Supplementary Information

Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions

Fuzhan Song,¹⁺ Wei Li,¹⁺ Jiaqi Yang,² Guanqun Han,¹ Peilin Liao,^{2*} Yujie Sun^{1,3*}

¹Department of Chemistry & Biochemistry, Utah State University, Logan, UT 84322, United States

²School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States

³Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States

⁺These authors contributed equally: Fuzhan Song and Wei Li.

Correspondence and requests for materials should be addressed to Yujie Sun (email: yujie.sun@uc.edu) or Peilin Liao (email: lpl@purdue.edu).

Supplementary Fig. 1. XRD patterns of $Ni_3N/Ni/NF$ synthesized at different nitridation temperatures for 6 h.

Supplementary Fig. 3. The weight percent of Ni₃N in Ni₃N/Ni/NF subjected to NH₃ treatment at 300 °C for different times.

Supplementary Fig. 4. SEM characterization of NF and Ni/NF. a-b SEM images of bare NF and **c-d** electrodeposited Ni/NF. Scale bars, 500 µm **a**, **c**; 2 µm **b**, **d**.

Supplementary Fig. 5. TEM and EDX mapping characterization. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and corresponding elemental maps of Ni and N in the Ni₃N/Ni interfacial electrocatalyst. Scale bar, 2.5 nm.

Supplementary Fig. 6. HER performance of Ni₃N/Ni/NF synthesized at different temperatures and times under neutral conditions. Linear sweep voltammetry (LSV) curves of Ni₃N/Ni/NF synthesized a at different nitridation temperature for 6 h and b at 300 °C for different duration. The LSV curves were collected in H₂-saturated 1.0 M potassium phosphate (KPi) buffer at a scan rate of 5 mV s⁻¹.

Supplementary Fig. 7. HER performance of Ni₃N/Ni/NF synthesized at different temperatures and times under alkaline conditions. Linear sweep voltammetry (LSV) curves of Ni₃N/Ni/NF synthesized **a** at different nitridation temperature for 6 h and **b** at 300 °C for different duration. The LSV curves were collected in H₂-saturated 1.0 M KOH at a scan rate of 5 mV s⁻¹.

Supplementary Fig. 8. HER performance of Pt/C loaded on NF under neutral conditions. Linear sweep voltammetry curves of Pt/NF with different mass loadings of Pt/C for HER measured in H₂-saturated 1.0 M KPi.

Supplementary Fig. 9. HER performance of Pt/C loaded on NF under alkaline conditions. Linear sweep voltammetry curves of Pt/NF with different mass loadings of Pt/C for HER in H₂-saturated 1.0 M KOH.

Supplementary Fig. 10. Electrochemical impedance spectroscopy (EIS) measurements under neutral conditions. Nyquist plots of Ni₃N/Ni/NF and Ni/NF measured at -0.066 V vs RHE in 1.0 M KPi buffer.

Z' (ohm) Supplementary Fig. 11. Electrochemical impedance spectroscopy (EIS) measurements under alkaline conditions. Nyquist plots of Ni₃N/Ni/NF and Ni/NF measured at -0.127 V vs RHE in 1.0 M KOH.

Supplementary Fig. 12. Brunauer-Emmett-Teller (BET) surface area measurements. N_2 adsorption-desorption isotherms of $Ni_3N/Ni/NF$, Pt/NF (1.5 mg cm⁻²) and Pt/NF (2.5 mg cm⁻²).

Supplementary Fig. 13. Comparison of intrinsic specific activities for HER under neutral conditions. The Brunauer-Emmett-Teller (BET) surface area-normalized linear sweep voltammetry curves of optimized Pt/NF (2.5 mg cm⁻²) and Ni₃N/Ni/NF for HER in H₂-saturated 1.0 M KPi.

Supplementary Fig. 14. Electrochemically active surface area (ECSA) measurements. CV curves of a Ni₃N/Ni/NF, b Pt/NF (2.5 mg/cm²), and c Pt/NF (1.5 mg/cm²) collected at various scan rates ranging from 4 to 20 mV s⁻¹ in CH₃CN with 0.15 M KPF₆. d The linear fitting of scan rate versus ΔJ (the difference between the anodic and cathodic current densities at open circuit potential).

