
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

This work aimed to integrate a large amount of single-cell RNA seq, cell morphology estimates, 

epigenomic states and physiological heart function data to study the molecular and morphological 

dynamics of cardiomyocytes during hypertrophy and heart failure. The authors collected a rich 

dataset that was challenging to integrate and analyze. It required extensive data cleaning / 

filtering, various optimization steps and integration of results coming from various analytical 

methods. The data could potentially shed light to several aspects of the heart disease dynamics, 

differences across cell types and help identify common / distinct gene regulators.  

 

Combining single-cell RNA-seq, cell morphology and epigenomic states is important but it is our 

opinion that the current work did not fully exploit these three sources of information. Much 

important information was omitted, that could be helpful for the reviewer/reader.  

 

1. On pages 5 and 34 the authors describe the methodology regarding the isolation and 

sequencing of the 396 cardiomyocytes coming from various time points. I would have liked to see 

more details on the data filtering that followed after the 540 cardiomyocytes isolation. What were 

the characteristics of the 86 libraries that were filtered out in the second filtering step? Was the 

filtering based on parameters other than the single-cell RNA-seq data information (e.g. cell 

morphology)? How the cut-off of Ct = 25 was obtained in the first-step filtering?  

2. It is unclear how many biological replicates of mice were used.  

3. The authors performed single cell RNA-seq on Illumina HiSeq2500. However, important details 

were missed out which will aid in the technical assessment  

a. Paired-end or single-end  

b. Read lengths  

c. Insert size  

4. Related to point 1 above, no mention of how the quality of reads was assessed. For example, 

the authors might have included libraries with average base quality > 30 in the downstream 

analysis because low base quality results in technical noise and drawing unreliable conclusions. 

According to the methods section, FPKM 10 was used as a threshold to call expressed genes. But 

in the results section, RPKM>0.1 was used. This is conflicting information. Even for the use of both 

FPKM and RPKM: although technical equivalently, it would be good to be consistent. Perhaps to 

clarify, it would be useful to be clear how FPKM or RPKM were derived. RPKM>0.1 seems low 

stringency, and we expect to result in significant noise: how do the authors justify this choice?  

5. It was also unclear if the authors looked at protein coding genes or non-coding genes or both. 

Did they derived information from UCSC, Ensembl or GENCODE?  

6. We prefer commonly used mapping software such as STAR or Tophat for alignment of RNA-seq 

reads. Many reads are not mapped by Bowtie1, particularly when reads span 2 exons involving 

splicing. Did the authors explore options?  

7. Major stats and QC reflecting quality of the sequencing runs are not provided. Without these 

stats, it is not possible to tell if the results are due to technical artifact. Some important metrics 

are:  

a. Library sizes  

b. Total mapped reads  

c. Mapping efficiency (% uniquely mapped reads)  

d. % duplication  

e. % reads aligned to ribosomal RNA  

f. % reads aligned to mitochondrial DNA  

g. % reads aligned to introns and intergenic regions  

8. On page 5 the authors state that the cells were isolated at different time points and, as a result, 

it is possible that their transcriptome is influenced by technical factors (batch effects). How did the 

authors test and, if needed, controlled for these effects? Batch effect is the singular most difficult 

technical hurdle such biologically targeted projects face. The authors will need to rigorously 



demonstrate how they have accounted for this.  

9. In single-cell studies it is often suggested the use of spike-in controls for data normalization. 

This could be especially useful for normalizing for batch effects. Did the authors include such 

controls and if not why?  

10. It is not clear from the analysis of page 5 how many samples were excluded at each time 

point.  

11. In the results section, the authors mention “expressed profiles were tightly correlated between 

the average expression of single cells and corresponding bulk expression” It was unclear if the 

authors averaged the single cell profiles across all timepoints? Were there any point estimates for 

the correlation? Is “between biological replicates” referring to biological replicates of bulk RNA-seq 

or single cell RNA-seq.  

12. It is a shame that the authors did not attempt to provide a global overview of the sham-TAC 

single cell transcriptomic landscape before they dived into detailed network analysis. This global 

analysis would have allowed the analysis for:  

a. How heterogeneous are sham and TAC cells. Do they cluster well?  

b. Pointing out obvious outliers, and / or cell type contaminations (eg fibroblasts, endothelial 

cells)  

c. Correlation with potential confounding factors such as batch effect, number of expressed genes 

etc.  

13. We found the combination of random forests and hierarchical clustering tools of page 6 very 

interesting. However, there was a lot of information condensed in a single paragraph that makes it 

difficult for the reader to understand, and thus making it confusing. Expression profiles were used 

in WGCNA to obtain 55 modules whose PC1 were extracted. The random forests were applied to 

the PC1 values to select the 9 most important modules. Was the subsequent cell clustering based 

on the PC1 data of these 9 modules or the gene expression profiles of the genes included in these 

9 modules? It is not clear to us what would be the most accurate way to cluster the cells and we 

think that this depends on the variance explained by the PC1. We would have liked to see a 

comparison of these two alternatives and the reasoning behind the authors’ preferred choice.  

14. From supplementary figure 2b it is evident that the 9 modules give 7 random forest based 

clusters with low error rates. What parameters / algorithm were used to derive these 7 clusters? 

The random forest is supervised (based on these 7 clusters). It would be interesting to see how 

the error rate changes for 5-10 clusters and what clusters an unsupervised algorithm would obtain 

(e.g. clustering / trajectory estimation and states by Monocle).  

15. Pages 6-7 discuss the cell trajectory on the tSNE plot but we could not find any details on how 

this trajectory was estimated. Results based only on visual inspection can be highly misleading due 

to the data noise, the optimization process and the huge amount of information included in a 

typical single-cell dataset. Other than that, the analysis of pages 7-8 with the module variability is 

very interesting but it needs to be supported by a more rigorous statistical analysis.  

16. It is not clear how ImageJ measured the cell area. Were the estimates derived from 2D 

images? How was the volume of the cell assessed? What does “small” and “large” cell means in 

figure 2b. What is the variability in cell size and how is it correlated with the cell library size? 

Would spike-in or endogenous controls be a better way to normalize this dataset?  

17. How do the authors ensure that cell sizes were maintained following harvest? Our experience 

suggests that cardiomyocytes are very sensitive to hypercontraction depending on calcium 

concentrations when isolated out ex vivo. Is there a way to validate this?  

18. Page 10 summarizes the logic behind network comparison but it lacks the details of the 

methodology followed. How were the differences of the hypertrophy / non-hypertrophy networks 

been statistically assessed? The information of this paragraph, the paragraph of page 12 and the 

supporting figures was not enough to understand the key steps of this analysis.  

19. There was no differential expression analysis to assess the differences across the 

cardiomyocyte isolation time points, across the estimated clusters and across the cell trajectory. 

This information is important in order to assess the significance of the findings. It could point out 

cell contamination (other cell types), which was not discussed in this work.  

20. It is not clear what value H3K27ac ChIP-seq added to the understanding of the modules 

involved in cardiomyocyte hypertrophy.  



