Supplementary Figures

Supplementary Figure 1. ¹H NMR spectra of the host-guest complexes between 1_6 and aromatic guest molecules (500 MHz, 298 K, D₂O, $[1]_{total} = 1.0$ mM). (a) 1_6 . (b) toluene₃@ 1_6 . (c) PC@ 1_6 , PC indicates [2.2]paracyclophane. (d) *o*-xylene₂@ 1_6 , a trace amount of *o*-xylene₃@ 1_6 is indicated by violet solid circles. (e) *p*-xylene₂@ 1_6 , a trace amount of *p*-xylene₃@ 1_6 is indicated by violet solid circles. (g) mesitylene₂@ 1_6 . (h) durene₂@ 1_6 . (i) hexamethylbenzene₂@ 1_6 . (j) TBM₂@ 1_6 , TBM indicates 1,3,5-tribromomesitylene. (k) 1,3,5-triiodomesitylene₂@ 1_6 , a trace the methyl signals of the *p*-tolyl methyl groups in 1_6 . Blue and green solid triangles indicate the signals of encapsulated and free guests, respectively. Two signals were observed for liquid free guest, mesitylene and *m*-xylene, that derived from the water-soluble molecules and the undissolved bulky molecules.

indicates paracyclophane. (c) durene₂@BM. (d) Cp*@BM, Cp* indicates decamethylferrocene. (e) perylene₂@BM. (f) PCCP₂@BM, PCCP indicates pentacyanocyclopentandienide. Red and blue solid circles indicate methyl signals of the tolyl groups and encapsulated guest signals, respectively.

Supplementary Figure 2. ¹H NMR spectra of the host-guest complexes between 1_6 and large aromatic molecules (500 MHz, 298 K, D₂O, $[1]_{total} = 1.0$ mM). (a) 1_6 . (b) naphthalene₂@ 1_6 . (c) anthracene₂@ 1_6 . (d) DF@ 1_6 , DF indicates decamethylferrocene. (e) perylene₂@ 1_6 , a trace amount of 1_6 and perylene@ 1_6 are indicated by black and violet solid circles, respectively. Red solid circles indicate the *p*-tolyl methyl groups of 1_6 . Blue solid triangles indicate the signals of encapsulated guests.

2018.09 new

Supplementary Figure 3. ¹H NMR spectra of the host-guest complexes between 1_6 and C1 - C4 hydrocarbons (500 MHz, 298 K, D_2O , $[1]_{total} = 1.0$ mM). (a) 1_6 . (b) 1_6 in the presence of methane. (c) 1_6 in the presence of ethene. (d) *n*-propane₃@ 1_6 . (e) *n*-butane₃@ 1_6 . Red solid circles indicate the *p*-tolyl methyl groups of 1_6 . Blue and green solid triangles indicate the signals of encapsulated and free guests, respectively.

Supplementary Figure 4. ¹H NMR spectra of the host-guest complexes between 1_6 and C5 - C10 alkanes (500 MHz, 298 K, D₂O, $[1]_{total} = 1.0$ mM). (a) 1_6 . (b) *n*-pentane₃@ 1_6 . (c) cyclohexane₃@ 1_6 . (d) *n*-hexane₃@ 1_6 . (e) *n*-heptane₂@ 1_6 . (f) *n*-octane₂@ 1_6 . (g) *n*-decane₂@ 1_6 . Red solid circles indicate the *p*-tolyl methyl groups of 1_6 . Blue and green solid triangles indicate the signals of encapsulated and free guests, respectively.

Supplementary Figure 5. ¹H NMR spectra of the host-guest complexes between 1_6 and C12 - C22 alkanes (500 MHz, 298 K, D_2O , $[1]_{total} = 1.0$ mM). (a) 1_6 . (b) *n*-dodecane@ 1_6 . (c) *n*-tetradecane@ 1_6 . (d) *n*-hexadecane@ 1_6 . (e) *n*-octadecane@ $1_{6(C)}$ f) *n*-eicosane@ 1_6 . (g) *n*-docosane@ 1_6 . Red solid circles indicate the *p*-tolyl methyl groups of 1_6 . Blue and green solid triangles indicate the signals of encapsulated and free guests, respectively.

Supplementary Figure 6. ¹H NMR spectra of the host-guest complexation between $\mathbf{1}_6$ and *n*-tetracosane (500 MHz, 298 K, D₂O, $[\mathbf{1}]_{total} = 1.0$ mM). Red and black solid circles indicate the signals of the *p*-tolyl methyl groups of *n*-tetracosane@ $\mathbf{1}_6$ and $\mathbf{1}_6$, respectively. Blue solid triangles indicate the signals of the encapsulated *n*-tetracosane.