Supplementary Fig. 15. Comparison of intrinsic specific activities for HER under neutral conditions. The ECSA-normalized linear sweep voltammetry curves of optimized Pt/NF (2.5 mg/cm²) and Ni₃N/Ni/NF for HER in H₂-saturated 1.0 M KPi.

Supplementary Fig. 16. Comparison of intrinsic specific activities for HER under alkaline conditions. The ECSA-normalized linear sweep voltammetry curves of optimized Pt/NF (2.5 mg/cm²) and Ni₃N/Ni/NF for HER in H₂-saturated 1.0 M KOH.

Supplementary Fig. 17. HER kinetics under alkaline conditions. Tafel plots of a Ni₃N/Ni/NF, **b** Pt/NF, and **c** Ni/NF with their linear fittings for HER in 1.0 M KOH.

Supplementary Fig. 18. LSV curves of $Ni_3N/Ni/NF$ before and after 5,000 CV cycles at a scan rate of 100 mV s⁻¹ between 0 to -100 mV vs RHE in 1.0 M KPi buffer.

E (V vs RHE) Supplementary Fig. 19. LSV curves of Ni₃N/Ni/NF before and after 10,000 cycles at a scan rate of 100 mV s⁻¹ between 0 to -100 mV vs RHE in 1.0 M KOH.

Supplementary Fig. 20. Chronopotentiometry curve of Ni₃N/Ni/NF for HER at -100 mA cm⁻² in 1.0 M KOH.

Supplementary Fig. 21. SEM characterization of post-HER Ni₃N/Ni/NF. SEM images of Ni₃N/Ni/NF after HER electrolysis at -10 mA cm^{-2} for 50 h in 1.0 M KOH. Scale bars, 200 μ m a; 4 μ m b.

Supplementary Fig. 22. XRD patterns of post-HER/HOR Ni₃N/Ni/NF.

Supplementary Fig. 23. XPS spectra of a Ni 2p_{3/2} and b N 1s of post-HER/HOR Ni₃N/Ni/NF.

Supplementary Fig. 24. Comparison of measured and theoretically calculated H_2 amounts during the electrolysis in 1.0 M KOH at -200 mA cm⁻².

Supplementary Fig. 26. SEM and EDX mapping characterization of Ni₃N/Ni/CF. SEM images a-c, and elemental maps d of Ni₃N/Ni/CF. Scale bars, 500 μ m a; 10 μ m b; 1 μ m c; 5 μ m d.

Supplementary Fig. 27. Comparison of **a** Ni $2p_{3/2}$ and **b** N 1s XPS spectra of Ni₃N/Ni/NF and Ni₃N/Ni/CF.

Supplementary Fig. 28. Comparison of HER performances of Ni₃N/Ni/NF and Ni₃N/Ni/CF under neutral conditions. Linear sweep voltammetry curves of Ni₃N/Ni/NF and Ni₃N/Ni/CF in 1.0 M KPi. The inset shows their chronopotentiometry curves measured at -10 mA cm⁻².

Supplementary Fig. 29. Comparison of HER performances of Ni₃N/Ni/NF and Ni₃N/Ni/CF under alkaline conditions. Linear sweep voltammetry curves of Ni₃N/Ni/NF and Ni₃N/Ni/CF in 1.0 M KOH. The inset shows their chronopotentiometry curves measured at -10 mA cm⁻².

Supplementary Fig. 30. SEM and EDX mapping characterization of Ni₃N/NF. SEM images **a-c,** and elemental maps **d** of Ni₃N/NF. Scale bars, 500 μm **a**; 50 μm **b**; 20 μm **c**; 5 μm **d**.

Supplementary Fig. 31. Comparison of HER performances of Ni₃N/Ni/NF and Ni₃N/NF under neutral conditions. Linear sweep voltammetry (LSV) curves of Ni₃N/Ni/NF and Ni₃N/NF for HER in H₂-saturated 1.0 M KPi.

