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Supplementary Figures  
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Supplementary Figure 1. Trajectories of cancer cell motions on linear microtracks. Typical 

trajectories/displacement vs. time (corresponding to analysis in Figure 2 and Table 1 in the main 

text) of highly metastatic MDA-MB-231, PC-3M, and B16-F1 cells feature characteristic small 

steps interspersed with unidirectional, long excursions. In contrast, trajectories of non-metastatic 

MCF-7, PC-3, and B16-F0 cells are more random/”jiggly”. Ten representative trajectories per cell 

type are shown. The starting points for trajectories are randomly positioned along the y axis 

(“Position”) for clarity. See also Supplementary Movies 1 – 6. 

Supplementary Figure 2 

 

Supplementary Figure 2. Long-term trajectories of cancer cell motions on linear 

microtracks. Typical trajectories/displacement vs. time (corresponding to analysis in 

Supplementary Figure 5 and Supplementary Table 3) of highly metastatic MDA-MB-231 

observed over 40h time period feature characteristic small steps interspersed with unidirectional, 
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long excursions. Eighteen trajectories randomly chosen from total of 49 cells are shown. See 

Supplementary Movies 13-15. 

 

Supplementary Figure 3 

 

 

 

 

 

Supplementary Figure 3. Cell speed distributions corresponding to trajectories/analyses shown 

in Figures 1 and 2 and Supplementary Figure 1.  
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Supplementary Figure 4 

 

 

Supplementary Figure 4. Single cell motility parameters. We make three further observations 

about metastatic cell motions on single cell level: 1) Visual inspection revealed that even though 

individual trajectories appeared heterogeneous each trajectory featured “clusters of small steps” 

interspersed with long steps characteristic of Lévy walks (see Supplementary Figures 1 and 2 and 

Supplementary Movies 13-15);  2) Single cell mean speeds ranged from ~ 0.25 – 2 m/min and 

0.75 < (see Supplementary Figures 3 and 4) , but clearly-cut subpopulations of cells 

could not be distinguished and majority of single cells moved superdiffusively with 1< < 2,  

and 3) faster cells were not necessarily most superdiffusive.  
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Supplementary Figure 5 
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Supplementary Figure 5. Cumulative frequency distributions (CFDs) of persistence times 

and model fits for metastatic cells.  (a-d) Plots correspond to data/analyses shown in Figure 2, 

Table 1 and Supplementary Figure 1 (on WETS substrates, 3 min time intervals) and MDA-MB-

231 data set corresponds to long-term trajectory data shown in Supplementary Figure 2 and 

Supplementary Table 3 (long/CYTOO substrates, 5 min time intervals). Lower panel shows the 

same MDA-MB-231 data set analyzed without coarse graining of the data (left, 3 min time 

intervals) vs. with coarse-graining (right, 6 min time intervals obtained by discarding every 

second data point). Coarse-graining, in principle, could reduce the noise/tracking errors in 

trajectories arising from tracking the centroids of cells that continuously change their shape. 

While the CFD is shifted right reflecting capturing longer persistence time intervals, the overall 

conclusion – with truncated power law being the best fit – was the same when data was analyzed 

with (right: TP;  =2.23) or without (left: TP; = 2.49) coarse-graining.  
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Supplementary Figure 6 

 

 

 

 

 

 

 

Supplementary Figure 6. Likelihood map of log-normal distribution for MDAMB231-long 

(CYTOO) dataset depending on the parameters  and . Plotted in color is the logarithm of a 

negative log-likelihood, best fit parameters correspond to the minimum of the function. Negative 

log-likelihood decreases monotonically along the valley; the direction of decrease is shown by an 

arrow. Actual minimum lies far in the negative values beyond the scope of the picture. 
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Supplementary Figure 7 
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Supplementary Figure 7. Goodness-of-fit test simulations for metastatic cell data sets. 

Cumulative distribution functions (CDFs) for experimental data (blue circles), one random 

simulated data set example (green crosses) and truncated power law (TP) (black curve) with   (a) 

 = 2.99 for B16F1, (b)  = 2.22 for PC3M, (c)  = 2.49 for MDA-MB-231 and (d)  = 2.8 

corresponding to MDA-MB-231-long term data set. Discrete TP reference distribution (red 

rectangles) was generated by simulating one million data sets with interval between time points 

corresponding to experimental image acquisition frequency (frames per minute, fpm, were 5 min 

for MDA-MB-231-long data set and 3 min for all other data sets). Shaded curves in the 

background show one thousand of these simulated datasets shaded by KS distance away from the 

simulated TP reference (red rectangles) brighter color indicates data set being closer to the 

simulated TP reference distribution (red rectangles). The comparison of experimental data (blue 

dots) with simulated TP reference distribution (red rectangles) provides another way for 

graphically assessing the goodness-of-fit. Experimental data falling in the middle of the collection 

of the simulated data sets (shown in shades of grey) indicates that experimental data reasonably 

fits corresponding truncated power law model.    
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Supplementary Figure 8 
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Supplementary Figure 8.  Superdiffusive migration and Lévy walks of metastatic cancer 

cells within collagen matrices. (a) Collagen migration substrate imaged by confocal reflection 

microscopy, Scale bar = 10 m. (b) Cell movement in collagen gels (here, typical trajectories of 

metastatic MDA-MB-231 breast-cancer cells migrating for 16 hours; scale bar = 100 m). Inset 

shows enlarged trajectory of one cell; scale bar = 30 m. (c) Metastatic MDA-MB-231 and (d) 

non-metastatic MCF-7 trajectories over a 16 hour time period (here, xy slices are shown). (e,f) 

Plots, on a log-log scale, of the mean square displacement of trajectories versus time, 〈  〉    .    

As in the microtrack studies in the main text, the trajectories in the collagen matrix are diffusive 

for MCF-7 cells (exponent  = 0.97), but superdiffusive for MDA-MB-231 cells  (exponent  = 

1.59).  
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Supplementary Figure 9 

 

 

 

Supplementary Figure 9.   Lévy walks of metastatic cells in gel matrices. (a-b) Time-sampled 

distributions of cell positions in collagen matrices. Legend gives the sampling times (longer for 

slower moving, non-metastatic cells). (c-d) When the distributions are appropriately rescaled (as 

described in Supplementary Note 4), all curves collapse onto one. For non-metastatic cells (such 

as MCF-7 shown here), the distribution fits a normal/Gaussian distribution,  ( )  
 

√    
 

 
  

   

and indicates diffusive cell migration; for metastatic cells (here, MDA-MB-231), power-law 

dependence  ( )  (
   

    
) (

 

    
)
  

 is observed indicating Lévy walking.  
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Supplementary Figure 10 
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Supplementary Figure 10.  The effect of depletion of actin regulators with RNA interference 

on cell motions. The depletion of actin regulatory proteins Dia-1 (encoded by DIAPH1 gene), 

Cofilin-1 (CFL1) and Profilin-1 (PFN1) by treatment with various concentrations (0 -70 nM) of 

corresponding siRNAs for 72 hours was validated with Western blotting. (a-c) Representative 