Supplementary Figure 7. ¹H NMR titration experiments of PCCP against $\mathbf{1}_6$ (500 MHz, 298 K, D₂O, $[\mathbf{1}]_{total} = 1.0$ mM, PCCP indicates pentacyanocyclopentadienide). Red and black solid circles indicate the signals of the *p*-tolyl methyl signals of PCCP₂@ $\mathbf{1}_6$ and $\mathbf{1}_6$, respectively.

Supplementary Figure 8. ¹H NMR titration experiments of $CHB_{11}Cl_{11}^{-}$ (CB) against 1₆ (500 MHz, 298 K, D₂O, [1]_{total} = 1.0 mM). Red and black solid circles indicate the *p*-tolyl methyl signals of $CHB_{11}Cl_{11}^{-}@1_6$ and 1₆, respectively.

Supplementary Figure 9. ¹H NMR spectra of the mixture of $\mathbf{1}_6$ and tetra-*n*-butylammonium (TBA) bromide (500 MHz, 298 K, D₂O, $[\mathbf{1}]_{total} = 1.0$ mM). Black and green solid circles indicate the signals of the *p*-tolyl methyl groups of free $\mathbf{1}_6$ and TBA, respectively.

Supplementary Figure 10. ¹H NMR spectra of selected guest molecules (500 MHz, 298 K, CD₃OD).

Supplementary Figure 11. ¹H DOSY spectra of a mixture of the 1_6 and TBM₂@ 1_6 (500 MHz, 298 K, D₂O, [1]_{total} = 1.0 mM). (a) A full spectrum. (b) Aliphatic region from 0 to 3 ppm. TBM indicates 1,3,5-tribromomesitylene. Red and black solid circles indicate the *p*-tolyl methyl signals of TBM₂@ 1_6 and 1_6 , respectively. The diffusion coefficient of TBM₂@ 1_6 and 1_6 was determined by the average *D* value of the three *p*-tolyl methyl groups of TBM₂@ 1_6 and 1_6 , respectively. $r_{\rm H}$ indicates hydrodynamic radius, which was determined by using the Stokes-Einstein equation, $D = kT/6\pi\eta r_{\rm H}$, where *k* is the Boltzmann constant, *T* is the temperature, and η is the viscosity of the solution. (c) The fitting curves of the *p*-tolyl methyl groups of TBM₂@ 1_6 and 1_6 .

Supplementary Figure 12. ¹H DOSY spectra of a mixture of 1_6 and PCCP₂@ 1_6 nanocubes (500 MHz, 298 K, D₂O, $[1]_{total} = 1.0$ mM). (a) A full spectrum. (b) Aliphatic region from -1 to 3 ppm. PCCP indicates pentacyanocyclopentadienide. Red and black solid circles indicate the *p*-tolyl methyl signals of PCCP₂@ 1_6 and 1_6 , respectively. The diffusion coefficient of PCCP₂@ 1_6 and 1_6 was determined by the average *D* value of the two upfield signals of the *p*-tolyl methyl groups of PCCP₂@ 1_6 (1.117 ppm, 0.864 ppm) and 1_6 (1.137 ppm, 0.887 ppm), respectively. The ¹H NMR signal at 1.339 ppm is composed of 65% PCCP₂@ 1_6 and 35% 1_6 based on the integral value the *p*-tolyl methyl groups and its diffusion coefficient is 1.35×10^{-10} m²s⁻¹, which is between the diffusion coefficient of PCCP₂@ 1_6 and 1_6 . *r*_H indicates hydrodynamic radius, which was determined by using the Stokes-Einstein equation. (c) The fitting curves of the *p*-tolyl methyl groups of TBM₂@ 1_6 and 1_6 .

Supplementary Figure 13. ${}^{1}\text{H}-{}^{1}\text{H}$ COSY spectra of $\mathbf{1}_{6}$ nanocube (500 MHz, D₂O, 298 K). Red, blue, and green circles indicate *ortho* coupling between protons, which belong to groups *1*, *2*, and *3*, respectively.

Supplementary Figure 14. 1 H $^{-1}$ H NOESY spectrum of the 1₆ nanocube (500 MHz, D₂O, 298 K, mixing time = 0.5 s). Magenta circles indicate intermolecular NOE. Red, blue, and green circles indicate intramolecular NOEs between protons belonging to groups *1*, *2*, and *3*, respectively.

Supplementary Figure 15. ${}^{1}\text{H}-{}^{1}\text{H}$ NOESY spectrum of the 1₆ nanocube (500 MHz, D₂O, 298 K, mixing time = 0.2 s). Magenta circles indicate intermolecular NOE between i^{2} and i^{3} .

Supplementary Figure 16. The structure of $\mathbf{1}_6$ indicative of the intermolecular proton pairs where NOE cross peaks were observed (See Supplementary Figure 14). White dotted lines denote the pairs of protons (colored in magenta) where intermolecular NOE cross-peaks were observed.