Supplementary Fig. 32. Comparison of HER performances of Ni₃N/Ni/NF and Ni₃N/NF under alkaline conditions. Linear sweep voltammetry (LSV) curves of Ni₃N/Ni/NF and Ni₃N/NF for HER in H₂-saturated 1.0 M KOH.

Supplementary Fig. 33. Comparison of overpotential requirement to deliver -10 mA cm^{-2} for HER electrocatalysts in various electrolytes. Data are summarized in **Supplementary Table 3**.

Supplementary Fig. 34. H adsorption structures. a Top view and **b** side view of Ni₃N/Ni_N. Color code: Ni: grey; N: blue; H: white.

Supplementary Fig. 35. H adsorption structures. a Top view and **b** side view of Ni₃N/Ni_hollow. Color code: Ni: grey; N: blue; H: white.

Supplementary Fig. 36. H adsorption structures. a Top view and **b** side view of Ni₃N/Ni_N_2. Color code: Ni: grey; N: blue; H: white.

Supplementary Fig. 37. H adsorption structures. a Top view and **b** side view of Ni. H is on top of three-fold hollow site of Ni. There is a Ni beneath H in the *third* Ni layer. Color code: Ni: grey; H: white.

Supplementary Fig. 38. H adsorption structures. a Top view and **b** side view of Ni_2. H is on top of three-fold hollow site of Ni. There is a Ni beneath H in the *second* Ni layer. Color code: Ni: grey; H: white.

Supplementary Fig. 39. H adsorption structures. a Top view and **b** side view of Ni₃N_N. Color code: Ni: grey; N: blue; H: white.

Supplementary Fig. 40. H adsorption structures. a Top view and **b** side view of Ni₃N_hollow. Color code: Ni: grey; N: blue; H: white.

Supplementary Fig. 41. H₂O adsorption structures. Top view and side view for water adsorption on **a** Ni, **b** Ni₃N, and **c** Ni₃N/Ni interface. Color code: Ni: grey; N: blue; H: white; O: red.

Supplementary Fig. 42. H₂O dissociation pathways. a Energy pathway for water dissociation on Ni(111). b Top view of intermediate structures. Ni (111), barrier = 0.92 eV. Color code: Ni: grey; H: white; O: red.

Supplementary Fig. 43. H₂O dissociation pathways. a Energy pathway for water dissociation on Ni₃N (001). b Top view of intermediate structures. Ni₃N (001), barrier = 0.58 eV. Color code: Ni: grey; N: blue; H: white; O: red.

Supplementary Fig. 44. H₂O dissociation pathways. a Energy pathway for water dissociation on hybrid structure. b Top view of intermediate structures. Hybrid structure, barrier = 0.50 eV. Color code: Ni: grey; N: blue; H: white; O: red.

Supplementary Fig. 45. HOR performance of Pt/C loaded on NF under alkaline conditions. Steady-state polarization curves Pt/NF with different mass loadings of Pt/C for HOR in H₂-saturated 0.1 M KOH.

Supplementary Fig. 46. Steady-state polarization curves of Ni₃N/Ni/NF in Ar and H₂-saturated 0.1 M KOH.

Supplementary Fig. 47. The steady-state polarization curves of Ni₃N/Ni/NF, Pt/NF, and Ni/NF in the micro-polarization region (-20 mV to 20 mV vs. RHE) in H₂-saturated 0.1 M KOH.

Supplementary Fig. 48. The BET surface area-normalized steady-state polarization curves of optimized Pt/NF (1.5 mg cm⁻²) and Ni₃N/Ni/NF for HOR in H₂-saturated 0.1 M KOH.

Supplementary Fig. 49. The ECSA-normalized steady-state polarization curves of optimized Pt/NF (1.5 mg/cm²) and Ni₃N/Ni/NF for HOR in 0.1 M KOH.

Supplementary Fig. 51. Steady-state polarization curves of Ni₃N/Ni/CF in Ar and H₂-saturated 0.1 M KOH.