Western blots for cells treated with DIAPH1, CFL1, PFN1 or non-targeting (NT) siRNAs; C = 

untreated control. (d-f) Quantification of protein levels remaining after cell treatments with 

corresponding siRNAs. All targeting siRNAs induced good knockdowns (<25% endogenous 

protein remaining at 30 nM siRNA), while NT siRNA had negligible effect on target protein 

levels.  (g-i)  MDA-MB-231 cells treated with siRNAs were plated onto the linear microtracks 

and imaged for 16 hours at 3 minute intervals to yield  exponents. 
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Supplementary Figure 11 
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Supplementary Figure 11. Representative cell trajectories observed during drug inhibition 

studies. Ten representative trajectories are shown for each treatment group. Number of cells 

tracked were as follows: 69 cells for Control, 35 cells for CK666, 36 cells for NSC + Blebb, 26 

cells for blebbistatin 10M, 17 cells for blebbistatin 50 M, 29 cells for NSC 50 M and 26 cells 

for NSC 100.  Partial inhibition of Myosin II with low concentration (10M) of blebbistatin 

lead to ballistic motion with = 1.83. The treatment of cells with 50 M of blebbistatin, which 

should be enough to completely inhibit Myosin II,  lead to slower motion, with  trajectories still 

appearing ballistic and  = 1.70 . Inhibition of Rac1 with either 50 or 100 M of NSC23755 did 

not revert cellular motions to diffusive. 
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Supplementary Figure 12 

Supplementary Figure 12. Cell speed distributions for MDA-MB-231 cells treated with 

various inhibitors (corresponding to the trajectories and analyses shown in Figure 5 and 

Supplementary Figure 11). 
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Supplementary Figure 13 

 

Supplementary Figure 13. Altering the motility strategy by double inhibition.  Quantification 

of motility characteristics (exponents ,   along with the  95% confidence intervals) for MDA-

MD-231 cells moving on microtracks with simultaneous inhibition of Rac1 and Myosin II. Rac1 

was inhibited by NSC23766 (100 μM) and Myosin II was inhibited by Blebbistatin (10 μM).  (a) 

Ten representative trajectories.  (b) Log-log plots of the cells’ mean square displacement versus 

time, 〈  〉    . (c) The corresponding probability distribution function. 

±±Akaike weights: TP = 0.55; P = 0.44; E  <  ; reflective of 

diffusively moving cells.  
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Supplementary Figure 14
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Supplementary Figure 14. The analysis of front-rear protrusion-retraction synchronization. 

The montage of successive frames (5 min per frame) from the time-lapse movies showing MDA-

MB-231 cells moving along 20 m-wide micropatterned lines. MDA-MB-231/Control cells 

represent Lévy walking cells, while CK666 or NCS+Blebbistatin treatment reverts cellular 

motions to diffusive (corresponding to analyses in Figure 5). Note that unlike in Figure 1, here 

linear micropatterns (CYTOO motility chip, 20 m lines) are invisible. To illustrate the protrusion 

morphology/dynamics, two examples of non-consecutive 250-min intervals for each treatment are 

shown. Cells imaged with differential interference contrast mode (DIC) (see Methods section S2 

in SI) feature easily discernable cell body (high-contrast regions) with less-well resolved (adjacent 

to cell body) thin membranous protrusions, so-called lamellipodia. For clarity, the direction of the 

protrusion extension is indicated on each line by yellow dot (or a dot on each side if cell is bi-

polar) and in insets by yellow lines. Front-rear protrusion-retraction is considered “synchronized” 

when cell’s front moves in concert with the cell’s rear; conversely, “de-synchronization” refers to 

cell’s front not moving in concert with the rear.  

MDA-MB-231/ Control: Untreated MDA-MB-231 cells on linear microtracks displayed 

polarized, elongated mesenchymal morphology with clearly discernable front (front protrusion is 

indicated with yellow line in tear-drop shape shown in the inset) and rear. Both “clusters of short 

steps” (left image) and “long” steps (right image) characteristic of Lévy walks were identifiable. 

During “long” steps synchronized front-rear translocation along the microtracks was observed; 

occasional desynchronization events (visually corresponding to cell elongation signifying  faster 

front protrusion than tail retraction  or cell shortening indicating slower front protrusion than rear 
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retraction) were observed, but these did not always correspond to the change in direction. See 

Supplementary Movie 16.  

MDA-MB-231 + CK666: Cells treated with Arp2/3 inhibitor CK666 displayed more compact cell 

shape featuring short (suggesting defective lamella) but polarized protrusion in most frames and 

lack of elongated “tails”. When translocation of cell body was observed (left image), motions of 

front-rear appeared synchronized, but this “synchronization” did not persist. Protrusions 

frequently switched the direction between successive frames (right image) consistent with 

diffusive motions of these cells.  From time to time, cells depolarized and extended small 

protrusions randomly around the circumference of the cell body (see insets) suggesting 

desynchronized front/back protrusions/retraction at these time-points. See Supplementary Movie 

17. 

MDA-MB-231 + NSC and Blebbistatin: Two types of morphological features were 

predominant—(left image) multiple non-productive stalk-like protrusions and (right image) non-

productive (e.g., not resulting in translocation of cell body) bursts of several – at least two but 

also more – simultaneous lamellipodia protruding in different directions (best appreciated in the 

movie, see Supplementary Movie 18).  Two types of features suggest desynchronization of front-

rear movements – “bipolar” cells that extend lamellipodia in two directions (see inset), and 

instances where dominant lamellipodia (= cell front) moves forward while rear stays stationary, or 

at extreme extends in opposite direction (marked with black lines).  

Scale bar is 100 m. 
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Supplementary Figure 15 
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Supplementary Figure 15. Features of the random process generated by probability      

 (   )   of continuing motion in the same direction after   steps has been made in this 

direction. (a) Power-law behavior of probability distribution of persistence lengths for different 

values of parameter   and fixed          . Also shown is approximately exponential decay 

of persistence lengths for                . (b) Distributions of persistence lengths for 

             . Different values     produce exponential cut-off at persistence lengths 

of order (      ( )). (c) Probability of walking forever in one direction when {   ,     . 

(d) Distributions of persistence lengths when               for those cells that don’t 

happen to walk forever in one direction. Asymptotic power laws are indicated. (e) Best fit of 

discrete model with fixed     (blue curve) and all three parameters optimized (solid green 

curve) to experimental CFD for MDAMB231 long-term dataset. Best fit of Truncated Power Law 

obtained in Supplementary Figure 5 is shown as black curve for comparison. Length of step of the 

discrete model is chosen to be equal to the experimental time bin (5 min). 
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Supplementary Figure 16 
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Supplementary Figure 16. Lévy motion can result from synchronization of front/back 

protrusions/retractions. (a) Illustration of a minimal model in which a motile cell (gray) is 

represented by connected “front” and “back” each having its own protrusion/retraction dynamics. 

Black diamond represents cell’s center of mass. The probabilities of motion for connected front 

and back points for (b) fully synchronized motions, and for (c) motions without front-back 

synchronization. (d) Full front-back synchronization results in a power-law distribution of 

persistence lengths (blue markers) characteristic of Lévy walks. Without synchronization, the 

distribution is Gaussian (red markers) and indicative of diffusive motions.  
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Supplementary Note 1. Supplementary Methods 

Microtrack substrate preparation 

Tracks for cell locomotion were microetched in gold-on-glass substrates using the so-

called Wet Etching 
1-3

 
 
 technique (see Figure 1a in the main text). Briefly, agarose stamps were 

prepared by casting hot, degassed agarose solution (10% w/w) against micropatterned, plasma-

oxidized poly (dimethyl siloxane) (PDMS) masters. After gelation, the stamps were soaked in a 

gold etchant solution (Transene Co. Inc, Danvers, MA; 1:4 dilution in deionized water) for 15 

min, air dried face-up for 1 min, equilibrated face-down on a glass slide for 1 min, and dried 

under a stream of nitrogen for 30 sec. For etching, stamps were placed face-down onto standard 

glass coverslips (thickness #1.5, area 22x22 mm
2
) coated with an e-beam evaporated gold layer 

(30 nm) supported by a titanium adhesion layer (5 nm). Etched substrata were washed with 

ethanol (200 proof), and dried under nitrogen stream. Remaining gold regions were protected 

against cell adhesion by incubation in 5 mM solution of oligo (ethylene glycol)-terminated alkyl 

thiol (HS(CH2)11(OCH2CH2)6OH; EG6 (ProChimia Surfaces, Gdansk, Poland: 

www.prochimia.com) for 12 hrs. Protected substrates were thoroughly rinsed with ethanol, and 

dried under nitrogen stream.  

