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Supplementary Methods

Model simulations of the POLICY and the UTILITY models

We analyzed the generative performances of the POLICY model: similarly to the RELATIVE model, the
POLICY model underestimates the di�erence between the big and the small magnitude contexts (simu-
lations vs. data, T(59)=2.9, P<0.006). When considering the transfer test, the POLICY model predicts
a linear pattern, because, despite the normalization process within the softmax function, option values
remain encoded in an absolute scale. Paradoxically, whereas in the learning sessions the POLICY model
predicts a behavior compatible with the RELATIVE model (i.e., no magnitude e�ect), in the transfer test
it predicts a behavior consistent with the ABSOLUTE model (i.e., no value inversion)(Supplementary

Fig. 1 a-c).

We also analyzed the generative performances of the UTILITY model: similarly to the HYBRID model,
the UTILITY model is able to perfectly capture the size of the magnitude e�ect in the learning sessions
(simulation vs. data, T(59)=0.2, P>0.80). Accordingly, the quality of �t (BIC) di�erence between these
two models was not di�erent when considering the learning sessions alone (HYB vs. UTY, T(59)=0.2,
P>0.84, Table 3). However, when considering the transfer test, the UTILITY model unsurprisingly also
predicted linear patterns (similar to the ABSOLUTE model), and failed to predict the value inversion
between the intermediate options (Supplementary Fig. 1 d-f). Accordingly, the quality of �t (BIC)
di�erence between the HYBRID and the UTILITY models was signi�cantly di�erent when considering
the transfer sessions alone (HYB vs. UTY, T(59)=3.3, P<0.002, Table 3) (Supplementary Fig. 1

d-f).

Additional model comparison: the SEPARATE and the ABS-AC models

The fourth model, referred to as the SEPARATE model, encodes range adaptation and reference-point
dependence separately with 2 respective additional free parameters ρ and π. The model describes an
absolute value encoding when both parameters are set to 0 and a relative value encoding when both
parameters are set to 1 :

RSEP,t = (1− ρ) ∗RABS,t + ρ ∗ RABS,t
|Vt(s)|

+ π ∗max

{
0,
−Vt(s)
|Vt(s)|

}
We analyzed the generative performances of the SEPARATE model, which encodes range adaptation and
reference-point dependence separately. Coherently, the model behaves similarly to the HYBRID model
and captures both the magnitude e�ect in the learning sessions (simulation vs. data, T(59)=1.3, P>0.18)
and the behavioral patterns when considering the transfer test (Supplementary Fig. 1 g-i). However,
by increasing its complexity with two additional free parameters, the quality of �t (BIC) di�erence be-
tween the HYBRID and the SEPARATE model was signi�cantly di�erent (HYB vs. SEP T(59)=5.42,
P<0.0001, Supplementary Table 1) in favor of the HYBRID model. In addition, we retrieved a sig-
ni�cant correlation between the ρ and the π parameter (R=0.31, P<0.02), partially explaining the fact
that a model with the two processes governed by only one parameter is more parcimonious.

We considered a �fth model, referred to as the ABS-AC model, is a mixture between a standard Q-
learning algorithm (similar to the ABSOLUTE model) and an actor-critic algorithm1. State values,
changing over trials, are updated as a function of prediction errors using the delta-rule, such as Q-values
in the ABSOLUTE model. Prediction errors in the critic are also used to adjust weights in the actor.
Then "hybrid" Q-values are computed and an additional weighting free parameters makes the balance
between the two mechanisms :

QA-AC,t(s, a) = wA-AC ∗QABS,t(s, a) + (1− wA-AC) ∗QAC,t(s, a)

with QABS the option value updated with the ABSOLUTE (Q-learning) value encoding and QAC the
actor-critic option value updated as follows : QAC(s, a)←− QAC(s, a) +αAC ∗ (RABS− V (s)), with V (s)
the state value at each trial. Action choices are computed using a softmax decision rule, by replacing
individual contributions of each model by the mixture value.
To understand why relative model comparison favours the HYBRID model, we analyzed the generative
performances of the ABS-AC model: the model doesn't perform as well as participants in the big mag-
nitude context. As a result, it overestimates the di�erence of performance between magnitude contexts
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in the learning phase and fails to match the global performance level. When extrapolating options the
transfer test, the model doesn't successfully capture the value inversion and predicts a behavior consis-
tent with absolute value encoding (Supplementary Fig. 1 j-l). Accordingly, the quality of �t (BIC)
di�erence between the HYBRID and the ABS-AC models was signi�cantly di�erent (HYB vs. A-AC
T(59)=4.80, P<0.0001, Supplementary Table 1).