 Time (h)

 Supplementary Fig. 52. Chronoamperometry curves of Ni₃N/Ni/CF at 0.09 V vs. RHE in Ar and H₂-saturated 0.1 M KOH.

Supplementary Fig. 53. Chronoamperometry curves of Ni₃N/Ni/NF and Ni₃N/NF at 0.09 V vs. RHE in H₂-saturated 0.1 M KOH.

Supplementary Fig. 54. H₂ adsorption structures. **a** Top view and **b** side view of H₂ adsorption on Ni₃N/Ni. Color code: Ni: grey; N: blue; H: white. Adsorption energy for H₂ adsorption: -0.02 eV.

Supplementary Fig. 55. H₂ adsorption structures. **a** Top view and **b** side view of H₂ adsorption on Ni₃N/Ni. Color code: Ni: grey; N: blue; H: white. Adsorption energy for H₂ adsorption: -0.16 eV.

а

Supplementary Fig. 56. H₂ adsorption structures. a Top view and b side view of H₂ adsorption on Ni₃N/Ni. Color code: Ni: grey; N: blue; H: white. Adsorption energy for H₂ adsorption: -0.18 eV.

Supplementary Fig. 57. H₂ adsorption structures. a Top view and b side view of H₂ adsorption on Ni. Color code: Ni: grey; H: white. Adsorption energy for H₂ adsorption: -0.26 eV.

Supplementary Fig. 58. H₂ adsorption structures. a Top view and b side view of H₂ adsorption on Ni. Color code: Ni: grey; H: white. Adsorption energy for H₂ adsorption: 0.004 eV.

Supplementary Fig. 59. H₂ adsorption structures. a Top view and b side view of H₂ adsorption on Ni₃N. Color code: Ni: grey; N: blue; H: white. Adsorption energy for H₂ adsorption: 0.06 eV.

Supplementary Fig. 60. H₂ adsorption structures. a Top view and b side view of H₂ adsorption on Ni₃N. Color code: Ni: grey; N: blue; H: white. Adsorption energy for H₂ adsorption: 0.05 eV.

Supplementary	Table 1.	The specific BET	surface areas	of Ni ₃ N/Ni/NF	and Pt/NF.
---------------	----------	------------------	---------------	----------------------------	------------

Sample	Specific BET surface area of electrode ^a (m ² g ⁻¹)
Ni ₃ N/Ni/NF	1.61
$Pt/NF (1.5 \text{ mg cm}^{-2})$	6.22
Pt/NF (2.5 mg cm ⁻²)	4.47

^aThe specific BET area is calculated on the basis of the total mass of Ni₃N/Ni/NF or Pt/NF.

Supplementary Table 2. The geometric areas and electrochemically active surface areas (ECSAs) of Ni₃N/Ni/NF and Pt/NF.

Sample	Geometric area (cm ²)	$ECSA (cm^2)$
Ni ₃ N/Ni/NF	0.25	247
$Pt/NF (1.5 \text{ mg cm}^{-2})$	0.25	450
Pt/NF (2.5 mg cm ⁻²)	0.25	680

Supplementary Table 3. Comparison of the electrocatalytic performances of $Ni_3N/Ni/NF$ for the HER with those of reported electrocatalysts.