 

Cell culture for the 1D microtrack studies  

PC-3 (from ATCC, catalog# CRL-1435) and PC3-M (provided by Dr. Jill Pelling; 

Northwestern University, Evanston, IL, USA), MCF-7 and MDA-MB-231 (from ATCC, catalog 

# HTB-22 and  HTB26, respectively), B16-F0 and B16-F1 cells (ATCC, catalog # CRL-6322 and 

CRL-6323, respectively) were cultured according to the American Type Culture Collection 

(ATCC) protocol or as described previously
1-3

. In particular, MDA-MB-231, MCF-7, B16-F1 and 
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B16-F0 were cultured using Dulbecco’s modified Eagle's medium supplemented with 10% fetal 

bovine serum (FBS) at 37
o
C and 10% (for B16 cell lines) or 5% (all other cell lines) CO2. PC-3 

and PC-3M cells were cultured in Roswell Park Memorial Institute (RPMI) medium 

supplemented with 10% FBS at 37
o
C in 5% CO2. Cell lines were not independently authenticated. 

Cell lines were tested for mycoplasma contamination and found to be mycoplasma free.  

Linear tracks were coated with the desired extracellular matrix protein, Laminin (Sigma-

Aldrich cat. # L2020) or Laminin 5 (LN 5; extracted from 804G cells in crude form as previously 

described,
4
  and cells were plated onto them and allowed to spread for at least 2 hrs prior to 

imaging. MDA-MB-231, MCF-7, B16-F1 and B16-F0 cells were plated onto substrates coated 

with Laminin, while PC-3 and PC-3M cells were plated onto Laminin 5. In all experiments, cells 

were plated at a density of 10,000/cm
2
 such that ~ 60% of tracks contained only one cell.  

 

Cell culture in collagen matrices 

Cells were cultured according to protocols detailed in Ref
5,6

. Briefly, cells were detached 

by EDTA (2mM) and incorporated into collagen matrices consisting of native dermal bovine type 

I collagen (Purecol, Nutacon) at 1.7 mg/mL and physiologic pH. Collagen lattices were overlaid 

by medium yielding a 6% final FBS concentration.  

 

Time-lapse microscopy of cell migration 

Cell migration was monitored on inverted microscopes (TMD, Nikon for microtracks and 

Leica, DMIL for collagen studies) equipped with phase-contrast optics (10X, 0.25 NA objectives) 

and CCD cameras (Sensys, Photometrics, Tucson, AZ). Cells in the collagen matrices were also 

monitored by confocal microscopy according to protocols detailed in Ref
5,6

.  Image acquisition 
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was driven by Metamorph software (Universal Imaging Corp., Worchester, PA) for the 

microtracks, or time-controlled 16 channel recorder' Software (SVS-Vistek GmbH), for collagen 

migration. For both types of studies, observation started 1-2 hrs after cell plating or incorporation 

into collagen for all cell types, except for PC3-M and PC-3 cells that were allowed to spread and 

to polarize for 16 hrs before imaging. Briefly, before time-lapse observation of cell motions on 

microtracks, media was exchanged to Leibowitz-15 (L-15) supplemented with FBS – 2% for B16 

cell lines and 10% for all other cell lines. To prevent evaporation and environmental 

contamination, the medium in the dish containing the microtracks was overlaid with mineral oil, 

whereas for collagen experiments, closed chamber systems containing equilibrated conditions 

were used.  Time-lapse videos were collected over 16-20 hrs in 3-4 min intervals (note: time 

intervals of 20 and 10 minutes were also tested but were too long to capture all necessary 

characteristics of cell trajectories such as rapid changes in migration direction; shorter time 

intervals [e.g., 1 min] gave conclusions identical to those obtained at 3-4 min intervals). Cell 

positions were assigned by their center-of-mass coordinates.  

A preliminary series of experiments was performed in which the width of the microtracks, 

w, was varied from 10 m to 50 m. On tracks thinner than ca. 15 m, cells of all types tested 

moved significantly slower than on unconstrained, two-dimensional surfaces; on tracks 25 m or 

wider, the cells moved not only along the track but also transverse to its long axis. Consequently, 

we used 20 m wide tracks on which cell motions were, to a good approximation, one-

dimensional while cell velocities were similar (to within ~5%) to those of the same cells on 

“unconstrained,” two-dimensional substrates. 
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1D experiments were designed with standard experimental procedures for collecting 

single cell motility data in mind, e.g., trajectories from both microtrack and collagen migration 

analyses, in which cells “collided” with one another, were excluded from analysis. The sole 

reason for not including colliding cells was to, in principle, enable collection of data on “long 

excursions” (which could be shortened if cell collisions changed cells’ direction of motion). 

However, our visual observation was that colliding cells still were capable of performing long 

excursions, but trajectories of colliding cells were not analyzed rigorously.   

For long-term experiments, (specifically MDA-MB-231 long-term data set #2 showed in 

Supplementary Movies 13-15 and analyzed Supplementary Figures 2 and 5 and Supplementary 

Table 3), cells were plated and cellular motion recorded on motility chips (CYTOO, Grenoble, 

France) featuring 20-m wide micropatterned linear microtracks coated with Laminin. Cells were 

labeled with Cell Tracker Green CMFDA dye (4 M; ThermoFisher Scientific cat# C7025), cell 

motions were monitored by confocal microscope (Nikon A1R) equipped with 10X objective (10X, 

0.25 NA objective) over 40 hrs in 5 min intervals. Chamlide incubator system (Live Cell 

Instrument, Seoul, South Korea) was used for maintaining environmental conditions during 

observation. Cell motions were tracked based on fluorescence images by using Imaris software 

(Bitplane, Zurich, Switzerland). The cellular motion pattern and statistics were similar to those for 

cells moving on micro-etched gold-on-glass substrates and on CYTOO motility chips. 

 

In vivo observation of cell trajectories 

The movements of non-metastatic B16-F0 and metastatic B16-F10 mouse melanoma cells 

were observed in live tumors established in 8-14 week old male C57Bl/6 J (Charles River) mouse 
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dermis by using the dorsal skin-fold chamber model. B16F10 (ATCC; cat# CRL-6475) and 

B16F0 (ATCC; cat# CRL-6322) were from ATCC and were regularly tested negative for 

mycoplasma. The number of animals was based on the number of individual tumor cells and 

invasion zones which could be analyzed per mouse. Data was acquired from at least 3 

independent experiments. We excluded tumors of all groups from the analysis which were too 

deeply injected into the subcutaneous fat tissue. The particular tissue structures of subcutaneous 

fat tissue changes the invasion pattern of tumor cells and results would not be comparable to the 

tumors growing in the deep dermis. Following the application of the imaging window, we 

excluded mice with inflamed imaging windows and randomly divided the mice into two groups 

(researcher A) receiving either B16F10 or B16F0 tumors (researcher B). The animals were 

housed individually and cages were numbered without identification of groups. Thus, for housing 

the biotechnician or researcher was blinded. During image acquisition and analysis the difference 

between the invasion pattern of B16F10 and B16F0 was quite obvious so that true blinding was 

impossible to achieve. 