Supplementary References

1 Gold, J. M. et al. Negative symptoms and the failure to represent the expected reward value of actions:
behavioral and computational modeling evidence. Arch. Gen. Psychiatry 69, 129�138 (2012).
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Supplementary Figure 1: Behavioral results and model simulations of Experiment 1 and Experiment
2 pooled together. a, d, g, j Correct choice rate during the learning sessions. b, e, h, k Big magnitude
context's minus small magnitude context's correct choice rate during the learning sessions.c, f, i, l Choice
rate in the transfer test. Colored bars represent the actual data; grey dots (HYBRID) and white dots
represent the model-simulated data; error bars represent s.e.m.
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Experiment 1 (N=20) Experiment 2 (N=40) Both experiments (N=60)

Learning
sessions
(nt=160)

Transfer
test

(nt=112)

Both
(nt=272)

Learning
sessions
(nt=160)

Transfer
test

(nt=112)

Both
(nt=272)

Learning
sessions
(nt=160)

Transfer
test

(nt=112)

Both
(nt=272)

HYBRID
(df=3/4)

178.3±6.0 109.3±5.0 284.6±9.1 181.5±5.8 105.8±4.1 290.5±8.0 180.5±4.3 106.9±3.2 288.5±6.1

SEPARATE
(df=4/5)

197.9±4.4 115.9±5.1 314.5±7.4 190.7±5.6 109.6±4.4 300.6±7.6 192.8±4.0 111.7±3.4 305.2±5.7

ABS-AC
(df=5/5)

189.1±7.0 127.8±5.7 308.2±9.8 195.3±5.4 124.8±4.5 314.8±7.4 193.2±4.3 125.8±3.5 312.6±5.9

Supplementary Table 1: BICs as a function of the dataset used for parameter optimization (Learning
sessions, Transfer test or Both) and the computational model. nt: number of trials; df: degree of freedom.

Experiment 1 (N=20) Experiment 2 (N=40) Both experiments (N=60)

Learning
sessions
(nt=160)

Transfer
test

(nt=112)

Both
(nt=272)

Learning
sessions
(nt=160)

Transfer
test

(nt=112)

Both
(nt=272)

Learning
sessions
(nt=160)

Transfer
test

(nt=112)

Both
(nt=272)

ABSOLUTE
(df=2/3)

179.8±5.9 113.6±5.7 295.1±9.4 190.6±4.7 125.2±4.2 324.2±6.4 187.0±3.7 121.3±3.4 315.5±5.5

RELATIVE
(df=2/3)

193.6±4.6 136.5±5.1 329.3±8.4 184.7±5.6 119.0±4.1 303.6±7.6 187.7±4.0 124.8±3.4 312.2±6.0

HYBRID
(df=3/4)

178.3±6.0 107.5±5.1 284.6±9.1 181.0±5.7 103.2±4.0 288.2±8.0 180.1±4.3 104.6±3.2 287.0±6.1

POLICY
(df=2/3)

185.4±6.9 121.3±5.8 308.0±11.8 189.5±4.8 135.5±3.7 333.0±6.4 188.1±3.9 130.7±3.3 323.3±5.9

UTILITY
(df=3/4)

173.9±6.5 107.4±6.3 282.2±10.8 182.8±5.5 122.2±4.4 308.4±7.1 179.9±4.3 117.3±3.7 299.6±6.1

SEPARATE
(df=4/5)

196.7±4.4 115.0±5.3 312.5±7.7 189.2±5.4 107.7±4.3 299.4±7.4 191.7±3.9 110.4±3.3 303.7±5.6

ABS-AC
(df=5/5)

183.3±7.3 127.7±5.7 300.7±10.2 193.0±5.3 120.1±4.5 312.5±7.2 190.3±4.2 122.8±3.6 309.1±5.9

Supplementary Table 2: BICs as a function of the dataset used for parameter optimization (Learning
sessions, Transfer test or Both) and the computational model using multiple starting points (5 di�erent
random initializations per parameter, model and subject). nt: number of trials; df: degree of freedom.
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