Electrocatalyst	η_{10} (mV) ^a	η_{100} (mV) ^b	Electrolyte	Reference	
Ni ₃ N/Ni/NF	19	126	1.0 M KPi		
Ni ₃ N/Ni/NF	12	64	1.0 M KOH	This work	
$Ru@C_2N$	17	N/A	1.0 M KOH	Nat. Nanotech., 2017, 12,	
Pt/C	20.7	N/A	1.0 M KOH	441	
Ru/C ₃ N ₄ /C	79	N/A	0.1 M KOH	J. Am. Chem. Soc., 2016, 138, 16174	
Ru@N doned carbon	100	N/A	1.0 M PBS	Energy Environ. Sci., 2018,	
Ru@N-doped carbon	32	N/A	1.0 M KOH	11, 800	
PuP. N. P. donad ourbon	57	N/A	1.0 M PBS		
	52	N/A	1.0 M KOH	Angew. Chem. Int. Ed.,	
Dt/C	57	N/A	1.0 M PBS	2017 , 56, 11559	
r <i>u</i> c	50	N/A	1.0 M KOH		
Cobalt-embedded N-rich carbon	540	N/A	0.1 M PBS	Angew. Chem. Int. Ed.,	
nanotubes	370	N/A	1.0 M KOH	2014 , 53, 4372	
MoNi ₄ /MoO ₂ @Ni foam	15	~39	1.0 M KOH	<i>Nat. Commun.</i> , 2017 , 8, 15437	
FeP nanoparticles	102	N/A	1.0 M PBS	ACS Nano, 2014, 8, 11101	
Pt on 2H-WS ₂ nanosheets	50	N/A	1.0 M KOH	<i>Adv. Mater.</i> , 2018 , 30, 1704779	
Ni C /Ni foore	170	N/A	1.0 M KPi	J. Am. Chem. Soc., 2015,	
1N1352/1N1 10a111	223	N/A	1.0 M KOH	137, 14023	
Nig. Mag. interface	284	N/A	0.1 M PBS	ACS Catal 2017 7 6170	
NIS2/MOS2 Interface	204	N/A	1.0 M KOH	ACS Calal., 2017, 7, 6179	
Mn-doped CoP nanosheets Ti	86	250	0.1 M PBS	ACS Catal 2017 7 09	
mesh	76	150	1.0 M KOH	ACS Calal., 2017, 7, 98	
Ni ₂ P embedded in N-doped	185.3	~380	1.0 M PBS	Angew. Chem. Int. Ed.,	
carbon nanofibers	104.2	~200	1.0 M KOH	2018 , 57, 1963	
Ni _{0.89} Co _{0.11} Se ₂ nanosheets on Ni	82	~310	1.0 M PBS	Adv. Mater., 2017, 29,	
foam	85	~160	1.0 M KOH	1606521	
Ni C N nanoshoota	92.1	N/A	1.0 M PBS	J. Am. Chem. Soc., 2016,	
NI-C-IN Hallosheets	30.8	~110	1.0 M KOH	138, 14546	
Co-P film on Cu foil	94	158	1.0 M KOH	<i>Angew. Chem. Int. Ed.</i> , 2015 , 54, 6251	
CoD non outinos on combon cloth	106	~300	1.0 M PBS	J. Am. Chem. Soc., 2014,	
COP nanowires on carbon cloth	209	~520	1.0 M KOH	136, 7587	
MoS _{2+x} on Ni foam	210	335	1.0 M KOH	<i>Angew. Chem. Int. Ed.</i> , 2015 , 54, 664	
Ni ₅ P ₄ nanosheets on Ni foil	150	N/A	1.0 M KOH	Angew. Chem. Int. Ed., 2015 , 54, 12361	
NiSe/Ni foam	96	N/A	1.0 M KOH	Angew. Chem. Int. Ed.,	