 Stable Histone2B-EGF or Histone2B-mCherry expressing B16-F0 and B16-F10 cell lines 

were obtained by lentiviral transduction and blasticidin selection (10 g/mL) and cultured as 

previously described.
7
 
 
Dorsal skin-fold chambers were transplanted on a skin flap of C57/B16 J 

mice (Charles River) and B16-F0 or B16-F10 Histone2B-EGFP/mCherry cells were implanted by 

injection of 5x10
4
-2x10

5
 cells into the dermis adjacent to the deep dermal vascular plexus.  For 

visualization of blood vessels, AlexaFluor750-labeled 70kD dextran was injected intravenously (2 

mg/mouse). Before intravital imaging, mice were anesthetized with isofluorane (1-3% in oxygen) 

and skin-fold chambers were mounted on a temperature-controlled stage (37 
o
C). 
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A customized multiphoton microscope (TriMScope-II, LaVisionBioTec) setup equipped 

with three tunable Ti-Sa lasers and an optical parametric oscillator was used for intravital imaging. 

This multiphoton microscopy system allowed for simultaneous second-harmonic generation 

(SHG) to reconstruct tissue interfaces, and fluorescence imaging to track the movements of B16-

F0 and B16-F10 cells stably expressing Histone2B/EGFP into live-mouse dermis.
7
  Time-lapse 

acquisition was done 3-9 days after tumor cell implantation for 1-3 hrs at 5 min intervals. We 

were able to overcome a number of technical challenges associated with the complexity of both 

the mouse model and multiphoton microscopy to resolve cell positions and motions with a 

remarkable precision of ~ 5 m in the z-direction and into the submicron range for the x-y-

directions (see Supplementary Movies S7 and S8 and, for comparison with imaging performed by 

others, supplemental movies in Refs. 
8-12

 

All animal experiments were approved by the Ethical Committee on Animal Experiments 

and performed in the Central Animal Laboratory of the Radboud University, Nijmegen, in 

accordance with the Dutch Animal Experimentation Act and the European FELASA protocol 

(www.felasa.eu/guidelines.php). 

 

Reagents for the inhibition and knock-down studies 

Drugs. Myosin II inhibitor Blebbistatin was from Sigma-Aldrich (cat# B0560), Rac1 

inhibitor NSC23766 was from Tocris Biosciences (cat# 2161), and Arp2/3 inhibitor CKK666 was 

from Sigma-Aldrich (cat# SML0006). 

siRNA. For depletion of actin interacting proteins, following siGENOME SMARTpool 

siRNAs (Dharmacon) were used: PFN1 SMARTpool siRNAs with target sequences 

GCAUGGAUCUUCGUACCAA, CCAGAAAUGUUUCGGUGAUC, 

http://www.felasa.eu/guidelines.php
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GCAAAGACCGGUCAAGUUU, GUGGUUUGAUCAACAAGAA to deplete human Profilin-1 

(cat# M-012003-01-0005);  CFL1 SMARTpool UGACAGGGAUCAAGCAUGA, 

GCGGUGCUCUUCUGCCUGA, GUCAAGAUGCUGCCAGAUA, 

GCUAUGCCCUCUAUGAUGC  to deplete human Cofilin-1 (cat# M-012707-00-0005); 

DIAPH1 SMARTpool GAAGUGAACUGAUGCGUUU, GAAGAGAGAGCAACUCAUA, 

GGAGAUGGAUGACUUUAAU, GAUAUGAGAGUGCAACUAA   to deplete human Dia1 

(cat# M-010347-02-0005), and siGENOME Non-targeting siRNA #5 (cat# D-001210-05-05) as 

control. Cells were transfected with siRNAs at various concentrations (0-100 nM) by using 

DharmFECT transfection reagent #4 according to the manufacturer’s protocol. The efficiency of 

siRNA transfection was ~96%.  

Antibodies and Western blotting. The following monoclonal primary antibodies raised in 

mouse were used: Cofilin-1 (Santa Cruz, sc-53934), Dia1/DIAPH1 (BD Transduction 

Laboratories, cat#610848), -actin (Santa Cruz, sc-47778). In addition, polyclonal antibody raised 

in goat to Profilin-1 (Santa Cruz, sc-18346) was used. Secondary antibodies were goat anti-mouse 

conjugated to horseradish peroxidase (HRP) (BD Transduction Laboratories, cat#554002) and 

donkey anti-goat HRP (Santa Cruz, sc-2033). For immunoblotting, transfected cells were lysed in 

buffer containing 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100, 1mM EDTA, 10% 

glycerol and protease inhibitors (Sigma). Protein concentration in lysates was determined by 

using bicinchoninic acid (BCA) protein assay kit (Pierce). Proteins were separated by SDS-PAGE 

mini-protean TGX gels (4-15% polyacrylamide) (Bio-Rad), and transferred on PVDF membranes 

(BioRad). -actin was used as loading control. Immunoblots were developed by using ECL 

Western blotting kit (Bio-Rad). Protein depletion was quantified using Image J analysis software.  
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Data analysis  

Heavy-tailed models and fitting procedures. The equations used in the comparisons of the 

heavy-tailed models can be found in Supplementary Table 1. Power law and exponential 

distribution parameters were estimated using analytical expression for maximum likelihood 

estimator, as discussed elsewhere.
13,14

  Parameters for truncated power law, log-normal and 

stretched exponential distributions were found using numerical maximum likelihood estimation 

and verified by visual inspection of likelihood maps. The upper threshold parameter b for the 

truncated power law is chosen to be the maximal point in each dataset. The appearance of largely 

negative values in case of log-normal model is demonstrated in Supplementary Figure 6. 

Effectively, the log-normal curve is being stretched to better fit power-law-like distribution of the 

data, suggesting that log-normal is not the optimal model for the data. When using only positive , 

the resulting log-normal likelihood and, therefore, wAIC are worse. The resulting parameters are 

shown in the Supplementary Table 2.  Parameter a is a lower cutoff parameter, the choice of 

which is described below, and b is an upper cutoff parameter used in truncated power law 

estimation, and corresponds to the maximal point in each dataset. 

Lower cutoff estimation. To estimate the choice of the lower cutoff parameter a we used a 

technique based on reweighted Kolmogorov-Smirnov (rKS) statistic, described in detail in Ref 
13

. 

In brief, the rKS is calculated for all a values taken from the set of unique values of persistence 

times in each dataset. Then, a is chosen where rKS is minimal and the number of remaining 
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datapoints after thresholding by a is not less than 50% of the original dataset. In cases of 

truncated and regular power law, exponent values in Figure 2e (main text) are shown for lower 

cutoffs determined separately using rKS, whereas wAIC for all distributions are calculated using 

cutoff values for the truncated power law. 

Outliers/ Data Exclusion. MDA-MB-231 + NSC data set: One trajectory was excluded 

from the analysis shown in Figure 5 because it visually appeared strikingly different from the rest 

of the cells in this treatment group (n=26 total cell analyzed). Specifically, the excluded cell/ 

trajectory was (i) much shorter (in time) than other trajectories (<500 min), and (ii) the cell was 

moving approximately two times faster than rest of the cells in this group. The exclusion did not 

affect the overall conclusion regarding the motility pattern – motions are superdiffusive and 

persistence time CFDs fit truncated power law with or without exclusion.  