 

Despite these, the methodologies appear to have worked well to produce some real biological 

insights, that have been validated by concordance both within their own data (multiple seq 

datasets, including mouse and human, and RNA-FISH/immunostaining). Importantly, this has also 

been consistent with published literature. However this consistency with published literature also 

means that a lot of their findings are not actually all that surprising and have been reported before 

(morphological hypertrophy correlating with increases in genes for translation and mitochondrial 

biogenesis, adaptive hypertrophy followed by maladaptive and heart failure, cellular heterogeneity 

in hypertrophy, Mef2, ERK and NRF signalling, oxidative stress -> DNA damage -> disease 

progression). Admittedly, the temporal and single cell resolution of this study offers some 

advantages, and the datasets will provide a useful resource to researchers, assuming they are 

made publically available. Still, the authors did not demonstrated or explained how exactly “these 

results provide a potential application for assessing and regulating cardiomyocyte remodelling in 

cardiac hypertrophy and failure.”  

 

Perhaps this was why the authors pushed the p53 story, the novelty of which is that p53 activation 

is critically important specifically at the point of transition from an adaptive hypertrophied 

cardiomyocyte, to a failing one. However this has two key problems.  

The first problem is that a PNAS paper came out earlier this year showing that CM-specific KO of 

p53 makes hearts resistant to TAC (Mak et al 2017: http://www.pnas.org/content/114/9/2331.full 

). Although analysis was not CM-specific, this paper used microarray profiling to show many of the 

same effects (e.g. p21, Mef2, mitochondrial biogenesis and bioenergetics, glucose and fatty acid 

metabolism). The authors of the current study have not cited and seem unaware of this paper. 

Unfortunately it detracts significantly from the novelty.  

 

The second problem is that, with the massive amount of data from single cell analysis, the authors 

have not present enough evidence to justify the conclusion that transient p53 activation 

specifically drives the CM transition from compensated to failing. The above paper shows that p53 

has physiological activity in mouse CM at all stages of health/disease. Cardioprotective 

transcriptional changes are present in p53 KO hearts by day 7 TAC – that is before the appearance 

of failing CM. It is therefore conceivable that p53 KO hearts maintain a generally higher level of 

health in TAC than wild type hearts do, and it is because of this that CMs in KO hearts never reach 

the stage of transition to failure, rather than because of a specific lack of p53 activation at that 

point. Perhaps if left longer than 8 weeks, failing cells would appear in p53 KO hearts.  

 

Aside from the KO model, the authors base their evidence for p53 activation driving the failure 

transition on a very small number of cells. p53 activation is not specifically measured, only 

upregulation. It is possible that in these cells, p53 activation/upregulation is an effect of an already 

damaged and failing cell, rather than the cause of it. The authors make no mention of p53 

upregulation in human DCM cells. Was it not detected? If not, how is this discrepancy explained?  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors performed exhaustive single-cell RNA-seq to define the changes in RNA expression 

that occur in response to pressure overload (TAC) of the heart in mice. A time course of TAC was 

performed, ranging from early stage compensatory hypertrophy (day 3 and week 1) to late stage 

heart failure (week 8). Distinct gene regulatory modules were defined computationally at each 

stage of the response. The transition from hypertrophy to failure was marked by induction of p53-

dependent gene expression (Module 24 genes). Interestingly, p53 appeared to regulate Module 24 

gene expression, at least in part, by stimulating MEF2 and NRF2 transcription factor-dependent 

gene expression. To follow up on this, the authors generated cardiomyocyte-specific p53 KO mice. 

These animals appeared to be protected from heart failure induced by TAC. Finally, the authors 

perform single-cell transcriptomics on human cardiomyocytes from normal controls and hearts 

from individuals with dilated cardiomyopathy.  



 

The authors are to be commended for performing a tour de force evaluation of the transcriptional 

networks that are associated with cardiac hypertrophy. The datasets will provide important 

resources for the field. The segment of the manuscript that is dedicated to p53 is nice because it 

provides a mechanistic evaluation that deviates from the somewhat encyclopedic nature of the 

other figures. I suggest that the authors expand on the p53-related findings to enhance the overall 

manuscript.  

 

Specific points  

 

1. For Fig. 1B, it would be useful to provide length-to-width ratios for myocytes from other time 

points following TAC.  

 

2. For sFig. 5F, the authors should perform single-cell qPCR for Trp53 from WT mice post- 2 weeks 

TAC to rule out effects of the floxed allele on p53 expression.  

 

3. The authors should quantify myocyte cross-sectional area in p53 KO hearts vs. controls, before 

and after TAC.  

 

4. The manuscript would be enhanced by experiments that address the mechanisms by which p53 

regulates MEF2 in cardiomyocytes. To my knowledge, such findings would be highly novel.  

 

5. The authors mention prior work showing p53-induced NRF2 activation via p21-mediated NRF2 

protection against Keap1-mediated ubiquitination. They should determine if this mechanism is 

blocked in p53 KO hearts.  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

This is a valuable manuscript studying how cardiomyocytes undergo molecular and morphological 

changes in response to stress, leading to cardiac hypertrophy and failure. The authors relate these 

changes to gene expression profiles measured using single-cell mRNA-Seq at cardiomyocytes 

samples collected at different time points representing disease progression.  

 

The authors find interesting relationships between gene modules and trajectories of disease 

progression. Gene modules represent sets of genes that show similar expression and are 

significantly expressed across cells. The identified modules include important genes known form 

literature to be responsible for the cardiac hypertrophy and the heart failure.  

 

Overall, the structure and sequence of the results is well presented and written. It starts by 

investigating the responsible genes for early stage hypertrophy, then for the progression to heart 

failure. Based on their data, they conclude p53 being responsible for the heart failure progression, 

which they validate using a p53 blocking mouse. Finally, they validate these responsible gene 

modules in human tissues.  

 

The analysis of the single-cell mRNA-Seq data is well structured and is mainly based on the 

WGCNA R package pipeline that is widely known and used in gene co-expression analysis. The 

authors combined these analyses with various visualization tools to produce clear figures, as well 

as function enrichment analysis to interpret the observed correlations between the observed 

important genes and the disease progression.  

 

In conclusion, I am very happy with this manuscript. I do have a few comments that I would like 

to see addressed.  

 



Major comments:  

1. In the hierarchical clustering of co-expressing genes into gene modules for the data of the 

C57BL/6 mouse model, the dendrogram in Figure 1c does not support the 7 cluster assignments 

mentioned. Further clarification is needed if there are any other criteria for clusters assignment.  

 

2. In the analysis of the hypertrophy related modules, Figure 2b shows a scatter plot of PC1 and 

PC2 with only 34 cells (dots) while the authors previously mentioned that in week one 82 

cardiomyocytes are obtained. Why is there a difference?  

 

Minor comments:  

1. For the purpose of reproducibility of the analysis, please specify the perplexity used for 

producing the t-SNE maps, as well as the distance measure and linkage method used for the 

hierarchical clustering.  

 

2. Page 34, line 5, remove “at 2 weeks”. It is already mentioned in line 6.  

 

Conclusion:  

I recommend this work to be published after addressing my comments. 



