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Supplementary Figure 1. | Anti-crossing dependent latching Charge stability diagram (left) of the double-dot system.
Mapping (as described in the main text) at anti-crossing (0, N2 + 1) − (1, N2) for N2 = 0 − 3, shown (right) for a sequence
which involves a random loading of the (1, N2) state. The latched readout is observed only at every second anti-crossing (when
N2 is odd), consistent with mapping of the PSB charge states to a dot-reservoir charge state
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Supplementary Figure 2. | Double dot chemical potential and valley splitting. Transformation of three level pulse
sequence from Fig. 1d to illustrate detuning ε and average energy Ē. Valley splitting for dot G2 can be measured with respect
to charging energy EC via the splitting of standard-PSB and Latched-PSB.
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Supplementary Figure 3. | Analysis of latched readout. a) Maximum fidelity with optimized threshold voltage as given
by process described in Ref.[1]. Dashed curves indicate the measurement fidelity of the singlet (red) and triplet (blue) signals.
b) Latched-PSB readout lifetime measurement as performed by intitalizing random (1,1) state, pulsing rapidly to (0, 2) point
(Fig. 1f), then to latched point (Fig. 1g) to better emulate S/T experiments. Here, the characteristic time is given by latched
lifetime τL. The error rate due to misidentification is reduced by 93.57% via latched readout to a maximum visibility of 98%.
A visibility decrease to approximately 75% is observed when crossing from (1,1) to (0,2) charge configuration before pulsing to
the (1,2) readout point. c) Histograms of the latched readout as a function of dwell time at the readout position.
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Supplementary Figure 4. | Spin Funnel Data. The spin funnel used for data collation in Fig. 4 of the main text. Data is
taken for the same device cooldown.
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Supplementary Figure 5. | Numerical simulation of exchange oscillations under realistic noise. a) Simulation example
illustrating the combination of all preparation and measurement errors including state leakages. The process involves transfer of
a |(0, 2)S〉 state to |(1, 1)S〉, followed by semi-adiabatic transfer to |↓, ↑〉, pulse to the exchange point for a dwell time, followed
by reversal of the exchange pulse and semi-adiabatic mapping. b) Shows the detuning pulse sequence for a) against simulation
time steps (non-linear time progression for illustrative purposes). Simulation time-steps are normalized to ramping speeds for
each individual pulse region. c-e) Shows fitting parameters from Supplementary Eq. 6 after time evolution at the exchange point
ε. Comparisons are drawn between the separate contributions of the most detrimental noise couplings from Supplementary
Table 1 and a cumulative noise of all mechanisms. c) Upper bound visibility metric VSig from Supplementary Eq. 6 for the
experimental data compared against the same visibility metric produced from simulations involving electric and magnetic field
fluctuations. d) Illustrates the blockade saturation value VSat, which can indicate eTransfer and eMap error processes. e) Fitting
parameter for driven oscillation decay time T ρ2 produced from frequency variation σF (see text) for both the experimental data
and the simulations.

Noise Type Hamiltonian Parameter Governing noise source

Exchange noise J(ε) Electric field noise

Stark (single dot SO) δEzZ Electric field noise

Stark (double dot SO) ∆ (via ∆SOC) Electric field noise

Magnetic gradient ẑ δEzZ Magnetic field noise

Magnetic gradient x̂, ŷ ∆ (via δEx,yZ ) Magnetic field noise

Supplementary Table 1. Key noise coupling mechanisms as studied in the accompanying simulations presented in Supplementary
Figure 5. These parameters are defined in Hamiltonian equation Supplementary Eq. 1 and include components attributed to
electric field such as exchange noise as well as single- and double-dot spin-orbit (SO) effects. Also included are Zeeman energy
terms dependent upon magnetic field noise.
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SUPPLEMENTARY NOTES