 

Data and Code Availability 

Data and code used to generate results are available from the authors upon request.   
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Supplementary Note 2. Additional considerations on the fitting bi-exponential distributions 

The key difficulty in fitting multi-exponentials is the fact that our data for short/small 

steps is more “binned”, or discretized, than the data described in references
15-17

. The discretization 

of our data is unavoidable because of short, as well as long-time limitations imposed by slow-

moving, rapidly-dividing metastatic cells that also change their shapes as they move. Our data 

was acquired at one frame per 3 minutes or ~ 320 frames per 16-hr movie (or for long-term 

trajectories, one frame per 5 min or ~480 frames in 40 h-movies) due to two main considerations: 

1) because during t < 3-5 min, net translocation of cancer cells is negligible, and 2) to limit photo-

damage imposed on cells by frequent laser/light exposure. Unlike humans, animals and bacteria, 

mammalian cells concurrently with translocation across the substrate continuously change their 

shape by simultaneously extending membrane protrusions at some regions of their perimeter, 

while retracting other regions, making the precise detection of cell’s position challenging. In order 

to exclude membrane fluctuations that are not relevant to cell translocation, we have chosen xmin ~ 

3-5 min, and – instead of analyzing persistence lengths (as has been done in references
15-17 

) – 

have analyzed persistence times. Persistence time is also a parameter that is classically analyzed 

by researchers in cell motility field as explained in the Introduction section in the main text.  

In contrast, works in references
15-17

 analyzed trajectories consisting of large number of 

data points and yielding less discretized cumulative frequency distributions (CFDs) of persistence 

lengths.  Specifically, Raichlen et al. 
16

 and others who analyzed 2D trajectories of human 

movements analyzed GPS tracking data which is very detailed, providing precise position 

information over entire movement paths (for example, Reynolds et al.
18

 recorded 950 positions 

per trajectory). In similar vein, snail movements analyzed by Reynolds et al. 
15

 were recorded by a 
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method that visualizes entire movement path. Swarming bacteria (studied by Ariel et al. 
17,19

), on 

the other hand, move much faster than cancer cells –movements were tracked at 100 fps or 6000 

frames in 2 min per trajectory – yielding detailed movement trajectories akin those recorded by 

GPS.  Also, the changes of walker’s shape are negligible in comparison to most travel distances, 

hence relative uncertainty of determining the walker’s position is much lower than in our 

experiments with “shape-changing” cells. As a result of the spatial precision, high quality 

cumulative frequency distributions (CFDs) of persistence lengths could be constructed and 

analyzed.   

Due to the considerations laid out above, admittedly, our datasets have smaller number of 

datapoints (than those described in 
15-17

) and the analysis of persistence times leads to  discretized  

CFDs such that large fraction of data points correspond to xmin.. While fitting other laws to our 

data could be performed with reasonable confidence, double-exponential fitting is – infamously – 

much less stable with respect to noise than single-exponential or power law fits.   This, in turn, 

presents irresolvable difficulties when fitting to the hyperexponential distribution models, as can 

be illustrated in more detail with the mixture of two exponentials: 

 ( )      
   (   )  (   )   

   (   ) 

The only meaningful way to choose the lower cutoff parameter   is to choose it among the data 

point values, in particular because a must be the same for all the models compared, and the power 

law exponent value depends on it strongly. Since, as narrated above,  (1) the only feasible way to 

do long-term cell fluorescent imaging is  to take images in time intervals on the order of minutes 

to avoid the cell damage from light (3 and 5 minutes, in our case), and (2) net translocation of 

cancer cells over shorter time intervals is negligible, our data is not continuous in time. Data 
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points for the shortest persistence time interval     are much more numerous than for longer 

intervals. The choice of   dictates that       , which makes exponent terms    (    )  

     for this interval. Therefore, the problem of likelihood maximization for      transforms 

into the maximization of     (   )  . It is easy to see that this function grows with either of 

the exponent parameters    , which in practice leads to elimination of one of the exponential 

terms in the mixture. Indeed, all of the numerical methods that we have tried – including 

Expectation Maximization, known to be particularly suitable for the likelihood maximization of 

mixtures – lead to an unlimited growth of one of the exponent parameters  , meaning that 

hyperexponential functions family are not a suitable modes to fit to our data. 

For the reasons narrated above, the fitting of mixtures of exponentials to our data was not 

possible.  

On the other hand, discrete distributions mentioned, for instance, in Ref 
13

 are developed 

for working with dimensionless quantities, namely counts. When trying to fit Yule-Simon or 

Poisson distributions to experimental probability distributions with dimensional units such as 

minutes in our case, physical interpretation of such models becomes problematic as t here is no 

clear transformation of these models with scaling of units. Thus, we decided not to consider these 

models. 
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Supplementary Note 3. Goodness-of-fit tests 

We performed goodness-of-fit tests (see selected example plots below) as described in 

reference 
13

. Briefly, experimental (blue circles in Supplementary Figure 7) and simulated (green 

crosses) distributions of the same sample size were compared to the original best-fit truncated 

power law distribution (black curve) from which the data is sampled during simulation. This 

method entails determining KS statistic for each comparison and computing corresponding p-

value
13

; the latter serves as goodness-of-fit measure of how well the data fits particular model 

with p > 0.1 indicating strong support for the model tested. When goodness-of-fit test is 

performed according to this method, our experimental data has better KS statistic than simulated 

data for all data sets (corresponding to Figure 2 of the main text and Supplementary Figure 5) 

leading to p = 1 for PC-3M, B16-F1, MDA-MB-231, MDA-MB-231-long-term data sets (see 

graphical illustration of goodness-of-fit in Supplementary Figure 7 below).  

One caveat of performing goodness-of-fit tests by using the above method is that points 

for very small persistence times values in simulated  CDFs display deviation from the original 

distribution from which persistence times were drawn (note initial points of curve with green 

crosses deviating from the black curve in Supplementary Figure 7). This deviation is caused by 

binning of continuous distribution of persistence time values by the frame rate, and is also 

observed for experimental data.   

In order to account for these deviations, we used a complementary approach in which we 

generated reference truncated power law distribution (red rectangles) by generating one million 

simulated data sets with interval between time points corresponding to experimental image 
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acquisition frequency (frames per minute, fpm). Using very large sample size effectively reduces 

the noise to negligible levels. To illustrate the variance of individual simulated data sets, one 

thousand example data sets (from one million) are shown in shades of grey in Supplementary 

Figure 7.  The comparison of experimental data (blue circles) with simulated TP reference 

distribution (red rectangles) provides another way for graphically assessing the goodness-of-fit. 

Experimental data falling in the middle of the collection of simulated data sets (shown in shades 

of grey) indicates that experimental data reasonably fits corresponding truncated power law model.    
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Supplementary Note 4. Analysis of cell trajectories in 3D collagen matrices.    

Summary. To address the possibility that Lévy walks derive from the linearity of 

microfabricated tracks or biological structures (e.g., striated muscles, blood vessels, bundled 

collagen fibers) in tissues we also analyzed cell motions in a 3D porous lattice model comprising 

isotropically arranged collagen type I fibrils with cell-permissive gap sizes. This model 
5,6

 reflects 

a number of in vivo connective tissue-like characteristics (dimensionality, substrate ligands, 

density, stiffness) but is free of additional extracellular complexity, such as ligand density 

variation, chemokine deposits and/or cell structures. Experiments and analyses described in 

Supplementary Figures 8 and 9 confirm that also in this isotropic ECM-based system, non-

metastatic cells (here, MCF-7), move diffusively while metastatic ones (here, MDA-MB-231), 

perform Lévy walks. 