Responses to the reviewers’ comments 

We thank the reviewers for their insightful comments regarding our manuscript. Along 

the lines suggested by the reviewers, we have performed additional analyses and revised 

the manuscript. The sentences revised according to the reviewers’ comments are 

highlighted in red in the main text. 

 

Response to Reviewer #1 

(Remarks to the Author): 

This work aimed to integrate a large amount of single-cell RNA seq, cell morphology 

estimates, epigenomic states and physiological heart function data to study the 

molecular and morphological dynamics of cardiomyocytes during hypertrophy and 

heart failure. The authors collected a rich dataset that was challenging to integrate and 

analyze. It required extensive data cleaning / filtering, various optimization steps and 

integration of results coming from various analytical methods. The data could 

potentially shed light to several aspects of the heart disease dynamics, differences 

across cell types and help identify common / distinct gene regulators.  

 

Combining single-cell RNA-seq, cell morphology and epigenomic states is important 

but it is our opinion that the current work did not fully exploit these three sources of 

information. Much important information was omitted, that could be helpful for the 

reviewer/reader.  

 

1. On pages 5 and 34 the authors describe the methodology regarding the isolation and 

sequencing of the 396 cardiomyocytes coming from various time points. I would have 

liked to see more details on the data filtering that followed after the 540 cardiomyocytes 

isolation. What were the characteristics of the 86 libraries that were filtered out in the 

second filtering step? Was the filtering based on parameters other than the single-cell 

RNA-seq data information (e.g. cell morphology)? How the cut-off of Ct = 25 was 

obtained in the first-step filtering? 

 

Response 

We apologize for not including these details in the original manuscript. We used two 



filtering steps in this paper. The first step was based on an assessment of the efficacy of 

reverse transcription and amplification using real-time quantitative PCR. The second 

step was based on an assessment of the number of detected genes after sequencing the 

single-cell libraries. We did not use any other parameters. Regarding morphology, we 

randomly collected rod-shaped live cardiomyocytes (viability of cardiomyocytes was 

≥80% for all time points) immediately after their isolation using Langendorff perfusion. 

A number of samples obtained during the filtering steps are shown in Supplementary 

Fig. 1e. 

   In the first step, we conducted real-time quantitative PCR analysis of endogenous 

control genes (e.g., Tnnt2 and Cox6a2) on all single-cell cDNA libraries 

(Supplementary Fig. 1f). Both Ct values were less than 25 in most of the libraries, 

suggesting the high efficacy of the reverse transcription and amplification processes. 

Therefore, we set a Ct value of 25 as the threshold. We also used a LabChip GX (Perkin 

Elmer) to confirm that the libraries with both Ct values < 25 showed high efficacy for 

the reverse transcription and amplification processes, whereas those with both Ct values 

> 25 showed low efficacy (Supplementary Fig. 1g). 

   In the second step, we counted the detected genes (RPKM > 0.1) for all cells after 

sequencing the libraries, mapping the reads, and calculating the RPKM values 

(Supplementary Fig. 1i). At least 5,000 genes were detected in most cardiomyocytes. 

Therefore, we set a threshold of 5,000 detected genes as the second filtering step. 

 

2. It is unclear how many biological replicates of mice were used. 

 

Response 

We analyzed single-cardiomyocyte transcriptomes from 2 mice at each time point (at 2 

weeks after sham operation and at 3 days and 1, 2, 4, and 8 weeks after TAC). We used 

echocardiography to assess whether the heart was appropriately exposed to pressure 

overload (Supplementary Fig. 1a,b). Averaged single-cell expression profiles were 

tightly correlated between biological replicates at each time point (Supplementary Fig. 

1j,k). We also compared the transcriptomic profiles on the t-SNE plot, confirming the 

similarity between cardiomyocytes at the same time points (Supplementary Fig. 6e). 

 

3. The authors performed single cell RNA-seq on Illumina HiSeq2500. However, 



important details were missed out which will aid in the technical assessment  

a. Paired-end or single-end 

b. Read lengths 

c. Insert size 

 

Response 

Single-cell libraries were subjected to paired-end 51-bp RNA sequencing on a HiSeq 

2500 in rapid mode. Insert size was 345 ± 40 bp (average ± standard deviation). These 

details were added to the Methods section (page 33, line 14). 

 

4. Related to point 1 above, no mention of how the quality of reads was assessed. For 

example, the authors might have included libraries with average base quality > 30 in 

the downstream analysis because low base quality results in technical noise and 

drawing unreliable conclusions. According to the methods section, FPKM 10 was used 

as a threshold to call expressed genes. But in the results section, RPKM>0.1 was used. 

This is conflicting information. Even for the use of both FPKM and RPKM: although 

technical equivalently, it would be good to be consistent. Perhaps to clarify, it would be 

useful to be clear how FPKM or RPKM were derived. RPKM>0.1 seems low stringency, 

and we expect to result in significant noise: how do the authors justify this choice? 

 

Response 

We apologize for not mentioning the assessment of sequencing quality. We summarized 

the mean quality score of all samples (Supplementary Tables 1, 2). We confirmed that 

all samples that were passed through the filtering steps had a mean quality score > 30. 

   We also apologize for the misleading expressions. We used two thresholds for 

selecting the cells and genes for downstream analysis; RPKM > 0.1 was used for 

selecting the cells (criterion for detecting genes) and RPKM > 10 was used for selecting 

the genes (criterion for quantitatively analyzing genes). We added this description to the 

Methods section (page 34, line 1). We do not use “FPKM” in this study. 

 

5. It was also unclear if the authors looked at protein coding genes or non-coding genes 

or both. Did they derived information from UCSC, Ensembl or GENCODE? 

 



Response 

We downloaded the RefSeq transcripts (coding and non-coding) from the UCSC 

genome browser (http://genome.ucsc.edu), mapped the RNA-seq reads to the mm9 and 

hg19 genomes, calculated RPKM values for all RefSeq transcripts, and used them for 

gene expression analysis. 

 

6. We prefer commonly used mapping software such as STAR or Tophat for alignment of 

RNA-seq reads. Many reads are not mapped by Bowtie1, particularly when reads span 2 

exons involving splicing. Did the authors explore options? 

 

Response 

We mapped the RNA-seq reads using Tophat and Bowtie1 and compared the calculated 

RPKM values of sham cardiomyocytes, confirming that the averaged single-cell profiles 

were tightly correlated between them (Supplementary Fig. 1h). We also conducted 

WGCNA to confirm that the essential gene modules (M1, M2, M3, M5, M11, M12, 

M16, M22, M24, and M7) identified in this study were preserved even in 

single-cardiomyocyte transcriptomes obtained by using Tophat (Supplementary Figure 

6d). 

 

7. Major stats and QC reflecting quality of the sequencing runs are not provided. 

Without these stats, it is not possible to tell if the results are due to technical artifact. 