Supplementary Note 1: Extended latching study

As illustrated in Fig. 1e of the main text, the observation of latching of the G2 dot is due to weak coupling to the
reservoir2. In order to populate the next electron on G2, the existing (1,1) state must co-tunnel via (0,2) where PSB
exists. If the state is not blocked (i.e. the S state) then an electron is free to tunnel from the reservoir to fill G1.
Otherwise the tunnelling from the reservoir is blocked, resulting in a spin-to-reservoir charge state conversion. State
latching is investigated at multiple anti-crossings on the charge stability diagram as shown in Supplementary Figure 1.
The anti-crossings attributed to the N1 = 1, N2 = 1 − 4 charge configurations are shown with accompanying maps
produced in the same method to Fig. 1c (see Ref. [3] and main text). The argument that the latching is indeed the
projective mapping of (0, 2)S− (1, 1)T → (1, 2)S− (1, 1)T is strengthened by the observation of latching only at every
second anti-crossing. In both the full stability diagram4 and maps produced via the three level pulse sequence, strong
charge state hysteresis observed5 under the G2 dot after the unloading of the last electron under G1 (i.e. N1 = 0),
often attributed to the inability for any co-tunnelling of the G2 dot via G1 to the reservoir. In order to estimate the
increase in visibility due to the latched readout, the characteristic relaxation time of the latched state is measured by
initializing a random (1, 1) state, pulsing rapidly to the Standard-PSB location in (0, 2) before pulsing to the latched
readout location close to the anti-crossing. The state is taken via (0, 2) in order to emulate the measurement protocols
used in spin readout experiments. Relaxation of the latched state τL is shown in Fig. 3c with a characteristic time
of 2.8 ms. Using an optimal measurement integration time of τM = 0.2 ms a model for single-shot statistics which
accounts for relaxation under τL can be implemented1, yielding a maximum visibility of 98%, by optimizing the
threshold current as shown in Fig. 3b. When comparing the maximum visibility of the standard-PSB readout against
the latched-PSB process, the increased separation of the readout histograms under latching leads to a reduction in
error due to misidentifying a singlet or triplet. The latched-PSB produces a decrease in this misidentification error
by nearly 16-fold when compared to the standard-PSB readout process.

Supplementary Note 2: Quantum dot parameters

As discussed in the main text, the system can be described via the same system Hamiltonian presented in Ref.[6],
with the addition of the singlet-triplet mixing term. To convert pulsed gate voltages on G1, G2 to detuning ε = µ2−µ1,
we use the (0, 2), (1, 1), (2, 0) part of the charge stability diagram in Supplementary Figure 1, and model the double
dot using the constant interaction model (eq 32 on page 1245 of Ref.[7]). Leaving the unknown average charging
energy EC as a free parameter, we self-consistently solve for ε ∼ α2VG2 + α1VG1 and find α2 = −6.1EC/V and
α1 = 3.7EC/V . Typical charging energies of for this device design is 10 − 20 meV, and a value of EC = 10 meV
is chosen for ε in these experiments. A transformation of the three level pulse seen in Fig. 1d of the main text is
presented in Supplementary Figure 2, allowing for the energy of the first excited state EES in G2 to be measured3

with respect to EC. This is given by the blockade width, measured as EES = (0.0172 ± 0.002)EC. These values are
similar to valley splitting energy EVS measured on previous Si-MOS devices4,8. For the latched region the blockade
is lifted via the presence of this same excited state, allowing the G1 electron to shuttle to G2, occupying this excited
state.

Supplementary Note 3: Effective Hamiltonian of the |SH〉 singlet-triplet subspace

The system Hamiltonian of the singlet-triplet basis9 can be represented as the following:

H |φ〉 =


E
z

Z − ε/2 0 (−δExZ + iδEyZ)/
√

2 0 ∆SOC

0 −ε/2 δEzZ 0 0

(−δExZ − iδE
y
Z)/
√

2 δEzZ −ε/2 (δExZ − iδE
y
Z)/
√

2 tc(ε)

0 0 (δExZ + iδEyZ)/
√

2 −EzZ − ε/2 −∆SOC

∆SOC 0 tc(ε) −∆SOC ε/2



|T+〉
|T0〉
|(1, 1)S〉
|T−〉
|(0, 2)S〉

 (1)

Here EnZ is a Zeeman energy in given vector direction n̂ and is inclusive of the single electron g-factor variability.
We can take the liberty of choosing ẑ such that the average Zeeman energy in the x̂ and ŷ directions are zero, leaving
only the difference δEnZ as a relevant parameter. In Supplementary Eq. 1, it is evident that there are two sources for
singlet-to-triplet transitions: transverse magnetic field gradients (δEx,yZ ), and a direct spin-flip-transport term ∆SOC
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which results from interface spin-orbit coupling. The above Supplementary Eq. 1 is transformed again to represent
the hybridized singlet ground state |SH〉 and excited state |GH〉. By diagonalizing the singlet terms we form this
change of basis by introducing θ = − tan−1(2tc/ε):