Details of mathematical analysis. Since cells trajectories in gels are curvilinear and 

distinct cell “steps” cannot be as easily defined as in the case of cells on microtracks, we used 

analysis adapted from the work of Harris et al. 
20

 whereby the probability distribution function, 

P(r,t), was constructed by sampling cell trajectories, r(t), at different time intervals. In doing so, 

all data was binned such that a constant number of data points were placed in each bin to avoid 

biasing and to maintain equal statistical error in each bin. The dependencies for each timing 

interval were then rescaled. A probability distribution function which evolves in time, P(r,t), is 

said to have scaling symmetry if it can be expressed as  (   )   (    ), where f is a certain 

function and  is a certain number; the probability distributions characterizing both diffusive and 

Lévy motions have this property. This mathematical characteristic implies that the probability 

distribution measured at different time intervals should exhibit data collapse  that is, the graphs 
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of these probability distributions should be transformed onto a single curve upon transformation 

        . This is, in fact, what we observe for our data shown in Supplementary Figure 9. 

Our analysis reveals that for non-metastatic cells the “collapsed” PDF fits the normal distribution 

of the form  ( )  
 

√    
 

 
  

   with Akaike weight ~1. In sharp contrast, the metastatic cells have 

PDFs that fit power law dependence  ( )  (
   

    
) (

 

    
)
  

 with Akaike weights also close to 1. 

In this case, the power-law exponent, µ ~ 2.3, indicates Lévy walking. 

Note: While the overall predictions of the microtrack and the collagen studies are 

congruent, we note that the analysis of the trajectories in the gel is not as information rich. 

Specifically, the power law  (   ) derived as above does not necessarily guarantee the power law 

in the probability distributions of persistence times (here, to avoid confusion, denoted, (t)) or 

of the persistence length, (r). The probability distribution  (   ) is related to (t)) and (r) 

through the master equation based on the continuous time random walk model
S2

:  (   )  

 ( )   ∫  (    )      
 

 
∫    ∫     (  ) (  ) (         )

 

 

 

  
. Note that it is 

impossible to uniquely determine (t) and (r) for a given P(r,t) because many different cell 

trajectories, each with its unique (t) and (r), can give rise to the same  (   ). For example, 

a cell walking from r to r’ at a constant velocity v would have the same  (   ) as a cell jumping 

over this distance instantaneously and then “resting” at the final location for a time (r’-r)/v. 

Although the former case is natural and one may consider the latter a special case, what should be 

emphasized here is that ambiguity is inevitable in the determination of (t) and (r) from 

 (   ). We note this ambiguity is absent in the microtrack assays in which the one-dimensional 

motions of the cell naturally produce (t) and (r) distributions. Therefore, as mentioned in 
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above text, the two modes of analysis we used are complementary to one another and also to the 

in vivo studies.  

Supplementary Note 5.  A simple model of Lévy motion resulting from the synchronization 

of front/back protrusions/retractions. 

Model summary. Our previous experiments and computer simulations hinted at a 

potential relationship between Lévy walks and the synchronization between protrusion/retraction 

dynamics at the cell-front
21 

and at the cell rear
22,23

. Specifically, in reference
24

, we studied the 

protrusion-retraction dynamics in motile metastatic vs. non-metastatic breast cancer cells. Based 

on the combination of cross-correlation, Granger causality, and morphodynamic profiling 

analyses we showed
19

 that in metastatic cells, the protrusions and retractions are highly 

“synchronized” both in space and in time; in contrast, protrusions and retractions formed by non-

metastatic cells are not “synchronized”. In the context of our current work, the relevant question 

is whether such protrusion-retraction synchronization can give rise to Lévy walking? 

To begin with, we considered a stochastic, one-dimensional process in which a material 

point takes discrete, infinitesimally small steps with some probability “to the right” or “to the left”. 

Based on arguments detailed Section S5.2 below we showed that if the steps are independent of 

one another (i.e., there is no history and the process is Markovian), the distribution of persistence 

times always corresponds to a diffusive motion, irrespective of the probabilities of individual 

steps. We then considered a scenario in which the probabilities of taking left-right steps depend 

on prior history (non-Markovian process). We showed (see details in Section S5.3 ) that if 

consecutive steps slightly favor moves in the “same” direction – e.g., as observed in the 

microscale dynamics of cell membrane where persistence of membrane protrusion typically 
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depends on levels of actin regulators, such as Rac1 and Arp2/3, activation of positive feedback 

loops, precise spatiotemporal regulation of Rho family GTPases and coupling of protrusion to 

adhesion
20-23

– then the overall distribution  ( ) of persistence length   can be a power-law. In 

particular, if the probability of taking a step in a given direction increases with the number of 

steps,    , already taken in the same direction as 

      (   )  , (5.1.1) 

where       are fixed parameters of the model (                 ) then for 

        the distribution  ( ) at large   is well approximated by a power-law          

(see Supplementary Figure 15a). Choosing         introduces an exponential cut-off factor 

   in the distribution  ( )  of persistence lengths  . This factor becomes significant for   

     ( ) (Supplementary Figure 15b) and it makes the motion pattern resemble random walk. 

Exponential-like decay of  ( ) with   can also be induced by choosing     (Supplementary 

Figure 15b, grey curve). A detailed analysis of mathematical properties of random process 

generated by (5.1.1) can be found in subsequent sections. 

Naturally, a cell is not a material point and its net motions are determined by the stochastic 

– and possibly interrelated – displacements of the cell front and cell rear.  Accordingly, we 

considered a model in which a cell was represented by two connected points we call F for front 

and B for back (Supplementary Figure 16a). The cell’s initial length is denoted L0 and its center of 

mass is half-way between F and B points. At each discrete step, both the front and the back are 

allowed to make a step of a certain size (typically, 1/20 of L0) either “forward” (say, in the +x 

direction) with probability  (cf. above) or “backward” (-x direction) with 

probability 1-qk, where k is the number of steps performed in the same direction. After the front 

1 (1 )kq k   
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and the back are each allowed to make their individual moves, the position of the cell’s center of 

mass is calculated. Since the cell length can change from step to step and can potentially become 

unrealistically high, we reject steps in which the cell stretches to more than 3.5-10 times its initial 

cell lengths (i.e., Lmax = 3.5-10 L0) or contracts more than twice (i.e., Lmin = 0.5 L0; note: specific 

values of Lmax and  Lmin do not alter the general conclusions). The steps are repeated until the 

cell’s center of mass reverses the direction of motion, at which time the step index k is reset to 

zero. The statistics of such unidirectional excursions are then collected to give rise to probability 

distributions characterizing the type of motion. We then consider two scenarios: 

 (1) Full front-back synchronization (Supplementary Figure 16b,d). At a given step, the 

front and the back are moving forward (+x) or backward (-x) with the same probability (i.e., 

     (   )   for forward and      for backward). This translates into the front/back 

moves being fully synchronized in the sense that the front and the back perform the same moves 

at each time interval – for example, when the tail contracts, the cell’s front moves forward.  Under 

these conditions, the cell’s center of mass executes a Lévy walk characterized by a power law 

corresponding to blue markers in Supplementary Figure 16d (slope ~ -2; Akaike weight for the 

power-law fit > 0.99).  