Supplementary Figure 17. Schematic description of the positions of three *p*-tolyl methyl groups, which are shown as space-filling model. Red methyl groups (i^1) are close to each other, while Blue methyl groups (i^2) and green ones (i^3) are close to each other.

Supplementary Figure 18. Variable temperature ¹H NMR spectra of PC@ 1_6 (500 MHz, D₂O, [1]_{total} = 1.0 mM). PC indicates [2.2]paracyclophane.

Supplementary Figure 19. Variable temperature ¹H NMR spectra of $DU_2@1_6$ (500 MHz, D_2O , $[1]_{total} = 1.0$ mM). DU indicates durene.

Supplementary Figure 20. Variable temperature ¹H NMR spectra of DF@ 1_6 (500 MHz, D₂O, [1]_{total} = 1.0 mM). DF indicates decamethylferrocene.

Supplementary Figure 21. Variable temperature ¹H NMR spectra of $PE_2@1_6$ (500 MHz, D_2O , $[1]_{total} = 1.0$ mM). PE indicates perylene.

Supplementary Figure 22. Variable temperature ¹H NMR spectra of $PCCP_2@1_6$ (500 MHz, D_2O , $[1]_{total} = 1.0$ mM). PCCP indicates pentacyanocyclopentadienide

Supplementary Figure 23. ITC titration curves for the encapsulation of anionic guests (PCCP or CB) in the nanocube obtained at 298 K. (a) A titration of PCCP (0.5 mM) to $\mathbf{1}_6$ ([$\mathbf{1}$]_{total} = 0.2 mM). Integrations of the heat released were fitted to a sequential binding model with two binding sites. As a result of fitting analysis, the thermodynamic parameters were determined as follows: $\Delta G_1 = -8.0$ kcal mol⁻¹, $\Delta H_1 = -57.5$ kcal mol⁻¹, $T\Delta S_1 = -49.5$ kcal mol⁻¹, $\Delta G_2 = -9.0$ kcal mol⁻¹, $\Delta H_2 = 2.4$ kcal mol⁻¹, $T\Delta S_2 = 11.4$ kcal mol⁻¹. (b) A titration of CB (0.3 mM) to $\mathbf{1}_6$ ([$\mathbf{1}$]_{total} = 0.2 mM). Integrations of the heat released were fitted to a 1:1 binding model. As a result of fitting analysis, the thermodynamic parameters were determined as follows: $\Delta G = -9.8$ kcal mol⁻¹, $\Delta H = -68.8$ kcal mol⁻¹, $T\Delta S = -59.0$ kcal mol⁻¹.

Supplementary Tables

guest	volume	length of	Number	$\Delta i^{1 a}$	$\Delta i^{2 a}$	$\Delta i^{3 a}$	total	volume
-	(Å ³)	longest	of	(ppm)	(ppm)	(ppm)	Shift $\Delta \delta^b$	×
		distance	guests				(ppm)	encapsula
		(Å)						te number
								$(Å^3)$
toluene	112	8.3	3	0.117	0.079	0.149	0.345	336
<i>o</i> -xylene	134	8.3	2	0.059	0.055	0.085	0.199	268
<i>p</i> -xylene	133	9.3	2	0.074	0.064	0.085	0.223	266
<i>m</i> -xylene	135	8.8	3	0.143	0.079	0.187	0.409	405
naphthalene	139	9.6	2	0.073	0.056	0.070	0.199	278
mesitylene	158	8.8	2	0.081	0.064	0.049	0.194	316
durene (DU)	174	9.3	2	0.102	0.071	0.107	0.280	348
anthracene	187	12.0	2	0.224	0.062	0.165	0.450	374
1,3,5-tribromo	220	9.8	2	0.113	0.081	0.199	0.393	440
mesitylene								
(TBM)								
hexamethyl	216	9.3	2	0.131	0.079	0.182	0.392	432
benzene								
1,3,5-triiodo	246	10.2	2	0.177	0.181	0.224	0.582	492
mesitylene						0.067		. 10
[2.2]paracyclo-	248	9.8	1	0.056	0.049	0.065	0.170	248
phane (PC)								
perylene (PE)	254	12.0	2	0.301	0.129	0.331	0.760	508
decamethyl	407	10.8	1	0.097	0.099	0.129	0.325	407
ferrocene (DF)		6.0						
<i>n</i> -propane	74	6.8	3	0.097	0.069	0.124	0.290	222
<i>n</i> -butane	95	8.0	3	0.090	0.071	0.114	0.275	285
<i>n</i> -pentane	114	8.6	3	0.109	0.069	0.133	0.311	343
<i>n</i> -hexane	137	9.4	3	0.152	0.094	0.180	0.426	411
cyclohexane	122	7.4	3	0.141	0.059	0.177	0.377	367
<i>n</i> -heptane	157	11.1	2	0.084	0.058	0.114	0.256	314
<i>n</i> -octane	179	13.2	2	0.098	0.064	0.129	0.291	358
<i>n</i> -decane	223	15.7	2	0.159	0.092	0.200	0.451	445
<i>n</i> -dodecane	265	18.3	1	0.060	0.045	0.084	0.189	265
<i>n</i> -tetradecane	307	20.8	1	0.087	0.059	0.109	0.255	307
<i>n</i> -hexadecane	351	23.4	1	0.103	0.063	0.129	0.295	351
<i>n</i> -octadecane	394	25.9	1	0.127	0.077	0.161	0.365	394
<i>n</i> -eicosane	438	28.5	1	0.156	0.087	0.205	0.448	438
<i>n</i> -docosane	482	31.1	1	0.193	0.106	0.256	0.555	482
<i>n</i> -tetracosane	535	33.6	1	0.236	0.125	0.300	0.661	232
	193	10.3	2	-0.002	-0.019	-0.023	-0.044	386
СВ	403	9.1	1	-0.038	0.007	0.009	-0.022	403
metnane	30	4.2	0					
ethene	42	5.5	0					
napnthacene	255	14.3	0					
<i>p</i> -al- <i>tert</i> -	287	12.0	U					
Dutyidenzene	225	12.6	0					
fullowor a	525	12.0	0					
totus a h d l	335	10.4	0					
tetra- <i>n</i> -dutyi	440	15.5	U					
ammonium								
bromiae								l

