Online Supplemental Information

Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO² transport (Hsu et al.; 2017)

(1) To estimate the concentration of water molecules inside a RBC and how much water is used for blood CO2/HCO³ - conversion:

<1-i> From the follows (1-3):

The concentration of pure water is 55.6 M. 93% of plasma is H2O. The average volume of a human RBC is ~ 86 fL (30% Hb, maximally 70% H₂O). Each adult body contains $\sim 2 \times 10^{13}$ RBCs.

We calculated:

The concentration of water in plasma ($[H_2O]_{plasma}$) = 55.6 M \times 93% = 52 M

The concentration of water inside an RBC ($[H_2O]$ **in**)

$$
= \frac{86 \times 10^{-15} \text{ L}}{1 \text{ RBC}} \times (70\%) \times \frac{1000 \text{ g}}{1 \text{ L}} \times \frac{1 \text{ mol}}{18 \text{ g H20}} = 17 \text{ M}
$$

The number of water molecules inside an RBC:

 86×10^{-15} L $\frac{\times 10^{-13} L}{1 RBC}$ $\times (70\%) \times \frac{1000 g}{1 L}$ <u>1</u> mol 18 *g* H2O 6×10^{23} 1 mol 12

<1-ii> Know that 13 moles of CO² are produced by a healthy adult per day, which is equivalent to 9 mmols of CO² produced per minute.

As maximally 90% CO₂ conversion is carried out by CAII inside RBCs, and 1 H₂O molecule is required for 1 CO₂ conversion, \sim 8 mmols of H₂O are required for CO₂ conversion per minute per adult.

In each RBC, the number of H2O molecules required for CO² conversion per minute:

$$
\frac{\left(\frac{8 \text{ mmol H20}}{\text{ minute} * adult}\right)\left(\frac{6 \times 10^{23} \text{ molecules}}{\text{ mol}}\right)}{2 \times 10^{13} \text{RBCs}} = \frac{2.4 \times 10^8 \text{ H20 molecules}}{1 \text{ RBC} * minute}
$$

(2) To compare the reaction rates of intracellular CO² conversion in systemic arteries versus in capillaries:

Consider the reaction taken place inside RBCs in systemic circulation:

$$
CO_{2(g)} + H_2O \underset{K_r}{\rightleftharpoons} HCO_{3(aq)} + H^+(aq)
$$

Forward reaction rate $(R_f) = K_f [CO_2]$ **in** [H₂O]**in**, where K_f is the forward reaction coefficient. Reverse reaction rate $(R_r) = K_r$ [CO₂]_{in} [H₂O]_{in}, where K_r is the reverse reaction coefficient.

 $[CO_2]$ _{in} or $[CO_2]$ _{out} refers to $[CO_2]$ inside or outside an RBC.

The reaction coefficient (*K*) primarily accounts for the extremely rapid enzymatic activity of CAII. Below we assessed whether AQP1-band 3 coupling could affect the reaction rate, or whether this coupling contributes to *Kf*.

In the calculation below, we only consider the forward reaction, which takes place when RBC circulate from systemic arteries to capillaries.

<2-i> Know that (1-3):

PCO₂ in artery at 37° C ~40 mmHg PCO₂ in systemic capillaries at 37° C ~46 mmHg For each mmHg of PCO₂ at 37^oC, there are 0.03 mmols of CO₂ dissolved per liter of plasma.

Thus,

PCO_{2 (artery)} at 37^oC ~40 mmHg $\times \frac{0.03 \text{ mM }$ CO₂ dissolved in plasma = 1.2 mM CO₂ PCO₂ (systemic capillaries) at 37^oC ~46 mmHg $\times \frac{0.03 \text{ mM }$ CO₂ dissolved in plasma = 1.38 mM CO₂

 $\langle 2-ii\rangle$ Know that the capillary transit time for erythrocytes is $1-3.5$ sec, and the half-life (T_{1/2}) for inward $CO₂$ diffusion (or $CO₂$ uptake by RBCs) is $45 - 65$ msec (4, 5). As diffusion is driven by concentration gradients across the cell membrane, the rapid $T_{1/2}$ for $CO₂$ diffusion into RBCs allows