(2) No front-back synchronization (Supplementary Figure 16c,d). The front and back 

perform independent moves but each with probabilities sampled from the same probability 

distribution. At each cell step: (i) The front is allowed to move in the +x direction with probability 

     (   )  or in the –x direction with probability      
 (see Supplementary Figure 

16c); (ii) The back of the cell is allowed to move in the +x  direction with probability      

(   )  or  in the –x direction with probability      
 (see Supplementary Figure 16c);  (iii) If 
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either the front or the back reverse their direction of motion, their step indices (   and   , 

respectively) are reset to one; (iv) The process is repeated until the center of mass reverses 

direction of motion.  As evidenced by the probability distribution in Supplementary Figure 16d 

(red markers), the case of no front-back synchronization gives rise to a distribution that fits an 

exponential function,  ( )      (   )  with           and a ~ 11. In this case, the Akaike 

weight for the exponential vs. power-law fit is ~ 0.75 in favor of the former. It’s easy to see that 

values of parameter     in  (5.1.1) resulting in truncation in the Lévy walk described in Section 

5.3, have the same effect on fully synchronized Lévy walk. 

The general conclusion of the model is therefore that synchronized (or de-synchronized) 

front-back protrusions/retractions determine the overall motility pattern. The model predicts that 

cells in which front and back dynamics are synchronized are expected to perform Lévy walks or 

truncated Lévy walks (as in our experiments with metastatic cells) whereas lack of 

synchronization should translate into diffusive motion (as in non-metastatic cells). As narrated at 

the beginning of this Section, these theoretical predictions are in line with our recent work
24

 

where morphometric analyses of moving metastatic MDA-MB-231 cells evidenced 

synchronization of the cell-front and cell-back dynamics (with tail retractions directly preceding 

protrusions of the cell front). Same analyses of motile non-metastatic MCF-7 cells showed that 

such correlations/synchronization were absent. An open question for future work is what 

phenomena at the (macro) molecular or cytoskeletal levels are responsible for the synchronization 

in Lévy walking cells. 
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Model’s mathematical details: A simple Markovian walking with no history.  

Consider a stochastic process of one-dimensional migration in which the object’s trajectory is 

composed of discrete, infinitesimally small and statistically independent time steps. This is a 

scenario of a conventional discrete-time random walk and is a Markovian process (see below). 

We assume that (i) the object continues moving in the same direction if parameter   is greater 

than some threshold value c, and (ii) reverses the direction of motion if   is less than c. Let us 

estimate the probability distribution of the total time interval during which the object migrates in 

the same direction  that is, the distribution of persistence times. Let  ( ) denote the probability 

that at some time the object is characterized by parameter value   (as defined above). Then, at 

each discrete time step, the probability, q, that the object will maintain its direction of motion is 

given by  ∫  ( )    
 

 
 and the probability that it will switch direction of its motion is 

∫  ( )      
 

 
. Using these quantities, we can calculate the probability, ( )P n , that the 

moving object persists in one direction but stops at the n-th step (where it reverses its direction of 

motion).  Since the steps are assumed to be independent (Markovian process with no history), 

( )P n  is simply given by   ( )      (   )  
   

 
  . Because 

 

   

 
             ( )  , 

we can immediately see that this probability distribution can be approximated as exponential. 

Note that this exponential behavior does not depend on the functional form of   ( ) or the value 

of c. As long as the function   ( ) in a Markovian process is fixed, the probability distribution for 

persistence times is always an exponential distribution (i.e., the object moves diffusively).  
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Model’s mathematical details: Non-Markoviam walking with history. Next, we 

consider non-Markovian processes in which the probability of switching the direction of 

migration decreases as long as unidirectional motion continues. In other words, the longer an 

object moves in one direction, the (slightly) more likely that it will continue moving in the same 

direction. Let  (   ) denote the probability distribution of   at the k-th step before switching the 

direction of migration. Then, the probability that a unidirectional migration stops at the n-th step, 

 ( ), is given by 

 

 ( )  (∏∫  (   )  

 

 

   

   

)(∫ (   )  

 

 

)  (∏  

   

   

) (    ) 
(5.3.1) 

where    ∫  (   )  
 

 
 is the probability of continuing movement in the same direction after   

steps has been made in this direction. In order for the object to be more likely to move in the same 

direction as it is already moving,    has to be a monotonically increasing function with respect to 

k. Let us calculate the functional forms of ( )P n  by assuming some specific functions for  . For   

example, when we set           (     ) which is independent of  , the probability 

distribution   ( )  becomes exponential,  ( )    ( 
 

  
) characterizing a diffusive motion. In 

the model
24

 developed for endosomal transport, approximately exponential saturation of average 

   to a limit of         is the consequence of the underlying equations of the model, although 

it is unclear whether postulating certain function    is equivalent to the full model of [24]. 
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Instead of exponentially saturating   , let us consider       (   )  , where       are 

fixed parameters of the model. The probability to move forward at the step   after       steps 

forward has already been made is 

   {
     

          
 

(5.3.2) 

The convention      reflects that one step in current direction has been made automatically 

after the preceding turn. This convention simplifies expressions we derive below. We will only 

consider cases when    , so that    grows monotonously with  . Since    are probabilities, to 

satisfy the condition           it is necessary that     and       .  

The probability to move forward   steps and then switch direction is 

 (   )  (      )∏  

 

   

 
(5.3.3) 

We will call (      ) the “turning probability” factor.  

For the case    , the asymptotic behavior of  (   ) for     can be evaluated as 
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For    ,           and (   )   , so, finally, 

    (   )       
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) 

(5.3.4) 

First factor in (5.3.4) creates exponential decay        (     ( )), which is approximately 

    (   (   )) if   is close to  . This factor becomes significant for     (   ). Influence 

of this factor on     (   ) for various   is illustrated in Supplementary Figure 15b, where 

dashed lines show asymptotic formula (5.3.4), while solid lines are calculated by directly 

evaluating the product (5.3.3). This exponential cut-off in  (   ) should be present for other 

saturating functions    provided they saturate at some value less than unity. For example, in a 
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study of endosomal active transport
29

, the probability of continuing in current direction saturates 

at approximately 0.91 (see Fig. 3b in 
29

), so one might expect a cutoff in the persistence lengths 

distribution for persistence lengths larger than about      (    )     steps. However, no such 

cutoff is visible on simulated distribution shown on Fig. 3c in  
29

. This discrepancy is most likely 

due to the fact that in reference 
29

 the probability    is not postulated, but emerges as a 

consequence of intrinsic model equations: model in 
29

 is a complex random process tracking such 

internal variables as number of motors attached to the cargo at a given time, and is not equivalent 

to a random process that decides the direction of next step based solely on the number of steps 

made in the current direction. 

Second factor in (5.3.4) is the power law      . But for     (   ) the term (    
 

 
) is 

dominated by    , which adds (  ) to the overall exponent and expression (5.3.4) scales as 

        rather than      . For example, for              ,     (   )
   
→       

(dark blue line in Supplementary Figure 15a and bright yellow line in Supplementary Figure 15b). 

For           and                    the exact product (5.3.3) is shown in 

Supplementary Figure 15a – for large   it reaches asymptotic power laws         as indicated on 

the graph. 

