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1 Datasets

We analyzed data from the curatedOvarianData compendium and additional datasets from MetaGx-
Ovarian, which composed of 15 whole-transcriptome datasets. We limited our analysis to tumors
annotated as high-grade, late-stage serous ovarian cancers.

Table 1: Supplementary Table 1: 15 whole-transcriptome studies with at least 40 patients with late
stage, high-grade serous histology from the curatedOvarianData compendium consisting of 1774 pa-
tients. 13 of these datasets provided 1581 patients with survival data.

GEO Accession ID Total number of samples,
Number of samples with
survival data: deceased
(median survival months)

Microarray Platform Number of Features

TCGA 464 452: 239 (42.6) Affymetrix HT Human Genome
U133A

12833

GSE17260 43 43: 22 (29) Agilent-012391 Whole Human
Genome Oligo

19596

GSE14764 41 41: 13 (30) Affymetrix HG-U133A 12752
GSE18520 53 53: 41 (21) Affymetrix Human Genome U133

Plus 2.0
20282

GSE26193 47 47: 39 (34) Affymetrix Human Genome U133
Plus 2.0

20282

PMID17290060 59 59: 36 (34) Affymetrix HG-U133A 12752
GSE51088 85 84: 69 (43.6) Agilent-012097 Human 1A Mi-

croarray (V2) G4110B
15299

GSE13876 98 98: 72 (22) Operon human v3 ∼35K 70-mer
two-color oligonucleotide microar-
rays

13846

GSE49997 132 122: 40 (23) ABI Human Genome Survey Mi-
croarray Version

216760

E.MTAB.386 128 128: 73 (29.65) Illumina humanRef-8 v2.0 expres-
sion beadchip

10572

GSE32062 129 129: 60 (40) Agilent-014850 Whole Human
Genome Microarray 4x44K
G4112F

19596

GSE9891 142 140: 72 (28.5) Affymetrix Human Genome U133
Plus 2.0

20282

GSE26712 185 185: 129 (38.8) Affymetrix Human Genome
U133A Array

12752

GSE20565 89 (0) Affymetrix Human Genome U133
Plus 2.0

20282

GSE2109 79 (0) Affymetrix HG-U133Plus 220282



2 Reproduction of Published HGSOC Subtype Classifiers

2.1 Konecny et al., 2014

First, we implemented the subtype classifier by Konecny et al., 2014. Their subtype classifier uses
a nearest-centroids approach with Spearman’s correlation coefficient as the distance measure. The
authors provided a list of 635 selected probe sets for classifying new cases. To allow cross-platform ap-
plicability, we implemented the subtype classifier using the 575 unique Entrez gene IDs corresponding
to these probe sets (with the mean value taken for multiple probe sets mapping to the same gene ID).
In their supplementary materials, Konecny et al. report their predicted subtypes on a validation dataset
(Bonome et al.). To assess our implementation, we compared our predicted subtypes on the Bonome
dataset. The contingency matrix and survival curves are given below, indicating a large degree of con-
cordance between our implemented subtypes and the author’s supplementary data. Overall, 96.7% of
samples were classified identically between our implementation and the supplementary results.

Konecny Subtypes from Supplementary
Implemented Konecny Subtypes c1 c2 c3 c4

c1 39 0 0 0
c2 0 63 0 0
c3 0 3 37 0
c4 3 0 0 37

Table 2: Contingency table showing strong concordance between using our implementation of the
Konecny subtyping classifier and the predictions given in the supplementary materials of the Konecny
manuscript. These predictions were made on the dataset of Bonome et al.
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2.2 Verhaak et al., 2013 / TCGA 2011

Next, we implemented the subtype classification scheme given by Verhaak et al., 2013. The authors
designed a classifier based on single-sample GSEA to classify samples into subtypes previously de-
fined in TCGA, 2011. In their supplementary materials, the authors provide a list of four sets of gene
symbols (100 total gene symbols), with each gene set associated with a subtype.

We implemented this subtype classifier using the provided gene sets and the ssGSEA implementa-
tion in R package GSVA. The parameters to the function gsva were: method="ssgsea", and tau=0.75.

To assess our implementation, we compared our normalized ssGSEA scores with the scores in the
validation set used in the original study. In their supplementary materials, Verhaak et al. provide their
normalized ssGSEA scores for a validation set consisting of the datasets of Bonome, Crijns, Denkert,
Dressman, Tothill, Yoshihara, and a subset of TCGA. This validation dataset consisted of 879 patients
reported in their supplementary; we matched 865 patients from MetaGxOvarian data based on sample
IDs.