H |φ〉 =


E
z

Z − ε/2 0 0 ∆(θ)
0 −ε/2 0 δEzZ cos(θ)

0 0 −EzZ − ε/2 −∆(θ)
∆(θ)∗ δEzZ cos(θ) −∆(θ)∗ ESH


|T+〉|T0〉|T−〉
|SH〉

 (2)

where we have dropped the higher energy excited state |GH〉. The overall coupling term between the hybrid singlet
state |SH〉 and polarized triplets |T±〉 is given by the term

∆(θ) = −
(
δExZ + iδEyZ√

2
cos(θ) + ∆SOC sin(θ)

)
. (3)

This overall coupling is a combination of spin-orbit effects and magnetic field gradients perpendicular to applied field
Bz0 (such as those attributed to the hyperfine field of a nuclear spin bath).

It is clear that when ε → ∞, θ → 0 and the δEZ coupling terms dominate in the (1, 1), while ∆SOC coupling
contributions introduced via (2S, 0) are suppressed. Further, the exchange energy J(ε) = ET0

− ESH
= − 1

2ε +
1
2

√
ε2 + 4t2 → 0 and is dependent upon the hybridized singlet energy ESH

= − 1
2

√
ε2 + 4t2 → ET0

.

Supplementary Note 4: Landau-Zener excitations

A single-passage Landau-Zener10 experiment was used to calibrate the control gate voltage ramping rates against
the excitation probability11,12, using the formula PLZ = exp(−2π∆2/~ν). The ramping rate directly corresponds to
the energy level velocity ν = |d(ESH

− ET−)|/dt � ∆2 using the device lever arms13 and the model for exchange
coupling J(ε). The Hamiltonian for modelling these experiments is truncated to include only the hybridized singlet
state and |T−〉 polarized triplet state, with system described as[

EZ − J(ε) ∆(θ)
∆(θ)∗ 0

] [
|SH〉
|T−〉

]
, (4)

which is a truncated version of Supplementary Eq. with normalization to the triplet energy ET− . The energy
separation |d(ESH

−ET−)| of this two level system is directly probed by Landau-Zener-Stückelberg interferometry10,13

as shown in Fig. 2g, and is used to model exchange for these experimental conditions. This shows an asymptotic
approach to a Zeeman energy of EZ = 4.832 MHz, corresponding to residual magnetic field BzOS = 0.164 mT. We note
that this residual field is of the correct order of magnitude to result from complete nuclear polarization14 but it may
also be due to a residual field from the superconducting solenoid apparatus. For this dataset, |∆(θ)| = 48.98±6.27 kHz
is fit.

Illustrated in Fig. 2e of the main text are additional fits of the single passage Landau-Zener experiment. As stated in
Supplementary Note , this data was collected using the same device on a different experimental set-up. The magnetic
field offset for these datasets was calibrated via a fit to the spin funnel in Fig. 2d, yielding BzOS = −1.04± 0.06± mT.
For this residual field, at the location of the minimum energy gap, |∆(θ)| = 196 ± 6.3 kHz. For increased field
Bz0 = 155 mT, |∆(θ)| = 16.72 ± 1.64 MHz. The field dependence of this value can be deduced from Supplementary
Eq. 3.

Supplementary Note 5: Field dependent data

Spin funnel data used for Hamiltonian parameter fitting is presented in Supplementary Figure 4. All data collated
in Fig. 4 of the main text was taken during the same device cool down, using the same experimental set-up for all
experiments. The device was transported to a different dilution refrigeration unit (which possessed a magnet capable
of reversing polarity), where the full spin funnel data as illustrated in Fig. 2d, and the single passage LZ data from
Fig. 2e for both low and high magnetic fields were collected.
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Supplementary Note 6: Detuning dependence of tunnel coupling

It has been documented in Si/SiGe based double-dots such as those in Refs.15,16 that the tunnel coupling can
be dependent upon detuning, and can be modelled using the Wentzel-Kramers-Brillouin (WKB) approximation15.
While full device simulations were not performed here, we make the assumption that a one-dimensional approximation
holds17. The model used is of a similar form to Ref. [16], giving:

tc(ε) = Λ
(√

exp(2ϕ(ε)) + 1− exp(ϕ(ε))
)

(5)

where ϕ is an integral over electron momentum between classical turning points of the 1D potential φ(ε)17. Following
the findings in Refs. [15, 16], a phenomenological model for the integral φ is simply φ = ε/ζ, with ζ numerically fit to
0.59± 0.02 meV.