Setting     results in decay of  ( ) (Supplementary Figure 15a, grey solid line) that can be 

approximated as exponential (Supplementary Figure 15a, grey dashed line). In other words, to 

drive this model closer to random walk behavior, using the values           is an 

alternative to using the values     ,      discussed above.  
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Since this is a discrete model, fitting it to experimental data faces the difficulty of determining the 

length of the step in the units of time, as discussed in Supplementary Note 2. As can be seen by, 

e.g. trying to rescale   in asymptotic formula (5.3.4), there is no clear way to rescale parameters 

      when the time scale is changed, thus the length of the step should be viewed as an 

additional unknown parameter. Due to this ambiguity of the step length, we do not include this 

model in the goodness-of-fit tests performed above. Here, we show fitting of this model to CFDs 

for MDAMB231 long-term dataset to illustrate how the model’s exponential cut-off of a Lévy 

walk compares to truncated Lévy walk model used in Supplementary Figure 5. For this purpose, 

we somewhat arbitrarily chose step length equal to the experimental time bin (5 min) and 

assumed that the first experimental point (        ) corresponds to     of the discrete 

model. The best fit of the model with fixed     (Supplementary Figure 15e, blue curve) was 

somewhat inferior to the best fit when all three model parameters were varied (Supplementary 

Figure 15e , green solid curve). The best fit of Truncated Lévy Walk obtained in Supplementary 

Figure 5 and Supplementary Tables 2 and 3 for this dataset is shown by the black curve on 

Supplementary Figure 15e for comparison. 

Now we will briefly discuss the model’s behavior for    . If     and    , there is a finite 

probability that cell will never turn and instead continue walking in one direction forever (this is 

proved as a theorem below). Probability of such infinite walk is plotted on Supplementary Figure 

15c. For example, for              , about half of the cells will never change their 

direction of travel. But those cells that happen to not walk forever in one direction have a 

distribution of persistence lengths that behaves as a power law. The exponent of this power law 

has a non-monotonous dependence on  . For      as discussed above, the “turning probability” 
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in (5.3.3) is      which adds to the in the ∏   
 
        and results in overall power law       

For    , factor ∏   
 
    converges to some slowly decaying asymptote (we don’t provide a 

rigorous proof of this statement) and the decay of  ( )  mostly comes from the “turning 

probability” factor     . For this reason,  ( )      both for     and     (Supplementary 

Figure 15d). 

Theorem 5.3.1: Probability of walking in the same direction forever during a walk generated by 

(5.3.2) is non-zero for         and zero otherwise. 

Proof. Cumulative probability to walk forward   steps or less is 
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For evaluating cumulative probability  (   ) we can use limit comparison test: if   

   
→    , 

then from well-known limit 
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   (5.3.6) 

and the limit comparison test it follows that infinite product ∏ (    ) 
    converges if and only 

if the sum ∑   
 
    converges. Now we can evaluate  
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If the sum 

∑((   )  
 

  
)

 

   

 (5.3.7) 

converges to a finite positive value, then    (   )   , which means that there is a finite 

probability of infinite walk in one direction. But if this sum diverges, then  



55 

 

∏ (  ((    )  
 

  
))

   

   

   
→     (5.3.8) 

and therefore  (   )   , which means that infinitely long walks are impossible. It’s easy to 

see that  

∑((   )  
 

  
)  

 

   

  ( )  ∑(   )

 

   

 (5.3.9) 

where  ( ) is the Riemann zeta function 

 ( )  ∑
 

  

 

   

 

which converges for     and diverges for    . Obviously, the sum ∑ (   ) 
    converges only 

if      Therefore, infinite walks in one direction are possible if         and are impossible 

for all other values of   and  . 
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Supplementary Tables 

 

Distribution Probability density function  P(t) 

Power law 
   

   

    
 

Truncated power law 
   

   

         
 

Log-normal  
 

 
   [

 (     ) 

   
]√

 

   
[    (

   

√  
)]

  

 

Stretched exponential       (     )   

 

Supplementary Table 1. Distributions used for comparing heavy-tailed models. Parameters a 

and b are lower and upper cut-offs, respectively. 
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Cell type a, 

min  

Truncated 

power law  

Power 

law  

Log-

normal 

Stretched 

exponential 

MDAMB231  

#1(WETS) 

6  = 2.49  = 2.55  = -19.78,

 = 3.8329  

 = 20.95, 

 = 0.0636 

MDAMB231 

#2 /Long (CYTOO) 

10  = 2.82  = 2.84  = -797.73,  

= 20.8856 

 = 240.7511, 

 = 0.0075 

PC-3M 9  = 2.22  = 2.48 

 

= 1.6829,  

 = 1.0506 

 = 0.4998,  

 = 0.5795 

B16-F1 6  = 2.99  = 3.01  = -731.41,  

 = 19.1417 

 = 273.46,  

 = 0.0072 

MCF-7 6  = 4.52  = 4.57  = -409.76,  

 = 10.7604 

 = 705.93,  

 = 0.005 

PC-3 6  = 3.14  = 3.25  = -647.41,  

 = 17.0115 

 = 172.92,  

 = 0.0126 

B16-F0 3  = 3.69  = 3.71  = -535.57,  

 = 14.075 

 = 709.21,  

 = 0.0038 

 

Supplementary Table 2. Parameters for heavy-tailed distribution models. All parameters 

were obtained using the lower cutoff value a  corresponding to truncated power law and also 

shown here and in Table 1 in the main text.  
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Cell type 

Speed 

(m/min) 


(MSD) 

Lévy 

exponent

  

 

TP 

 

P 

 

LN 

 

SE 

 

E 

MDA231 #2 

/Long (CYTOO) 

 

 

1.13 

 

1.46 

 

2.81 
 

>0.65 

 

<0.01 

 

0.34 

 

<0.01 

 

<0.01 

MDA231 #1 

(WETS) 

 

 

0.99 

 

1.54 

 

 2.49 
 

>0.99 

 

<0.01 

 

<0.01 

 

<0.01 

 

<0.01 

 

Supplementary Table 3. Model parameters and Akaike weights (wAIC) for MDA-MB-231 

cells on WETS vs. CYTOO 1D microtrack substrates.  WETS data set (MDA231 #1 WETS, 

n= 69 cells) is described and analyzed in Figures 1, 2 and 5 in the main text. CYTOO long-

trajectory data set (MDA231 #2/Long CYTOO; n=49 cells) is described in Supplementary 

Figures 2 and 5. Cell mean speed, exponent  (from MSD) and Lévy exponent  (from fitting 

truncated power law) and Akaike information criteria weights (wAIC) for model comparisons.  

TP = power law, power law = P, log-normal = LN, stretched exponential = SE and exponential = 

E distributions. Strongest supported model is highlighted in bold. Cell motions are superdiffusive 

and truncated power law is favored for both data sets/substrates. See also Supplementary Figures 

2 and 5 for trajectory/displacement, MSD vs. time, cumulative frequency distribution plots and 

details on model fitting.   
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

Mean Speed  

[m/min] 

Median Speed  

[m/min] 

B16F0 1.05 0.41 0.24 

B16F1 1.52 0.62 0.49 

PC3 1.04 0.71 0.49 

PC3M 1.58 1.13 0.99 

MCF7 0.96 0.58 0.49 

MDAMB231 #1 1.54 0.99 0.73 

Blebb 10uM 1.83 1.13 0.98 

Blebb 50uM 1.70 0.54 0.49 

NSC 50uM 1.50 0.86 0.73 

NSC 100uM 1.51 0.64 0.49 

NSC100+Blebb10 1.07 0.42 0.24 

CK666 1.01 0.57 0.49 

MDAMB231 #2 1.46 1.13 0.84 

 

Supplementary Table 4. Summary of cell motility parameters for cells on 1D microtracks 

Summary of cell mean speed and exponent values for cell populations analyzed in the main text. 

The distributions of cell speeds are shown in Supplementary Figures 3 and 12, and MSD vs. time 

plots are shown in main text Figures 2 and 5. MDA-MB-231 #1 corresponds to data set analyzed 

in Figures  2 and 5, and MDA-MB-231 #2 corresponds to long-term data set (total observation 

time = 40h)  analyzed in Supplementary Figure 5 and Supplementary Table 3. 
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