Some important metrics are: 

a. Library sizes 

b. Total mapped reads 

c. Mapping efficiency (% uniquely mapped reads) 

d. % duplication 

e. % reads aligned to ribosomal RNA 

f. % reads aligned to mitochondrial DNA c c 

g. % reads aligned to introns and intergenic regions 

 

Response 

We apologize for not providing the data regarding the major statistics and sequencing 

quality control. We summarized these data in Supplementary Tables 1, 2. 



 

8. On page 5 the authors state that the cells were isolated at different time points and, 

as a result, it is possible that their transcriptome is influenced by technical factors 

(batch effects). How did the authors test and, if needed, controlled for these effects? 

Batch effect is the singular most difficult technical hurdle such biologically targeted 

projects face. The authors will need to rigorously demonstrate how they have accounted 

for this. 

 

Response 

To assess the possibility of batch effects, we added ArrayControl RNA Spikes 1, 4, and 

7 (Ambion, cat. No. Am1780) to the lysis buffer at the pre-defined concentrations on 

two separate plates and conducted single-cardiomyocyte RNA-seq of wild-type mice, 

confirming a good correlation between RNA spike-in concentrations and their expected 

RPKM values (normalized by unique reads mapped to the nuclear genome) in both 

batches (Supplementary Fig. 1c). We also performed t-SNE analysis of 

single-cardiomyocyte transcriptomes from normal C57BL/6 mice (RPKM values) in 2 

different batches to confirm that cardiomyocytes could not be classified by batch 

(Supplementary Fig. 1d). On the basis of these findings, we considered that we did not 

need to control for batch effects and used RPKM normalization for quantitative gene 

expression analysis in this study. We added this description in the revised manuscript 

(page 34, line 3). 

 

9. In single-cell studies it is often suggested the use of spike-in controls for data 

normalization. This could be especially useful for normalizing for batch effects. Did the 

authors include such controls and if not why? 

 

Response 

In addition to the findings from the preliminary experiments as mentioned above, we 

also found that there were some wells with low efficiency of reverse transcription and 

amplification of endogenous RNA in spite of the high efficiency of those with RNA 

spikes, suggesting that the use of spike-in controls for data normalization might distort 

endogenous RNA expression levels in our experiments. Therefore, we did not use RNA 

spikes for data normalization and used RPKM normalization for quantitative gene 



expression analysis in this study. 

 

10. It is not clear from the analysis of page 5 how many samples were excluded at each 

time point.  

 

Response 

We indicated the number of samples used during the filtering process (Supplementary 

Fig. 1e). 

 

11. In the results section, the authors mention “expressed profiles were tightly 

correlated between the average expression of single cells and corresponding bulk 

expression” It was unclear if the authors averaged the single cell profiles across all 

timepoints? Were there any point estimates for the correlation? Is “between biological 

replicates” referring to biological replicates of bulk RNA-seq or single cell RNA-seq. 

 

Response 

We apologize for using a misleading description. Regarding the former point, we 

averaged the single-cell profiles at each time point and compared them with the 

corresponding bulk profiles (Supplementary Fig. 1j,k). Regarding the latter point, we 

compared averaged single-cell profiles of biological replicates at each time point 

(Supplementary Fig. 1l,m). We have revised the manuscript accordingly (page 5, line 

17). 

 

12. It is a shame that the authors did not attempt to provide a global overview of the 

sham-TAC single cell transcriptomic landscape before they dived into detailed network 

analysis. This global analysis would have allowed the analysis for: 

a. How heterogeneous are sham and TAC cells. Do they cluster well? 

b. Pointing out obvious outliers, and / or cell type contaminations (eg fibroblasts, 

endothelial cells) 

c. Correlation with potential confounding factors such as batch effect, number of 

expressed genes etc. 

 

Response 



Hierarchical clustering using all genes expressed at RPKM ≥ 5 in at least 1% of all cells 

revealed that cardiomyocytes from sham and TAC mice were well clustered 

(Supplementary Fig. 2a). We also calculated the correlation coefficients of single-cell 

transcriptomes among cells at each time point and found an increase of transcriptional 

heterogeneity during heart failure (Fig. 1g). We added these descriptions in the revised 

manuscript (page 5, line 23). 

   We did not find any obvious outliers, but found that some genes thought to be 

specifically expressed in endothelial cells (e.g., Cav1 and Pecam1) or fibroblasts (e.g., 

Dcn and Lum) were clustered together with genes essential for transcription; Cav1 and 

Pecam1 were in G7 and Dcn and Lum were in G8 (Supplementary Fig. 2a). We used 

single-molecule RNA in situ hybridization to validate that these genes are expressed in 

sham and TAC cardiomyocytes (Supplementary Fig. 4). A previous study of 

single-nucleus RNA-seq analysis of cardiomyocytes also mentioned the presence of 

cardiomyocytes expressing endothelial marker genes (See et al. Nat Commun. 2017), 

consistent with our findings. Therefore, we did not eliminate cardiomyocytes expressing 

these genes from the downstream analysis. We added these descriptions in the revised 

manuscript (page 6, line 11). 

   We performed principal componenet analysis to show that cardiomyocytes from 

different batches were located closely at every time point (Supplementary Fig. 2b). We 

also found that PC1 values were correlated with the number of expressed genes and that 

cells with high PC1 values were enriched for cardiomyocytes from mice at 3 days and 1 

week after TAC operation. We consider that an increase in the number of detected genes 

at the early stage after pressure overload might reflect the expression of stress response 

genes and an enlargement of cell size after pressure overload. We added these 

descriptions in the revised manuscript (page 5, line 24). 

 

13. We found the combination of random forests and hierarchical clustering tools of 

page 6 very interesting. However, there was a lot of information condensed in a single 

paragraph that makes it difficult for the reader to understand, and thus making it 

confusing. Expression profiles were used in WGCNA to obtain 55 modules whose PC1 

were extracted. The random forests were applied to the PC1 values to select the 9 most 

important modules. Was the subsequent cell clustering based on the PC1 data of these 9 

modules or the gene expression profiles of the genes included in these 9 modules? It is 



not clear to us what would be the most accurate way to cluster the cells and we think 

that this depends on the variance explained by the PC1. We would have liked to see a 

comparison of these two alternatives and the reasoning behind the authors’ preferred 

choice. 

 

Response 

After obtaining 9 modules by the combination of random forests and hierarchical 

clustering, we performed the subsequent cell clustering analysis based on the PC1 

values of the 9 modules to classify cardiomyocytes. This is because the combination of 

random forests and hierarchical clustering showed that the accuracy of classification 

using the PC1 values of the 9 modules was higher than that using the gene expression 

profiles of the 9 modules (Supplementary Fig. 7a-c). A comparison of the hierarchical 

clustering results using the gene expression profiles with that those from using the PC1 

values showed that most of the cells classified into the same cell clusters were well 

clustered (Supplementary Fig. 7a). We added these descriptions in the revised 

manuscript (page 35, line 10). 

 

14. From supplementary figure 2b it is evident that the 9 modules give 7 random forest 

based clusters with low error rates. What parameters / algorithm were used to derive 

these 7 clusters? The random forest is supervised (based on these 7 clusters). It would 

be interesting to see how the error rate changes for 5-10 clusters and what clusters an 

unsupervised algorithm would obtain (e.g. clustering / trajectory estimation and states 

by Monocle). 