				2015 , 54, 9351
Co-Ni-P nanowires on Ni foam	52	137	1.0 M KOH	<i>J. Power Sources</i> , 2016 , 330, 156.
CoP nanowires on Co foam	124	244	1.0 M KOH	Chem. Sci., 2017, 8, 2952
Co ₃ Se ₄ nanowires on Co foam	179	262	1.0 M KOH	<i>Adv. Energy Mater.</i> , 2017 , 7, 1602579
N-modified Ni	64	203	1.0 M KPi	J. Am. Chem. Soc., 2017 , 139, 12283
Ni ₃ N nanosheets/carbon microfibers	115	N/A	1.0 M KOH	J. Mater. Chem. A, 2017 , 5, 9377
Ni ₃ N@Ni-Bi/Ti	265	N/A	0.5 M KBi	J. Mater. Chem. A, 2017, 5, 7806
Ni ₃ N-Ni(OH) ₂ interface on Ti mesh	~60	181	1.0 M KOH	J. Mater. Chem. A, 2018 , 6, 833
Ni-N nanoshoots on ourbon aloth	112	~380	1.0 M PBS	J. Mater. Chem. A, 2016, 4,
	305	~470	1.0 M KOH	17363
TiN@Ni ₃ N	21	N/A	1.0 M KOH	J. Mater. Chem. A, 2016, 4, 5713
Ni ₃ N/Ni(OH) ₂ interface on Ni foam	100	250	1.0 M KOH	J. Mater. Chem. A, 2015, 3, 8171
Ni ₃ N nanosheets on catbon cloth	136	~350	1.0 M KOH	<i>Inorg. Chem. Front.</i> , 2017 , 4, 1120
Ni ₃ N on Ni foam	121	254	1.0 M KOH	<i>Electrochim. Acta</i> , 2016 , 191, 841
Pt-decorated Ni ₃ N nanosheets	50	120	1.0 M KOH	<i>Adv. Energy Mater.</i> , 2017 , 7, 1601390
NiMoN/Ni ₃ N nanosheets on carbon cloth	31	200	1.0 M KOH	Nano Energy, 2018 , 44, 353
Ni ₃ N/Ni foam	~100	150	1.0 M KOH	<i>Adv. Energy Mater.</i> , 2017 , 7, 1601735
Ni ₃ N-Co	194	~290	1.0 M KOH	<i>Adv. Mater.</i> , 2018 , 30, 1705516
Ni ₃ FeN/reduced graphene oxide	94	~210	1.0 M KOH	ACS Nano, 2018, 12, 245
Fe ₂ Ni ₂ N	180	~280	1.0 M KOH	<i>Inorg. Chem. Front.</i> , 2016 , 3, 630
Ni ₃ FeN/carbon cloth	105	~450	1.0 M KOH	<i>ACS Appl. Mater.</i> <i>Interfaces</i> , 2018 , 10, 3699

^a The overpotential required to deliver -10 mA cm⁻². ^b The overpotential required to deliver -100 mA cm⁻². The current density is calculated on the basis of the geometric electrode area.

	frequencies /meV	$\Delta E / eV$	∆G/eV
Ni	138	-0.54	-0.30
	106		
	103		
Ni_2	139	-0.53	-0.29
	105		
	101		
Ni ₃ N_N	408	-0.93	-0.57
	92		
	87		
Ni ₃ N_hollow	130	-0.25	0.01
	128		
	116		
Ni ₃ N/Ni_N	397	-0.36	0.01
	106		
	102		
Ni ₃ N/Ni_hollow	129	-0.29	-0.07
	92		
	79		
Ni ₃ N/Ni_N_2	391	-0.09	0.26
	90		
	78		

Supplementary Table 4. ZPE values, adsorption energies and free energies for H adsorption.

Supplementary Methods

Chemicals

All chemicals were used as received without any further purification. Ammonium chloride (NH₄Cl), nickel chloride (NiCl₂·6H₂O), potassium hydroxide (KOH), potassium phosphate dibasic (K₂HPO₄), potassium phosphate monobasic (KH₂PO₄) and potassium hexafluorophosphate (KPF₆) were purchased from Fisher Chemical. Nickel foam (NF, > 99.99%, 80–110 pores per inch) was purchased from MTI. Sulfuric acid (H₂SO₄), hydrochloric acid (HCl) and anhydrous acetonitrile (CH₃CN) were purchased from Pharmco. Commercial Pt/C (20 wt%) was purchase from Fuel Cell Store. NH₃ gas was obtained from Praxair. Water deionized (18 MΩ·cm) with a Barnstead E-Pure system was used in all experiments.

