

This table shows uncorrected p-values of different ANOVAs performed for each research question and each performance parameter. Between subject factors are sleep (Wake, Sleep) and practice (Random,

- 27 Blocked). Within subject factor time changed according to the research question (adaptation: First
- 28 Training Trials, Last Training Trials; consolidation: Last Training Trials, Posttest; generalization: Last
- 29 Training Trials, Transfer). AngleVp describes the angle between a straight line and subject's trajectory at
- 30 peak velocity. This parameter captures mostly feedforward mechanisms. PDmax and PDVmax capture
- 31 the maximum perpendicular displacement (PD) of the trajectory and the PD at peak velocity. Both
- 32 parameters are affected by feedforward and feedback mechanisms. FeedbackPD describes the difference
- from PD at peak velocity to 5% of the peak velocity at the end of the movement. This parameter reflects
- 34 mostly feedback processes.

			ROI_left		R	OI_right
			Planning	Execution	Planning	Execution
	Ploakad	ρ	0.3	0.22	0.33	0.23
Docttost	DIOCKEU	р	0.16	0.302	0.115	0.283
Fostiest	Dondom	ρ	0.12	0.15	0.16	0.17
	Kandom	р	0.57	0.486	0.47	0.412
	Ploakad	ρ	0.6	0.55	0.39	0.49
Transfor	DIOCKEU	р	0.003	0.006	0.061	0.017
Tansiei	Pandom	ρ	-0.1	0.04	0.08	0.2
	Kandoni	р	0.654	0.872	0.724	0.367

36 Correlations between EEG alpha power during training and consolidation

37

38 This table shows Spearman's rho $[\rho]$ and uncorrected p-values of the associations between the EEG alpha

39 power during training and the consolidation from Training-to-Posttest and Training-to-Transfer for the

40 Blocked and Random groups.

Sleep parameter ($n = 22$)			Spearman rank correlations with behavior $[\rho]$						
				Training	Posttest	Transfer	Posttest	Transfer	
Stages							- Training	- Training	
TST [min]	435.91	±	8.76	-0.219	-0.338	-0.152	0.160	-0.043	
Sleep onset [min]	18.56	±	3.70	-0.092	-0.074	-0.011	0.040	0.179	
WASO [%]	2.91	±	0.43	-0.238	-0.043	0.207	0.357	0.433*	
Stage 1 [%]	7.09	±	0.60	-0.342	-0.329	-0.152	0.123	0.040	
Stage 2 [%]	45.23	±	1.52	0.234	0.342	-0.030	-0.174	-0.073	
SWS [%]	27.64	±	1.50	0.043	-0.097	0.025	-0.019	-0.082	
Non-REM [%]	72.86	±	0.84	0.420	0.281	0.058	-0.377	-0.172	
REM [%]	17.14	±	0.71	-0.051	-0.095	-0.152	0.071	-0.158	
Spindle power peak	13.32	±	0.11	-0.500*	-0.163	0.072	0.367	0.363	

42 *Sleep states and correlations with motor adaptation and consolidation*

43

Means \pm s.e.m for the sleep parameters in the left columns. The right columns show Spearman's rank 44 45 correlation of sleep parameters with behavioral measures of mean motor error (enclosed area) during end of Training, Posttest, Transfer, as well as changes from Training to Retest (Posttest - Training) and 46 Training to Transfer (Transfer – Training). Note that for Posttest – Training and Transfer – Training a 47 negative correlation is indicative of beneficial relation on consolidation success. Given are the total sleep 48 49 time (TST), sleep onset (with reference to the time of lights off and beginning of first occurrence of stage 1-sleep epoch followed by stage 2-sleep), and time spent awake after sleep onset (WASO), sleep stage 1, 50 51 sleep stage 2, SWS, non-REM (S2 + SWS) and REM in percentage of total sleep time. In addition, the sleep spindle power peak in the non-REM sleep power spectra of 12–15 Hz frequency range, Significant 52 53 correlations are in bold, * p < 0.05, uncorrected for multiple comparisons.

Sleep parameter $(n = 22)$		Spearman rank correlations with behavior [p]						
Analysis	Property	Elec- trode	Training	Posttest	Transfer	Posttest - Training	Transfer - Training	
Power density (Stage 2)	(0.5-4 Hz)	P3 [†]	0.313	-0.152	0.017	-0.501*	-0.252	
Power density (REM)	(0.5-4 Hz)	C4 [†]	0.339	-0.113	0.327	-0.435*	-0.008	
Spindle	duration	C3	0.536*	-0.075	0.204	-0.517*	-0.093	
		$C4^{\dagger}$	0.503*	-0.126	0.110	-0.532*	-0.204	
		Cz	0.487*	-0.037	0.179	-0.467*	-0.081	
		F4‡	0.442	-0.251	0.150	-0.453*	-0.093	
		P3	0.466*	-0.081	0.249	-0.481*	-0.049	
		P4	0.430*	-0.125	0.277	-0.517*	-0.010	
		Pz [‡]	0.424	-0.183	0.284	-0.549*	0.005	
	frequency	$C4^{\dagger}$	-0.535*	-0.101	0.109	0.453*	0.470*	
		Cz	-0.562**	-0.102	0.020	0.470*	0.360	
		Fz	-0.573**	-0.141	0.054	0.449*	0.411	
Upstate spindle	chirp	C3	-0.348	-0.034	0.255	0.318	0.430*	
		$C4^{\dagger}$	-0.240	-0.018	0.330	0.384	0.491*	
		P3	-0.187	0.089	0.302	0.315	0.450*	
		P4	-0.223	0.072	0.266	0.273	0.439*	
	count	C3	0.266	-0.189	-0.316	-0.482*	-0.490*	
		$C4^{\dagger}$	0.252	-0.187	-0.395	-0.465*	-0.547*	
		Cz	0.248	-0.101	-0.434*	-0.399	-0.582**	
		Fz	0.413	0.082	-0.268	-0.456*	-0.494*	
		P3	0.382	-0.100	-0.379	-0.548**	-0.569**	
		P4	0.233	-0.058	-0.397	-0.399	-0.480*	
		Pz [‡]	0.313	-0.122	-0.305	-0.502*	-0.454*	
	density	C3	0.268	-0.153	-0.295	-0.469*	-0.481*	
		$C4^{\dagger}$	0.310	-0.132	-0.319	-0.486*	-0.491*	