 

Response 

We compared the error rates for 4–10 clusters and found that they were maintained at a 

low level for 4–7 clusters, while a drastic increase of the error rate was observed for 8 

clusters (Supplementary Fig. 7b). Therefore, we chose 7 clusters for cell classification. 

We also used Monocle to derive the trajectory information and found a relationship 

between cell-state identified by Monocle and cell-cluster identified by the combination 

of random forests and hierarchical clustering (Fig. 2a,b). 

 

15. Pages 6-7 discuss the cell trajectory on the tSNE plot but we could not find any 



details on how this trajectory was estimated. Results based only on visual inspection 

can be highly misleading due to the data noise, the optimization process and the huge 

amount of information included in a typical single-cell dataset. Other than that, the 

analysis of pages 7-8 with the module variability is very interesting but it needs to be 

supported by a more rigorous statistical analysis. 

 

Response 

We are grateful to the reviewer for this insightful comment. We used Monocle to derive 

the cardiomyocyte trajectory after TAC operation, revealed the cell-state transition 

during the trajectory, and identified the branch point of failing cardiomyocytes (Fig. 2a). 

Pseudo-time analysis with differential expression analysis uncovered the expression 

dynamics of the genes involved in the induction of failing cardiomyocytes; high 

expression of M3 and M24 genes and low expression of M1 and M2 genes were 

characteristic for failing cardiomyocytes (Fig. 2c,d). Along the lines of these findings, 

we revised the manuscript (page 9, line 3). 

 

16. It is not clear how ImageJ measured the cell area. Were the estimates derived from 

2D images? How was the volume of the cell assessed? What does “small” and “large” 

cell means in figure 2b. What is the variability in cell size and how is it correlated with 

the cell library size? Would spike-in or endogenous controls be a better way to 

normalize this dataset? 

 

Response 

We measured cell area from 2D images. Single cardiomyocyte images were obtained on 

dishes using an XZ-2 microscope (Olympus). We measured cardiomyocyte area in the 

buffer after isolation using NIH ImageJ software. The definition of a “small” and “large” 

cell is based on cell area in Fig. 3d (Fig. 2d in the original version). The data regarding 

the distribution of cell area are shown in Supplementary Fig. 11e. We also found a 

positive correlation between cell area and library size (the number of unique reads 

mapped to the nuclear genome) (R = 0.36, Pearson’s correlation coefficient). However, 

after calculating RPKM values normalized by the number of unique reads mapped to 

the nuclear genome, we found that mitochondrial gene expression was correlated with 

cell area. Even for the RPKM values normalized by the endogenous control (Tnnt2 gene 



expression), mitochondrial genes were significantly enriched in the top 300 genes 

correlated with cell area (Supplementary Fig. 11f). We selected Tnnt2 as an 

endogenous control gene because real-time quantitative PCR of single-cell cDNA 

libraries showed a relatively homogenous expression pattern in cardiomyocyte libraries 

with efficient reverse transcription and amplification (Supplementary Fig. 1f). 

Therefore, we conclude that the expression of genes involved in mitochondrial 

ribosome and metabolism is correlated with cell area in the hypertrophy stage after 

pressure overload. 

 

17. How do the authors ensure that cell sizes were maintained following harvest? Our 

experience suggests that cardiomyocytes are very sensitive to hypercontraction 

depending on calcium concentrations when isolated out ex vivo. Is there a way to 

validate this? 

 

Response 

As the reviewer pointed out, isolated cardiomyocytes are very sensitive to 

hypercontraction (Supplementary Fig. 11a). To prevent hypercontraction, after 

isolation, we resuspended the cardiomyocytes in medium (NaCl 130 mM, KCl 5.4 mM, 

MgCl2 0.5 mM, NaH2PO4 0.33 mM, D-glucose 22 mM, HEPES 25 mM, fetal bovine 

serum 0.2%, pH 7.4) containing a low concentration of calcium (0.1 mM). To analyze 

the potential morphological changes of cardiomyocytes, we performed time-lapse 

imaging analysis of cardiomyocytes at 0, 1, 5, 30, and 60 min after isolation and 

confirmed that cell sizes were maintained following harvest (Supplementary Figure 

11b-d). 

 

18. Page 10 summarizes the logic behind network comparison but it lacks the details of 

the methodology followed. How were the differences of the hypertrophy / 

non-hypertrophy networks been statistically assessed? The information of this 

paragraph, the paragraph of page 12 and the supporting figures was not enough to 

understand the key steps of this analysis. 

 

Response 

We apologize for not writing the details. If there are hypertrophy stage-specific 



networks, network analysis using single-cell transcriptomes of cardiomyocytes except 

hypertrophy-stage cardiomyocytes cannot identify such network modules. This idea is 

based on the concept for identifying sample-specific networks (Kuijjer et al. arXiv. 

2015; Liu et al. Nucleic Acids Res. 2016). Therefore, we separately performed WGCNA 

on all cardiomyocytes and on those except hypertrophy-stage cardiomyocytes, and 

assessed the significance of the overlap between gene modules using Fisher’s exact test 

with the WGCNA “overlapTable” function (Langfelder et al. PLoS Comput Biol. 2011; 

Hilliard et al. PLoS Comput Biol. 2012). We added this description to the revised 

manuscript (page 12, line 17). 

 

19. There was no differential expression analysis to assess the differences across the 

cardiomyocyte isolation time points, across the estimated clusters and across the cell 

trajectory. This information is important in order to assess the significance of the 

findings. It could point out cell contamination (other cell types), which was not 

discussed in this work. 

 

Response 

We added the data of differential expression analysis to assess the differences across the 

time points (Supplementary Fig. 3a), across the cell clusters (Supplementary Fig. 3b), 

and across cell trajectory (Fig. 2d). As we mentioned above, we performed 

single-molecule RNA in situ hybridization to verify the possibility of cell contamination, 

validating the presence of cardiomyocytes expressing endothelial and fibrotic genes in 

both sham and TAC hearts. A previous study of single-nucleus RNA-seq of 

cardiomyocytes also mentioned the presence of cardiomyocytes expressing endothelial 

marker genes (See et al. Nat Commun. 2017), consistent with our findings. Therefore, 

we did not eliminate cardiomyocytes expressing these genes from the downstream 

analysis. 

 

20. It is not clear what value H3K27ac ChIP-seq added to the understanding of the 

modules involved in cardiomyocyte hypertrophy. 

 

Response 

Through the integrative analysis of single-cell transcriptomes and morphology, we 



identified module M1 as essential for cardiac hypertrophy, but did not know the 

upstream regulators of this module. We then hypothesized that the activation of M1 

genes is induced by the activation of DNA elements regulating M1 gene expressions. 

Genome-wide H3K27ac mapping using ChIP-seq detected regulatory elements around 

M1 genes, where ELK1 and NRF1/2 recognition motifs were enriched, suggesting that 

these transcription factors and related signaling pathways are essential for M1 gene 

activation and cardiac hypertrophy. Collectively, the combination of single-cell 

RNA-seq and H3K27ac ChIP-seq enables us to identify simultaneously essential gene 

modules and their upstream regulators. 