This fit also returns Λ = 4.36 ± 0.07 GHz and indicates a tunnel coupling at the anti-crossing of tc(ε = 0) =
1.864± 0.033 GHz. Using Supplementary Eq. , the data in Fig. 4 was fit using the Hamiltonian described in Eq. 1 of
the main text, resulting in fitted value δg = (0.43± 0.02)× 10−3.

Magnetic field offsets in low-field experiments as presented in the main text are incorporated in Fig. 4, and are able
to tie together the spin-funnel and LZS interferometry data. Remaining variables in this dataset are limited to small
shifts in ε for spin-funnel, coherent-exchange and ESR fittings attributed to the separation of preparation point P
and ε = 0 which can vary between device calibrations.

Supplementary Note 7: Analysis of experimental errors for exchange pulses

Using the example of the driven exchange oscillations |↑↓〉 ↔ |↓↑〉 illustrated in Fig. 3c,d&e of the main text, we
discuss the sources of errors and how they might be mitigated. The first source of error ePrep manifests during the
preparation of the |(0, 2)S〉 state, while eMeas refers to the error in conversion from (0, 2)− (1, 2). The combined error
e(0,2)SPAM is directly observed in the histogram of main text Fig. 1g, measured to be 0.8%.

High fidelity operation of this device requires consideration of the voltage ramp rates. In general, a ramp rate νX ,
for any process X, is the derivative of some energy E with respect to time as a particular anticrossing is traversed.
These are then related to an experimentally controlled voltage ramp-rate through the associated function E(V ) given
by the Hamiltonian model Eq. 1 of the main text. The results we have presented all use linear ramps, enabling
simpler analysis of bounds of constant ramp-rates; a future, more sophisticated approach might employ pulse-shaping
to accelerate and decelerate voltage ramps to avoid errors.

The first such ramp-rate we consider is νin, which impacts etransfer, the error of adiabatically transforming |(0, 2)S〉
into |↑↓〉. To avoid mixing with |T−〉, as well as to maintain adiabaticity in the transfer to |SH〉, νin must satisfy
∆2/~ � νin � 4t2c(ε)/~. Further, we require νin � δE2

Z/~ as detuning ε increases so not as to populate a mixture
of |↓↑〉 and |↑↓〉. Failure to maintain these conditions may lead to leakage of the desired |SH〉 or |↑↓〉 states into
undesired states.

Likewise, the error in conversion from the final state back to the |(0, 2)S〉 state is given by eMap. The resulting state
is required to transfer back to the (0, 2) charge state, where it can initially mix again based on νOut � (δEZ)2/~.
The |↓↑〉 state is mapped back to |(0, 2)S〉, where ∆2/~ � νOut � 4t2(ε)/~. For |↑↓〉, the state is blocked by
Pauli-exclusion, and νOut � 2t2(ε)/~ is required near the anti-crossing.

Therefore, constant ramp rates require ∆2/~� νIn/Out � (δEZ)2/~ to be satisfied to maintain low transfer errors
eTransfer and eMap.

The final error mechanism tested is eControl, the error associated with controlling the exchange operation between
the ramp in/out stages. After the (1, 1) state is prepared, this state is pulsed rapidly back to a point of non-zero
exchange coupling at rate νPulse. This rate must abide by νPulse � J2(ε)/~, otherwise a phase error can be introduced
based on the integration of exchange during the non-negligible ramping times. Ramping close to the (1, 1) − (0, 2)
transition can also result in leakage to a (0, 2) charge state. This is achieved via νPulse � t2(ε)/~.

The above is a very strict set of bounds which could be achieved via shaped pulses. Falling short of this, a trade-off
between eTransfer/eMap and eControl can be produced by shallower preparation in the (1, 1).