We observed Pearson’s correlation coefficients of 0.96, 0.97, 0.96, and 0.96 for subtypes DIF, IMR,
MES, and PRO respectively.
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ssGSEA scores for the >800 patient validation set from our implementation (x axis) and the supple-
mentary material (y axis) for each of the four subtypes.

From these normalized ssGSEA scores, subtype classification may be performed by assigning
a patient according to the highest ssGSEA score. Overall, this method produces a concordance of
86.59% of patients classified identically between our implementation and supplementary results.

We sought to investigate whether the discrepancies may be explained as patients whose expres-
sion profiles are marginal cases, e.g. expression profiles that are similar to two different subtypes. We
investigated the relationship between classification accuracy and the margin, defined as the difference
between the top-scoring ssGSEA score and second-top scoring ssGSEA score (using the published
ssGSEA normalized scores).



Verhaak Subtypes from Supplementary
Implemented Verhaak Subtypes DIF IMR MES PRO

DIF 265 28 23 8
IMR 7 187 13 3

MES 2 2 156 4
PRO 2 13 11 141

Table 3: Contingency table showing concordance using our implementation of the Verhaak subtyping
classifier and the predictions given in the supplementary of the Verhaak manuscript. The predictions
for both implementations were made on the combined >800 sample dataset by taking the max ssGSEA
subtype score.
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We performed survival analysis with using the clinical annotations of the validation datasets, and
observed similar survival curves as figure 2B in Verhaak et al.
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The survival curves produced by our implemented classifier (top) appear similar to Figure 2B in the
original publication (bottom).



2.3 Helland et al., 2011 / Tothill et al., 2008

Next, we implemented the subtype classifier of Helland et al., 2011. The same group as the Tothill et al.
study implemented a different classifier for their previously-described subtypes. They identified a gene
list for each of their four previously-defined high-grade serous ovarian carcinoma subtypes. Using a
method described in another study for breast cancer classification (Lim et al., Nat. Med. 2009), they
trained a set of weights for each gene list. Classification was performed by taking a linear combination
of weights and expression levels for each gene list, normalizing the scores, and classifying according
to the highest-scoring subtype.

Using their published gene list and weights from the supplementary text, we implemented their
subtype classifier and applied it to the TCGA dataset. The authors kindly provided a spreadsheet listing
their classifier’s labels on the TCGA dataset. Overall, 93.35% of samples were classified identically
between the authors’ implementation and ours.

Original Helland Subtypes
Implemented Helland Subtypes C1 C2 C4 C5

C1 125 2 3 4
C2 1 87 4 0
C4 1 10 122 1
C5 2 2 1 101

Table 4: Contingency table showing concordance of our implementation and and the predictions given
by the table provided by Helland et al. Predictions were made on the TCGA dataset. Note that
subtypes C3 and C6 were excluded in the original study since they are associated with non-HGS
ovarian tumours.



We performed survival analysis on the TCGA dataset.
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(Above) Survival curves the TCGA dataset using our implementation of the Helland subtyping scheme.
(Below) Corresponding survival plot from Figure 1B from Helland et al.



3 Reproduction of Subtype Clustering Methods

3.1 TCGA

We contacted the authors to acquire the original gene list used for clustering. Using R package NMF, we
ran NMF with 100 iterations, and used hierarchical clustering on the co-membership matrix to define
consensus cluster groupings.

ConsensusNMF_3 ConsensusNMF_4 ConsensusNMF_2 ConsensusNMF_1
Mesenchymal 88 2 0 0
Proliferative 3 89 18 8
Differentiated 7 0 72 40
Immunoreactive 17 1 0 70
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3.2 Konecny

Konecny et al. performed clustering by first taking a subset of the top 2500 probesets by median
absolute deviation (MAD), then used non-negative matrix factorization. We matched these probeset
names to Entrez IDs from data from GEO, and performed clustering on the series matrix from GEO.
In order to ensure all expression values were positive, all expression quantities were increased by
the absolute value of the smallest (most negative) value. We ran NMF with 100 iterations, and used
hierarchical clustering on the co-membership matrix to define consensus cluster groupings.