 

Despite these, the methodologies appear to have worked well to produce some real 

biological insights, that have been validated by concordance both within their own data 

(multiple seq datasets, including mouse and human, and RNA-FISH/immunostaining). 

Importantly, this has also been consistent with published literature. However this 

consistency with published literature also means that a lot of their findings are not 

actually all that surprising and have been reported before (morphological hypertrophy 

correlating with increases in genes for translation and mitochondrial biogenesis, 

adaptive hypertrophy followed by maladaptive and heart failure, cellular heterogeneity 

in hypertrophy, Mef2, ERK and NRF signalling, oxidative stress -> DNA damage -> 

disease progression). Admittedly,  the temporal and single cell resolution of this study 

offers some advantages, and the datasets will provide a useful resource to researchers, 

assuming they are made publically available. Still, the authors did not demonstrated or 

explained how exactly “these results provide a potential application for assessing and 

regulating cardiomyocyte remodelling in cardiac hypertrophy and failure.” 

   Perhaps this was why the authors pushed the p53 story, the novelty of which is that 

p53 activation is critically important specifically at the point of transition from an 

adaptive hypertrophied cardiomyocyte, to a failing one. However this has two key 

problems.  

   The first problem is that a PNAS paper came out earlier this year showing that 

CM-specific KO of p53 makes hearts resistant to TAC (Mak et al 

2017: http://www.pnas.org/content/114/9/2331.full ). Although analysis was not 

CM-specific, this paper used microarray profiling to show many of the same effects (e.g. 

p21, Mef2, mitochondrial biogenesis and bioenergetics, glucose and fatty acid 



metabolism). The authors of the current study have not cited and seem unaware of this 

paper. Unfortunately it detracts significantly from the novelty. 

 

Response 

Thank you for notifying a recent literature. We missed the citation of this important 

paper. We have now cited this study in the revised manuscript (page 14, line 1). 

 

The second problem is that, with the massive amount of data from single cell analysis, 

the authors have not present enough evidence to justify the conclusion that transient 

p53 activation specifically drives the CM transition from compensated to failing. The 

above paper shows that p53 has physiological activity in mouse CM at all stages of 

health/disease. Cardioprotective transcriptional changes are present in p53 KO hearts 

by day 7 TAC – that is before the appearance of failing CM. It is therefore conceivable 

that p53 KO hearts maintain a generally higher level of health in TAC than wild type 

hearts do, and it is because of this that CMs in KO hearts never reach the stage of 

transition to failure, rather than because of a specific lack of p53 activation at that 

point. Perhaps if left longer than 8 weeks, failing cells would appear in p53 KO hearts. 

   Aside from the KO model, the authors base their evidence for p53 activation driving 

the failure transition on a very small number of cells. p53 activation is not specifically 

measured, only upregulation. It is possible that in these cells, p53 

activation/upregulation is an effect of an already damaged and failing cell, rather than 

the cause of it. The authors make no mention of p53 upregulation in human DCM cells. 

Was it not detected? If not, how is this discrepancy explained? 

 

Response 

As the reviewer pointed out, it is difficult to distinguish physiological and pathological 

functions using a knockout model. However, there are five reasons why we insist that 

p53 activation underlies the induction of failing cardiomyocytes in this paper. First, p53 

activation was observed at the branch point for failing cardiomyocytes during the 

trajectory identified using Monocle. Second, cardiomyocytes from p53CKO mice were 

remodeled through the branch point, but escaped the induction of failing 

cardiomyocytes after TAC operation (Figs. 2a,b and 5h). Third, recent live cell imaging 

experiments revealed that p53 activation is transient (Loffreda et al. Nat Commun. 



2017), and this transient activation is sufficient for cell fate conversion (Johmura et al. 

Mol Cell 2014; Krenning et al. Mol Cell 2014). Fourth, our additional experiments 

showed that p53 is essential for Nrf2 activation in the heart failure stage and that Nrf2 

directly regulates Mef2a expression (Fig. 6e,f and Supplementary Fig. 14), and 

provided evidence for the involvement of the p53-Nrf2-Mef2a axis in the induction of 

heart failure. Lastly, patients with cardiomyocytes expressing human M1 genes, which 

include CDKN1A, a p53 target gene, did not show a response to LVAD treatment (Fig. 

7g-j). Collectively, although we cannot exclude the possibility that the physiological 

activity of p53 might affect cardiac function, considering the timing of p53 transient 

activation, the dynamics of state transition of p53CKO cardiomyocytes, the direct link 

between p53 and heart failure-related transcription factors, and the relationship with 

human pathogenesis, we emphasize the significance of p53 activation for the induction 

of heart failure. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors performed exhaustive single-cell RNA-seq to define the changes in RNA 

expression that occur in response to pressure overload (TAC) of the heart in mice. A 

time course of TAC was performed, ranging from early stage compensatory hypertrophy 

(day 3 and week 1) to late stage heart failure (week 8). Distinct gene regulatory 

modules were defined computationally at each stage of the response. The transition 

from hypertrophy to failure was marked by induction of p53-dependent gene expression 

(Module 24 genes). Interestingly, p53 appeared to regulate Module 24 gene expression, 

at least in part, by stimulating MEF2 and NRF2 transcription factor-dependent gene 

expression. To follow up on this, the authors generated cardiomyocyte-specific p53 KO 

mice. These animals appeared to be protected from heart failure induced by TAC. 

Finally, the authors perform single-cell transcriptomics on human cardiomyocytes from 

normal controls and hearts from individuals with dilated cardiomyopathy. 

 

The authors are to be commended for performing a tour de force evaluation of the 

transcriptional networks that are associated with cardiac hypertrophy. The datasets will 

provide important resources for the field. The segment of the manuscript that is 



dedicated to p53 is nice because it provides a mechanistic evaluation that deviates from 

the somewhat encyclopedic nature of the other figures. I suggest that the authors 

expand on the p53-related findings to enhance the overall manuscript. 

 

Specific points 

 

1. For Fig. 1B, it would be useful to provide length-to-width ratios for myocytes from 

other time points following TAC. 

 

Response 

We showed the data for the transition of length-to-width ratios of cardiomyocytes 

following TAC operation (Fig. 6e). 

 

2. For sFig. 5F, the authors should perform single-cell qPCR for Trp53 from WT mice 

post- 2 weeks TAC to rule out effects of the floxed allele on p53 expression. 

 

Response 

We are grateful to the reviewer for this important comment. We conducted single-cell 

quantitative PCR of cardiomyocytes from wild-type mice at 2 weeks after TAC 

operation, and showed an expression pattern similar to that from p53flox/flox mice, ruling 

out possible effects of the floxed allele on p53 expression (Supplementary Fig. 13f). 

 

3. The authors should quantify myocyte cross-sectional area in p53 KO hearts vs. 

controls, before and after TAC. 

