ONLINE SUPPLEMENT

Extracellular Ubiquitin(1-76) and Ubiquitin(1-74) Regulate Cardiac Fibroblast Proliferation

Edwin K. Jackson, Eric Mi, Vladimir B. Ritov, and Delbert G. Gillespie

Department of Pharmacology and Chemical Biology

Running title: Ubiquitin Affects Cardiac Fibroblast Proliferation

Address for Correspondence:

Dr. Edwin K. Jackson
Department of Pharmacology and Chemical Biology
100 Technology Drive, Room 514
University of Pittsburgh School of Medicine Pittsburgh, PA 15219
Tel: 412-648-1505

Fax: 412-624-7050 E-mail: edj@pitt.edu

TOF MS Spectrum: Ubiquitin(1-76)

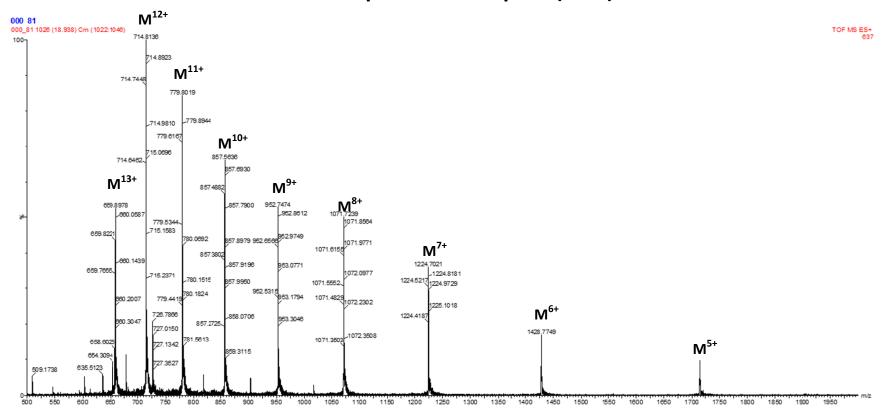


Figure S1

Figure S1. Time-of-flight (TOF) mass spectrum of authentic ubiquitin(1-76). This spectrum illustrates with high-mass resolution the signal strength (y-coordinate) for mass-to-charge (m/z) ratios (x-coordinate) for different species of ionized ubiquitin(1-76). The different m/z signals are due to different levels of ionization of ubiquitin(1-76). The number of positive charges on intact ubiquitin(1-76) is given by M^{x+} , where x is the number of positive charges. There was no evidence of contamination of the ubiquitin(1-76) with ubiquitin(1-74).

Figure S2

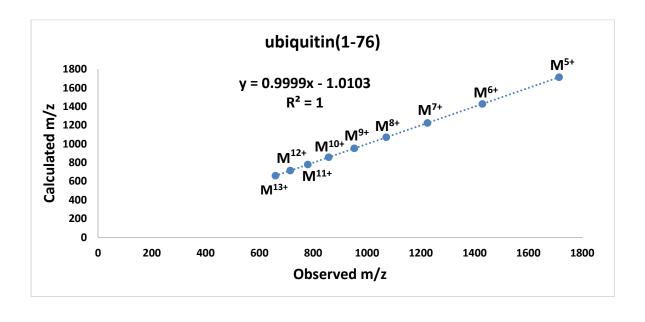


Figure S2. Plot of calculated versus observed M^{x+} values for ubiquitin(1-76). The observed m/z values for M^{5+} through M^{13+} for ubiquitin(1-76) were obtained from the mass spectrum shown in **Figure S6**. These values were plotted against the theoretical values for M^{5+} through M^{13+} assuming that the material analyzed was indeed ubiquitin(1-76). The straight-line relationship between observed and theoretical values validate this reagent and confirm the lack of contamination by ubiquitin(1-74).