Sleep parameters and events and correlations with motor adaptation and consolidation

	Cz	0.296	-0.146	-0.351	-0.499*	-0.548**
	F3 [‡]	0.498*	0.293	-0.226	-0.451*	-0.441
	Fz	0.426*	0.129	-0.258	-0.436*	-0.465*
	P3	0.343	-0.091	-0.368	-0.518*	-0.549**
	P4	0.311	-0.008	-0.318	-0.462*	-0.443*
	Pz [‡]	0.308	-0.123	-0.302	-0.499*	-0.438
duration	C3 C4 [†]	0.394 0.475 *	-0.198 -0.329	-0.137 0.138	-0.471* -0.601**	-0.391 -0.161
	Cz	0.455*	-0.231	-0.013	-0.615**	-0.295
	P3	0.369	-0.286	-0.047	-0.505*	-0.252
	P4	0.469*	-0.153	0.016	-0.512*	-0.268
	Pz [‡]	0.353	-0.287	-0.205	-0.544*	-0.439
frequency	C4 [†]	-0.492*	-0.071	0.081	0.442*	0.438*
	F3 [‡]	-0.498*	-0.265	0.171	0.367	0.445*
SD of slow	Fz	-0.525*	-0.103	0.040	0.436*	0.387
wave delay	CZ	-0.225	-0.196	0.302	0.125	0.427*

56

57 Exploratory analysis of detailed sleep parameter's relation to consolidation during sleep. The right 58 columns show Spearman's rank correlation of sleep parameters with behavioral measures of mean motor 59 error (enclosed area) during end of Training, Posttest, Transfer, as well as changes from Training to Posttest (Posttest - Training) and Training to Transfer (Transfer - Training). Note that for Posttest -60 Training and Transfer - Training a negative correlation is indicative of a beneficial relation on 61 62 consolidation success. Only relations are listed that reached the significant threshold for a relation with 63 changes from either Training to Posttest or from Training to Transfer in any of the electrodes (Pz electrode location was excluded due to reduced sample size). Standard deviation (SD) of slow-wave delay 64 65 was measured to the detected preceding slow wave down-state. All other measures did not reach significance for relations with these two consolidation measures. Some electrodes went bad or off in some 66 subjects resulting in reduced number of subjects for correlations, $\dagger n = 21$, $\ddagger n = 20$. Significant 67 correlations are in bold, ** p < 0.01, * p < 0.05, uncorrected for multiple comparisons. 68

69

70 Supplementary Methods

Example MATLAB code for computing the force field compensation factor running on MATLAB
 R2017a on Windows:

73 74 % *x_forces: measured forces in x-direction* 75 % v forces: measured forces in v-direction % velocityX: measured velocity in x-direction 76 77 % velocityY: measured velocity in y-direction 78 79 % compute trial direction vector (from start to target) 80 $x_v1_raw = x_pos(1)-x_pos(end);$ 81 y_v1_raw = y_pos(1)-y_pos(end); 82 $vec1_raw = [x_v1_raw; y_v1_raw];$ 83 84 % compute vector orthogonal to target direction FFMatrix = [0 -1; 1 0]; % for CCW force field 85 86 vec2 raw = FFMatrix * vec1 raw; 87 88 % compute projected force in orthogonal direction 89 for v = 1:length(samples) 90 vecForce_raw = [x_forces(v);y_forces(v)]; proj_force(v) = norm((dot(vecForce_raw,vec2_raw) / dot(vec2_raw, vec2_raw)) *vec2_raw); 91 92 VecAngle(v) = rad2deg(atan2(norm(cross([vecForce raw' 0], ... 93 [vec2 raw'0])),dot(vecForce raw, vec2 raw))); 94 end 95 VecAngle = VecAngle > 90;proj_force(VecAngle) = proj_force(VecAngle)*(-1); 96 97 98 % compute ideal force according to the trials velocity velocity = [velocityX'; velocityY']; 99 FFMatrix = [0 15;-15 0]; % example force field matrix in CW direction 100 forceIdealArray = FFMatrix * velocity; 101 102 idealForce = []: for fct=1:length(forceIdealArray) 103 104 $idealForce(fct) = sqrt(forceIdealArray(1, fct)^2 + ...$ 105 forceIdealArray(2, fct)^2); 106 end 107 108 % compute fit with degree of 1 and compute the percentage force-field compensation p = polyfit(idealForce, proj force(1:end-1), 1); 109 110 FFC_factor = p(1)*100;