 

Response 

We measured cardiomyocyte cross-sectional area in p53flox/flox and p53CKO hearts after 

sham and TAC operation (Supplementary Fig. 15), and obtained results that were 

consistent with those from echocardiographic (Fig. 5b) and single-cardiomyocyte 

morphological (Fig. 6h) assessments. 

 

4. The manuscript would be enhanced by experiments that address the mechanisms by 

which p53 regulates MEF2 in cardiomyocytes. To my knowledge, such findings would 



be highly novel. 

 

Response 

As mentioned later, we demonstrated that Nrf2 protein level in the heart was increased 

in the heart failure stage after TAC operation, which was blocked in p53CKO mice (Fig. 

6e and Supplementary Fig. 14a-d). This finding suggests that p53 mediates Nrf2 

protein activation during heart failure. Since public Nrf2 ChIP-seq data of macrophages 

showed that Nrf2 binds to the Mef2a promoter region, which contains an Nrf2 

recognition motif (Eichenfield et al. eLife 2016) (Supplementary Fig. 14e), we 

hypothesized that activated Nrf2 directly regulates Mef2 gene expression in 

cardiomyocytes. We conducted ChIP-qPCR of TAC cardiomyocytes to show a 

significant enrichment of Nrf2 at the Mef2a promoter (Fig. 6f), validating our 

hypothesis that the p53-Nrf2-Mef2a axis is essential for the induction of failing 

cardiomyocytes. We revised the manuscript (page 16, line 2). 

 

5. The authors mention prior work showing p53-induced NRF2 activation via 

p21-mediated NRF2 protection against Keap1-mediated ubiquitination. They should 

determine if this mechanism is blocked in p53 KO hearts.  

 

Response 

We performed western blot analysis of heart tissues from p53flox/flox and p53CKO mice 

after sham operation and at 8 weeks after TAC operation (heart failure stage), and 

validated that Nrf2 protein level was increased after TAC operation in p53flox/flox mice, 

which was blocked in p53CKO mice (Fig. 6e and Supplementary Fig. 14a-d). We are 

very grateful to the reviewer for this valuable comment. We revised the manuscript 

(page 16, line 2). 

 

 

Reviewer #3 (Remarks to the Author): 

 

This is a valuable manuscript studying how cardiomyocytes undergo molecular and 

morphological changes in response to stress, leading to cardiac hypertrophy and failure. 

The authors relate these changes to gene expression profiles measured using single-cell 



mRNA-Seq at cardiomyocytes samples collected at different time points representing 

disease progression. 

 

The authors find interesting relationships between gene modules and trajectories of 

disease progression. Gene modules represent sets of genes that show similar expression 

and are significantly expressed across cells. The identified modules include important 

genes known form literature to be responsible for the cardiac hypertrophy and the heart 

failure. 

 

Overall, the structure and sequence of the results is well presented and written. It starts 

by investigating the responsible genes for early stage hypertrophy, then for the 

progression to heart failure. Based on their data, they conclude p53 being responsible 

for the heart failure progression, which they validate using a p53 blocking mouse. 

Finally, they validate these responsible gene modules in human tissues. 

 

The analysis of the single-cell mRNA-Seq data is well structured and is mainly based on 

the WGCNA R package pipeline that is widely known and used in gene co-expression 

analysis. The authors combined these analyses with various visualization tools to 

produce clear figures, as well as function enrichment analysis to interpret the observed 

correlations between the observed important genes and the disease progression. 

 

In conclusion, I am very happy with this manuscript. I do have a few comments that I 

would like to see addressed. 
 

Major comments: 

1. In the hierarchical clustering of co-expressing genes into gene modules for the data 

of the C57BL/6 mouse model, the dendrogram in Figure 1c does not support the 7 

cluster assignments mentioned. Further clarification is needed if there are any other 

criteria for clusters assignment. 

 

Response 

To achieve accurate cell-type classification, in Fig. 1d (Fig. 1c in the original version), 

we used hierarchical clustering (minimum cluster size of 5% of all samples) and random 



forests to compare the error rates for 4–10 clusters, and found that they were maintained 

at a low level for 4–7 clusters, while a drastic increase of the error rate was observed for 

8 clusters (Supplementary Fig. 7b). Therefore, we chose 7 clusters for cell 

classification. We added this description to the manuscript (page 35, line 10). 

 

2. In the analysis of the hypertrophy related modules, Figure 2b shows a scatter plot of 

PC1 and PC2 with only 34 cells (dots) while the authors previously mentioned that in 

week one 82 cardiomyocytes are obtained. Why is there a difference? 

 

Response 

We apologize for misleading the reviewer. In Fig. 3b (Fig. 2b in the original version of 

the manuscript), we again isolated cardiomyocytes at 1 week after TAC operation to 

assess their morphology and transcriptome simultaneously. We revised the manuscript 

accordingly (page 10, line 18). 

 

Minor comments: 

1. For the purpose of reproducibility of the analysis, please specify the perplexity used 

for producing the t-SNE maps, as well as the distance measure and linkage method used 

for the hierarchical clustering. 

 

Response 

We used t-SNE with a perplexity of 10 and hierarchical clustering with correlation 

distance and complete linkage. We added this description to the manuscript (page 35, 

line 24). 

 

2. Page 34, line 5, remove “at 2 weeks”. It is already mentioned in line 6. 

 

Response 

We revised the manuscript accordingly (page 32, line 10). 

 

Conclusion: 

I recommend this work to be published after addressing my comments. 

 



 

Finally, the authors would like to thank the reviewers again for these valuable 

comments and suggestions. 

 



 

Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have sufficiently addressed my original comments.  

 



 

Reviewer #3 (Remarks to the Author):  

 

The authors have addressed all the comments with convincing answers. I recommend this work to 

be published.  



Responses to the reviewers’ comments 

We thank the reviewers for their insightful comments regarding our manuscript. Along 

the lines suggested by the reviewers, we have performed additional analyses and revised 

the manuscript. The sentences revised according to the reviewers’ comments are 

highlighted in red in the main text. 

 

Response to Reviewer #1 

The authors have made some significant edits and revision of analysis to their previous 

submission. It is a manuscript that is very dense now with multiple angles of analysis. So 

much that can easily generate confusion and disorganisation of thought. I don’t have 

much problem with the biological follow-up relating to the latter part of their analysis. 

But their dataset QC remains worrying because several key aspects point to an 

inadequate quality of the sequenced material, and therefore the subsequent 

bioinformatics analysis that has been presented. 

 

As major examples: 

1. Line 97: >= 5000 genes were detected at the low RPKM>0.1. RPKM > 0.1 is a low 

and lenient threshold, and to discover only ~5000 expressed genes suggests that the 

dataset is not robust. Based on this number, there would be far fewer expressed genes 

expected at the more usual threshold of RPKM>1! This could really mean that the data 

quality of this single cell RNA-seq set is bad, and all the downstream analysis are not 

convincing to interpret. 