TOF MS Spectrum: Ubiquitin(1-74) plus Ubiquitin(1-76) (1:1 ratio)

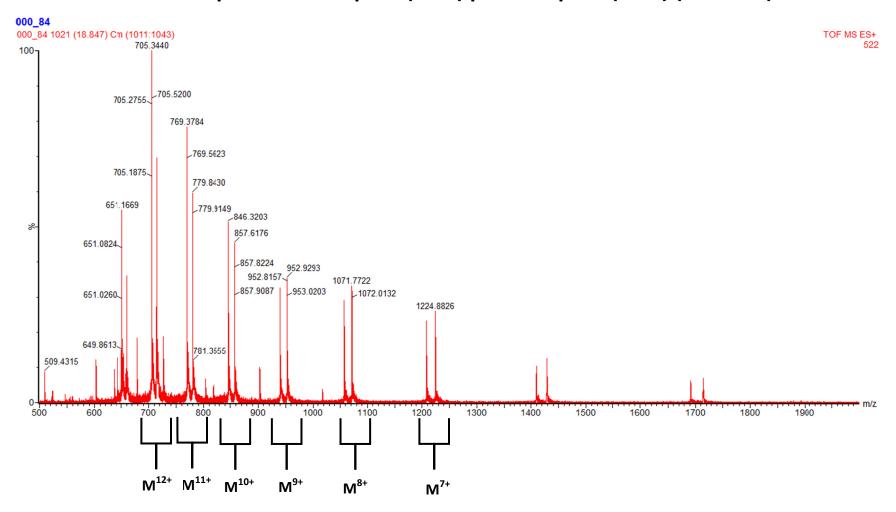


Figure S3

Figure S3. Time-of-flight (TOF) mass spectrum of a solution of equal concentrations of ubiquitin(1-74) and ubiquitin(1-76). This spectrum illustrates with high-mass resolution the signal strength (y-coordinate) for mass-to-charge (m/z) ratios (x-coordinate) for different species of ionized ubiquitin(1-76) and ubiquitin(1-74). The different m/z signals are due to different levels of ionization of the peptides (number of positive charges on intact peptides is given by M^{x+} , where x is the number of positive charges). Note the pairs of signals that correspond to ubiquitin(1-74) (lower m/z) and ubiquitin (1-76) (higher m/z).

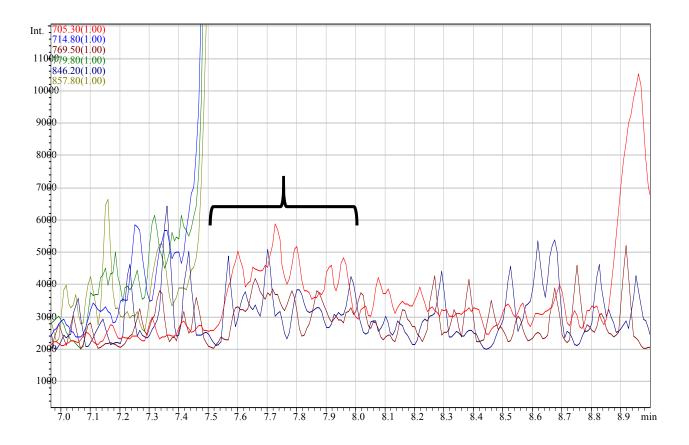


Figure S4

Figure S4. Ubiquitin(1-74) cannot be detected in cardiac fibroblasts co-incubated with ubiquitin(1-76) plus 6bk (an IDE inhibitor). SHR cardiac fibroblasts were treated with ubiquitin(1-76) (1000 nmol/L) and 6bk (1 μmol/L) for 24 hours, and the medium was collected and processed for analysis by mass spectrometry. Samples were loaded onto a polar reverse phase column connected to a Shimadzu HPLC/LCMS-2010 system. Separation was conducted with linear gradient from 20% acetonitrile to 60% acetonitrile in the presence of 0.1% formic acid at flow rate 0.4 ml/min. The mass spectrometer was operated in the positive ion mode with selected ion monitoring. The bracket indicates the retention time of ubiquitin(1-74). The red, brown, and blue lines represent the signal strength for ubiquitin(1-74) ions at 705.30, 769.50 and 846.20 m/z, respectively. The signals for ubiquitin(1-74) were essentially indiscernible form baseline noise.