ConsensusNMF_3 ConsensusNMF_2 ConsensusNMF_4 ConsensusNMF_1
C4 19 1 0 0
C3 1 30 1 2
C2 4 11 27 8
C1 12 0 0 20
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3.3 Tothill

The dataset of Tothill et al. (2008) consisted of 285 patients, of which 142 had late-stage, high-
grade serious ovarian cancer. On their full dataset (n = 285), they performed the following clustering
procedure: probes were selected if at least one sample had an expression above 7.0, and global
variance was above 0.5. They performed a form of consensus k-means clustering by performing k-
means clustering 1000 times, identifyied a “robust” set of samples that co-clustered consistently, then
used diagonal LDA and k-nearest neighbours to classify remaining samples.

Using their full dataset, we filtered to probes with at least one sample with expression above 7.0,
and variance above 0.5. We performed k-means clustering B = 1000 times, and used R package
clue to perform consensus clustering using the criterion of Dimitriadou et al. (2002):

Cconsensus = min
C∈C

{
B∑

b=1

d(C,Cb)
2

}

where C is the set of all possible clusterings, d is the Euclidean distance, and {C1, C2, . . . , CB} are
the k-means clusterings.

Despite the difference between the consensus strategies, the cluster results appear to be similar:

kmeans_5 kmeans_6 kmeans_4 kmeans_3 kmeans_2 kmeans_1
C1 61 0 0 3 3 16
C5 0 32 2 0 0 2
C4 0 8 31 6 0 1
C2 4 0 1 41 0 4
C3 0 0 0 0 27 1
C6 0 1 2 0 3 2
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Since it appears that this implementation of k-means clustering is not capturing C6, we performed
consensus k-means clustering with k = 5:

kmeans_4 kmeans_5 kmeans_2 kmeans_1 kmeans_3
C1 76 0 0 4 3
C5 0 36 0 0 0
C4 0 8 31 7 0
C2 6 0 1 43 0
C3 0 0 0 0 28
C6 0 1 2 1 4
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4 Robustness of Subtypes

4.1 Method: Prediction Strength

The discovery of molecular subtypes of HGSOC requires two steps: a clustering step, and a clas-
sification step. We sought to address the question of whether the methods used to define molecular
subtypes are robust. In cluster analysis, robustness is a measure of how Tibshirani and Walther (2005)
suggest Prediction Strength as a statistic for cluster validation. Prediction Strength is a measure of the
similarity between pairwise co-memberships of a validation dataset from class labels assigned by (1)
a clustering algorithm and (2) a classification algorithm trained on another dataset.

Figure 1: Flowchart of the Prediction Strength statistic.



4.2 Results: Prediction Strength

Each dataset was clustered according to our implementation of the clustering algorithms and gene sets
of Konecny, TCGA, and Tothill. Each dataset was also classified using our implementation of the cor-
responding classification algorithms of Konecny, TCGA/Verhaak, and Tothill/Helland. This produced
two sets of subtype labels for each validation dataset, from which we computed prediction strength.

We performed each clustering algorithm 100 times for each dataset, producing 100 prediction
strength estimates per dataset. In the boxplot below, each data point represents the mean estimated
prediction strength for a dataset under a given subtyping clustering/classification scheme.
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5 Pairwise Subtype Classifier Associations

5.1 Helland vs Verhaak
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Figure 3: Pairwise subtype association between the Helland and Verhaak classifiers. Each classifier
produces a real-valued subtype score per patient; from this score, a margin value can be defined as
the difference between the top two subtype scores. We assessed subtype association, considering
only patients for whom the margin values are in the top 75%, top 50%, and top 25% of both classifiers.
Using these margin value cutoffs, we observed an increase in between-classifier concordance.



5.2 Konecny vs Verhaak
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Figure 4: Pairwise subtype association between the Konecny and Verhaak classifiers. Each classifier
produces a real-valued subtype score per patient; from this score, a margin value can be defined as
the difference between the top two subtype scores. We assessed subtype association, considering
only patients for whom the margin values are in the top 75%, top 50%, and top 25% of both classifiers.
Using these margin value cutoffs, we observed an increase in between-classifier concordance.



5.3 Helland vs Konecny
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Figure 5: Pairwise subtype association between the Helland and Konecny classifiers. Each classifier
produces a real-valued subtype score per patient; from this score, a margin value can be defined as
the difference between the top two subtype scores. We assessed subtype association, considering
only patients for whom the margin values are in the top 75%, top 50%, and top 25% of both classifiers.
Using these margin value cutoffs, we observed an increase in between-classifier concordance.



6 Survival Analysis
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HR PRO: 2.164 (1.534−3.053)
HR MES: 2.486 (1.749−3.534)
Logrank p = 6.4E−04
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