Supplementary Table 1. Encapsulation behavior of **1**₆

^{*a*} $\Delta i^1 = \delta(i^1)$ of $G_n @ \mathbf{1}_6$ (G: guest molecule) $-\delta(i^1)$ of $\mathbf{1}_6$. $\Delta i^2 = \delta(i^2)$ of $G_n @ \mathbf{1}_6$ (G: guest molecule) $-\delta(i^2)$ of $\mathbf{1}_6$. $\Delta i^3 = \delta(i^3)$ of $G_n @ \mathbf{1}_6$ (G: guest molecule) $-\delta(i^3)$ of $\mathbf{1}_6$.

^b Total chemical shift change of the *p*-tolyl methyl signals. $\Delta \delta = \Delta i^1 + \Delta i^2 + \Delta i^3$

Nanocube complexes	GSA / mM	<i>T </i> K	Formation ratio ([monomer] / 6[hexamer])	$K_{a /} \mathrm{M}^{-5}$	$\Delta \boldsymbol{G}_{\mathrm{a}}$ / kJ mol ⁻¹	$-\Delta \boldsymbol{G}$ / kJ mol ⁻¹
PC@1 ₆	1.0	403	1/6	1.7×10^{19}	-148	148
		408	1/5	$2.1 imes 10^{18}$	-143	143
		413	1	5.3×10^{15}	-124	124
		415	1.2	2.9×10^{15}	-123	123
		423	5	8.3×10^{13}	-113	113
	10	403	1/9	$1.5 imes 10^{20}$	-156	156
$DU_2@1_6$		408	1/4	2.1×10^{18}	-143	143
		413	1/2	8.1×10^{16}	-134	134
		418	1	5.3×10^{15}	-126	126
DF@1 ₆	1.0	403	1/16	3.8×10^{21}	-166	166
		408	1/7	3.8×10^{19}	-153	153
		413	1/5	6.5×10^{18}	-149	149
		418	1/3	5.1×10^{17}	-142	142
		423	1/2	8.1×10^{16}	-137	137
PE ₂ @1 ₆	1.0	398	1/12	7.4×10^{20}	-159	159
		403	1/6	$1.7 imes 10^{19}$	-148	148
		408	1/3	5.1×10^{17}	-138	138
		413	1/1.8	5.2×10^{16}	-132	132
		416	1	5.3×10^{15}	-125	125
		418	2	6.3×10^{14}	-118	118
$PCCP_2@1_6$	1.0	403	1/60	8.5×10^{24}	-192	192

Supplementary Table 2. Free energy changes for the formation of host-guest complexes of $\mathbf{1}_{6}$, ΔG_{a} , around $T_{1/2}$ in D_2O .

*The temperature colored in red indicates the $T_{1/2}$ for the nanocube.

 $T_{1/2}$ value of DF@1₆ is higher than 423 K, which is the highest limit of our NMR instrument.

Supplementary Table 3. longitudinal relaxation time (T_1) of the 1 and 1_6 nanocubes

Compounds	T_1^a / s
1^{b}	0.908
1_{6}	2.148
$PCCP_2@1_6$	2.560

^{*a*} T_1 is the average of T_1 values of the *p*-tolyl methyl groups, i^1 , i^2 , and i^3 .

 ${}^{b}T_{1}$ value of the 1 is measured in CD₃OD.