For the experimental conditions as presented in the main text, the measurement errors discussed above can be
observed in the simulation of state preparation and measurement in Supplementary Figure 5a. Here, the leakage of the
prepared state can be observed as both the population of the |(0, 2)S〉 state in the (1, 1) region, due to passage through
(or in the vicinity of) the (0, 2)−(1, 1) anti-crossing at ε = 0, and as population of the T± triplet states. The populations
illustrated are produced via Monte-Carlo integration over realistic noise parameters for silicon-MOS15,18, for the pulse
sequence shown in Supplementary Figure 5b. Key noise sources include charge noise including gate voltage noise,
and magnetic gradient noise. Each noise spectrum can be given by S(f) = A2fα−1

0 /fα with f0 = 1 Hz15. Magnetic
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gradient noise is constructed from measured parameters in literature15, with Am = 0.2 neV, αm = 1.5. Electric field
noise (from charge and voltage fluctuations) is likewise constructed based on literature18, with Ae = 4.5 µeV, αc = 1,
including Johnson-Nyquist noise attributed to a 100Ω room temperature resistor.

These two noise sources can couple into the experimental system in various ways, and the key mechanisms studied
here are shown in Supplementary Table. 1. Under these noise mechanisms, a simulation which involves a zero-dwell
time exchange pulse towards the anti-crossing is shown in Supplementary Figure 5a, with time precision normalized
to the associated ramping rates νX (as shown by Supplementary Figure 5b). When this preparation, semi-adiabatic
transfer, exchange pulse in/out, semi-adiabatic map and readout mechanism are also combined with a dwell time at
the exchange point ε, the resulting oscillation characteristics can be fit and compared to the experimental data to
Fig. 3e. The resulting visibility VSig, saturation value VSat and oscillation decay times T ρ2 can be extracted by fitting
with the following |(0, 2)S〉 return probability function:

PS(t) =
VSig

2
cos(2πFt+ ϑ) exp

(
− t

T ρ2

)2

+ VSat (6)

where t is the dwell time at the exchange point ε. The oscillation frequency indicated in Supplementary Eq. 6 is given
by the energy separation of the hybridized singlet and the T0 triplet state F =

√
J2 + δE2

Z/h. The variation in this
frequency due to the noise sources within the system is given by σF and relates to the decay time T ρ2 = 1/(πσF ).

The phase term ϑ is close to zero, and is accumulated as an error during state transfer and mapping processes.
The key parameters VSig, VSat and T ρ2 are shown in Supplementary Figure 5c-e for the dominant noise coupling
mechanisms from in Supplementary Table 1. The first key noise coupling mechanism is attributed to electric field
fluctuations which couples directly into the exchange term J via ε. A second term is attributed to the magnetic field
noise gradients which couple directly into δEzZ.

The individual simulations for these two key coupling mechanisms are also presented alongside a simulation showing
the cumulative noise from all of the mechanisms from Supplementary Table 1 acting together. Comparing the
cumulative noise simulation to the individual exchange noise and ẑ magnetic gradients shows that the remaining
coupling mechanisms from Supplementary Table 1 are suppressed due to coupling via weaker physical effects such as
the Stark shift.

These simulated evolutions demonstrate that the two different noise sources have drastically different effects on the
experiment. It is observed that the electric field noise components which couple into the system via the exchange
J(ε), lead to a shortening of decay time T ρ2 as shown for shallow ε in Supplementary Figure 5e, while the transfer and
mapping processes remain largely unaffected. Under high exchange, the visibility of the oscillations is also degraded
due to exponential dependence upon ε.

The other major error source is due to magnetic gradient noise in the ẑ direction. Due to direct modulation of
the δEzZ term, this noise type directly affects the ability to consistently transfer(map) the initial(final) state via the
semi-adiabatic ramp. This is made clear from the lifting of VSat for regions where J(ε) � δEzZ in Supplementary
Figure 5d. Due to the error in preparation of the |↓↑〉 state, the resulting visibility of oscillations also suffers.

When these noise mechanisms are brought together, the overall simulation resembles that of the data collected for
the exchange driven oscillations. The authors note, however, that reasonable trade-off between noise amplitudes Ae
and Am can tweak the overall shape of the visibility curve observed within the cumulative noise simulations. The
final point addressed is a discrepancy between simulation visibility compared to data visibility in Supplementary
Figure 5c. This is due to the time resolution limitations within the experiment preventing an accurate estimate for
the visibility at large exchange. This issue is avoided within the simulations by normalizing the evolution time-step at
detuning point ε by the exchange energy J . This approach maintains adequate sampling of the exchange oscillations,
facilitating a good fits for Supplementary Eq. 6 return probability envelope.
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