2

[CO2] to reach an equilibrium before RBCs leave systemic capillaries. *Thus, for simplicity of the calculation, we assume that* $[CO_2]_{in} = [CO_2]_{out}$ *and that* CO_2 *enters or leaves RBCs only by diffusion.*

 $[CO_2]_{\text{out}} = 1.38 \text{ mM}$ (inside a systemic capillary) or 1.2 mM (inside an artery)

When RBCs are in systemic capillaries:

 R_f (capillary) = K_f (capillary) $[CO_2]$ out $[H_2O]$ in = K_f (capillary) (1.38 mM) (17 M)

When RBCs are in an artery:

 R_f (artery) = K_f (artery) $[CO_2]_{out}$ $[H_2O]_{in} = K_f$ (artery) (1.2 mM) (17 M)

As RBCs enter from systemic arteries to capillaries, the change of the reaction rate for intracellular CO² conversion is:

$$
\frac{R_{f(capillary)}}{R_{f(artery)}} = \frac{K_{f(capillary)} (1.38 \text{ m})}{K_{f(artery)} (1.2 \text{ m})} \approx \max 1.15 \frac{K_{f(capillary)}}{K_{f(artery)}}
$$

That is, if K_f does not account for osmotically-driven AQP1-band 3 coupling, then $\frac{K_f(capillary)}{V}$ $K_{f(antery)}$ $= 1,$ and the reaction rate would increase maximally 15% when RBCs enter the systemic capillary bed.

If AQP1 and band 3 are structurally and functionally coupled in systemic capillaries but less

coupled or uncoupled in arteries, this shall result in larger *Kf (capillary)* **than** *Kf (artery)***. Thus,**

$$
\frac{R_{f(capillary)}}{R_{f(artery)}} > 1.15
$$

That is, the reaction rate will increase more than 15% when RBCs enter the systemic capillary bed.

(3) To further consider restricted erythrocyte sizes in systemic capillaries:

If [H2O]in decreases ~10% (e.g. 17M 15M) when RBCs squeeze through systemic capillaries, **If AQP1-band 3 coupling does not involve in the reaction** $(\frac{K_{f(capillary)}}{V})$ $K_{f(artery)}$ **),**

$$
\frac{R_{f(capillary)}}{R_{f(artery)}} \sim 1 \times \frac{(1.38 \text{ m})(15 \text{ M})}{(1.2 \text{ m})(17 \text{ M})} = 1.015
$$

So there is no change in the reaction rates of $CO₂$ conversion before or after red cells entering systemic capillaries.

Also, noticeably in the above example, a 10% drop in $[H_2O]$ in results in 14% rate reduction for CO_2 conversion when RBCs circulate in capillaries. Further decrease in [H2O]in would make *Rf (capillary)* smaller than *Rf (artery).* On the other hand, if transient AQP1-band 3 coupling supports intraerythrocytic CO₂ conversion, $\frac{K_{f(capillary)}}{K_{f(capillary)}}$ $K_{f(array)}$, which could compensate the negative effect of erythrocyte volume restriction (or $[H_2O]$ _{in} reduction) on the forward reaction rate.

REFERENCE:

- 1. Beachey, W. (2013) *Respiratory care anatomy and physiology : foundations for clinical practice*, Elsevier, St. Louis, Mo.
- 2. Rhoades, R., and Bell, D. R. (2009) *Medical physiology : principles for clinical medicine*, Lippincott Williams & Wilkins, Philadelphia
- 3. Kuchel, P. W., and Benga, G. (2005) Why does the mammalian red blood cell have aquaporins? *Biosystems* **82**, 189-196
- 4. Niizeki, K., Mochizuki, M., and Uchida, K. (1983) Rate of CO2 diffusion in the human red blood cell measured with pH-sensitive fluorescence. *The Japanese journal of physiology* **33**, 635-650
- 5. Geers, C., and Gros, G. (2000) Carbon dioxide transport and carbonic anhydrase in blood and muscle. *Physiological reviews* **80**, 681-715