Characterization

Scanning electron microscopy (SEM) measurement and elemental mapping analysis were conducted on a FEI Quanta 650 FEG microscope equipped with an INCA 350 spectrometer (Oxford Instruments) for energy dispersive X-ray (EDX) spectroscopy. Transmission electron microscopy (TEM) measurement was carried out on a JEM-2800 (JEOL, Japan). X-ray diffraction (XRD) patterns were obtained on a Rigaku MinifexII Desktop X-ray diffractometer. The generated H₂ during electrolysis was detected with a SRI gas chromatograph system 8610C equipped with a HayesSep D packed column, a molecular sieve 13 × packed column, and a thermal conductivity detector. The oven temperature was maintained at 80 °C and argon was used as the carrier gas. The X-ray photoelectron spectroscopy (XPS) analyses were performed using a Kratos Axis Ultra instrument (Chestnut Ridge) at the Surface Analysis Laboratory of Nanofab at the University of Utah. The surface area measurements were performed with N₂ adsorption/desorption isotherms at liquid nitrogen temperature (77 K) using automatted gas sorption analyzer (Quantachrome Instruments) after dehydration under vacuum at 423 K for 12 h

Syntheses of electrocatalysts

Synthesis of Ni/carbon foam (Ni/CF) and Ni₃N/Ni/carbon foam (Ni₃N/Ni/CF): The Ni₃N/Ni/CF electrodes were prepared by cathodic electrodeposition of Ni particles on carbon foams followed by thermal nitridation. The electrodeposition was carried out with a two-electrode configuration in a cell containing 2.0 M NH₄Cl and 0.1 M NiCl₂ at room temperature. A piece of clean carbon foam (0.5 cm \times 0.5 cm) and a carbon rod were used as the working and counter electrodes, respectively. The electrodeposition was performed at a constant current density of -1.0 A cm⁻² for 500 s under N₂ protection without stirring to obtain Ni/CF. Then the resultant Ni/CF was placed in the center of a quartz tube purged with NH₃ flow. It was heated to 300 °C at a ramping rate of 10 °C min⁻¹ and maintained at the same temperature for 6 h. Finally, the furnace was naturally cooled down to room temperature, leading to Ni₃N/Ni/CF. The NH₃ flow was kept throughout the whole process.

Synthesis of Ni₃N/nickel foam (Ni₃N/NF): A piece of clean nickel foam (0.5 cm \times 0.5 cm) was directly placed in the center of a quartz tube purged with NH₃ flow. It was heated to 300 °C at a ramping rate of 10 °C min⁻¹ and maintained at the same temperature for 6 h. Finally, the furnace was naturally cooled down to room temperature, leading to Ni₃N/CF. The NH₃ flow was kept throughout the whole process.

Electrochemically active surface areas measurement

The electrochemically active surface areas (ECSA) of these electrodes were determined according to an established methodology reported in the literature (*J. Am. Chem. Soc.* **2018**, 140, 2397). In order to avoid the ion transfer reactions at the electrode interface, non-aqueous electrochemical double layer capacitance measurements were conducted using a pseudo-reference electrode consisting of Ag/AgCl wire bathed in 0.15 M KPF₆/CH₃CN solution and separated from solution by a Vycor frit. Specifically, cyclic voltammetry curves of the electrodes were collected over a narrow range (±50 mV) centered around the open circuit potential (OCP) in 0.15 M KPF₆ with CH₃CN electrolyte. CV cycling was repeated using a range of scan rates from 4 to 20 mV s⁻¹. The electrochemical double-layer capacitance (C_{dl}) was then estimated by plotting the difference between the anodic and cathodic current densities ($\Delta j = j_a - j_c$) at OCP against the scan rate. The resulting linear slope is twice of the C_{dl}. The ESCA can be calculated according to the following equation: ECSA = C_{dl} /C_s, where C_s is the specific capacitance of a flat smooth surface of the electrode material, which is assumed to be 11 µF cm⁻² according to the literature report (*J. Am. Chem. Soc.* **2018**, 140, 2397)

Free energy calculations

The Gibbs free energies were obtained by including zero-point energy (ZPE) and entropy corrections.

$$\Delta G = \Delta E + (ZPE - T\Delta S) \qquad (1)$$

The ZPE were calculated by summing over vibrational modes from frequency calculations.

$$ZPE = \sum_{i}^{modes} \frac{1}{2}hv_i \qquad (2)$$

TS 298 -0.202 [NIST Chemistry for H_2 gas at Κ is equal to eV. WebBook, https://webbook.nist.gov/cgi/cbook.cgi?ID=C1333740&Mask=1] The TS for adsorbed species is set to zero.