 

Response 

We detected more than 5,000 genes with RPKM > 0.1 in 82.1% of cardiomyocytes 

(396/482 cells) and more than 4,000 genes with RPKM > 1 in 86.9% of cardiomyocytes 

(419/482 cells) (Supplementary Fig. 1j). Expression levels were comparable between 

cardiomyocytes that had more than 5,000 genes with RPKM > 0.1 and those that had 

more than 4,000 genes with RPKM > 1 (Supplementary Fig. 1k). Among all of the 

cardiomyocytes that had more than 5,000 genes with RPKM > 0.1, over 4,000 genes were 

detected with RPKM > 1 (Supplementary Fig. 1l,m). Many single-cell RNA-seq studies 

with the Smart-seq2 protocol have used a threshold of RPKM > 0.1 for gene detection 



(Xue Z et al. Genetic programs in human and mouse early embryos revealed by 

single-cell RNA sequencing. Nature; Hu Y et al. Simultaneous profiling of transcriptome 

and DNA methylome from a single cell. Genome Biol. 2016; Nichterwitz S et al. Laser 

capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. 

Nat Commun. 2016; Gao Y et al. Protein Expression Landscape of Mouse Embryos 

during Pre-implantation Development. Cell Rep. 2017). Therefore, we set a more 

stringent threshold of RPKM > 0.1 with 5,000 detected genes for selecting the cells in this 

study. We also used a threshold of RPKM > 10 to select genes for quantitative 

downstream analysis. We added this description to the revised manuscript (page 23, line 

22). 

 

 

2. Supplementary Figure 1h. Why did the authors persist to use their Bowtie1 mapping 

results for analysis, when the authors had also done mapping and analysis using Tophat2. 

See the scatterplot (pointed out in figure attached), despite having high correlation, there 

are too many points lying on the top left of unity. This implies that there are too many 

genes found to be lowly expressed with Bowtie1, but yet found to be highly expressed in 

Tophat2. Moreover the axis is in log-scale! It is worrying that at least 100 genes were 

estimated to be 10-fold lower than they are in the comparison of both mapping tools. 

What are these genes. Was subsequent analysis built on this under-estimated values? 

Was the low number of genes detected (point 1 above) due to the puzzling choice of 

Mapping algorithm. 

 

Response 

By comparing RPKM values obtained using Tophat2 and Bowtie1, we identified only 25 

genes that had 10-fold higher Tophat2 mapping RPKM values (Supplementary Fig. 

1h,i). Gene ontology analysis revealed that ribosomal protein genes were enriched in 

these genes (p = 7.9e-6). It has been reported that alternative splicing of ribosomal protein 

mRNAs is a conserved regulatory mechanism for maintaining translational homeostasis 

(Mitrovich et al. Unproductively spliced ribosomal protein mRNAs are natural targets of 

mRNA surveillance in C. elegans. Genes Dev. 2000; Takei et al. Evolutionarily 

conserved autoregulation of alternative pre-mRNA splicing by ribosomal protein L10a. 

Nucleic Acids Res. 2016) and is regulated by introns (Parenteau et al. Introns regulate the 



production of ribosomal proteins by modulating splicing of duplicated ribosomal protein 

genes. Cell. 2011). This is because Tophat2 can align reads related to alternative splicing 

events, whereas Bowtie1 cannot. However, by comparing the numbers of detected genes 

mapped using Tophat2 or Bowtie1 for each cell, we found that using the RPKM values 

mapped by Tophat2 did not increase the number of detected genes (Supplementary Fig. 

1n). Furthermore, in the recent literature, many researchers, including Aviv Regev and 

Jay Shendure, use Bowtie1 mapping RPKM values for single-cell gene expression 

analysis (Raj et al. Simultaneous single-cell profiling of lineages and cell types in the 

vertebrate brain. Nat Biotechnol. 2018; Harber et al. A single-cell survey of the small 

intestinal epithelium. Nature. 2017; Singer et al. A distinct gene module for dysfunction 

uncoupled from activation in tumor-infiltrating T cells. Cell. 2017). We also conducted 

WGCNA to confirm that the essential gene modules (M1, M2, M3, M5, M11, M12, M16, 

M22, M24, and M7) identified in this study were preserved even in single-cardiomyocyte 

transcriptomes obtained by using Tophat2 mapping (Supplementary Fig. 6a). Therefore, 

we think that the use of Bowtie1 mapping RPKM values for single-cell gene expression 

analysis in this study is suitable. 

 

 

3. Line 127: Cell-to-cell heterogeneity increased after pressure overload. This seems to 

be an afterthought and the idea was not further developed. How did the authors compute 

the “heterogeneity”? 

 

Response 

We assessed transcriptional heterogeneity among cells by using Pearson’s correlation 

coefficient, which was calculated for each time point using all genes expressed with 

RPKM ≥ 10 in at least 20% of the samples (Fig. 1c) (page 24, line 21 in the Methods 

section). The increased cell-to-cell heterogeneity after pressure overload is considered 

to be related to bifurcation into distinct cell fates (State 2 and State 3 in Fig. 2a). This 

description was added to the revised manuscript (page 9, line 8). 

 

 

4. Supplementary Figure 5h. This is another key worrying point. Why are so many highly 

expressed genes possessing such high coefficient of variation (figure here also). This is 



unusual. Eg why does “Nppa” have such high coefficient of variation. Such levels of 

variations are more usual to see for lowly expressed genes. It raises the question of 

whether this is a computation error, or again the robustness of the quality of the 

sequenced material. For Nppa, this means that some TAC cells aren’t expressing Nppa, 

while some TAC cells are expressing extremely high level of Nppa. What is the fraction of 

cells not expressing Nppa in TAC? Are these cells cardiomyocytes? Also, the authors are 

only showing this graph for 1 time point (Week 8). The authors should show the graph for 

all Time points. Overall, there remain technical issues which cannot be adequately 

explained in the dataset. 

 

Response 

Actually, the expression level of Nppa was highly heterogeneous compared with that of 

Tnnt2 in cardiomyocytes after pressure overload (Supplementary Fig. 5b). All cells 

expressed Tnnt2 homogeneously, indicating that all of these cells were cardiomyocytes.  

After pressure overload, some cardiomyocytes expressed Nppa mRNA at a high level, 

whereas some cells showed low Nppa mRNA expression. We also used smFISH to 

quantify the single-cell mRNA levels of Myh7 (high variability) and Atp2a2 (low 

variability), validating the cell-to-cell variation in gene expression obtained from 

single-cell RNA-seq (Supplementary Fig. 5c-e and Supplementary Table 3). We also 

included graphs demonstrating the variability of gene expression in cardiomyocytes for 

all time points (Supplementary Fig. 5a). 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have sufficiently addressed my original comments. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have addressed all the comments with convincing answers. I recommend 

this work to be published. 

 



 

Finally, the authors would like to thank the reviewers again for these valuable 

comments and suggestions. 

 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have addressed my concerns. I am ready to accept this publication.  



Responses to the reviewers’ comments 

We thank the reviewers for their insightful comments regarding our manuscript. 

 

Response to Reviewer #1 

Reviewer #1 (Remarks to the Author): 

The authors have addressed my concerns. I am ready to accept this publication. 

 

Response: 

The authors would like to thank the reviewers again for these valuable comments and suggestions 
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