

Supplemental Materials for

Canadian evidence-based guidelines for the first-line treatment of chronic lymphocytic leukemia

C. Owen MD*, A.S. Gerrie MD†, V. Banerji MD[‡], S. Assouline MD[§], C. Chen MD^{||}, K.S. Robinson MD[#], E. Lye BSc^{**}, G. Fraser MD††

Listing of Supplemental Material(s):

Supplemental Table 1: Patient Fitness Evaluation

Supplemental Table 2: RCTs – First-line Chemotherapy (pre-rituximab)

Supplemental Table 3: Phase II Studies – First-line Therapy

Supplemental Table 4: RCTs - Maintenance Drug Therapy After First-line Treatment

Supplemental Table 5: Phase II Studies – Maintenance and/or Consolidation Drug Therapy After First-line Treatment

Supplemental Table 6: RCTs – Autologous Transplant After First-line Treatment

Corresponding author:

Carolyn Owen
603 South Tower
Foothills Medical Centre
1403-29 St NW, Calgary, AB, T2N 2T9
Carolyn.Owen@albertahealthservices.ca

Supplemental Table 1: Patient Fitness Evaluation

Study	Subgroup analysis
CLL8 FCR vs FC [1]	 No difference in OS or PFS by age. Increased grade ¾ toxicities in patients ≥ 65 years Increased grade ¾ toxicities with moderate/high-grade comorbidity in at least one organ system vs low-grade comorbidity (81% vs 66%; p < 0.001)
CLL10 BR vs FCR [2]	 PFS longer with FCR in patients < 65 years, but not in patients ≥ 65 years. No difference in PFS between FCR and BR in patients with CIRS 4-6 or > 1 CIRS item. Increased risk of infection with FCR for patients ≥ 65 years (47.7% vs 20.6%; p < 0.001)
CLL4/5 metaanalysis [3]	 Patients with ≥ 2 comorbidities had shorter median OS than patients with < 2 comorbidities (71.7 months vs 90.2 months; p < 0.001); significant in both younger (CLL4) and older (CLL5) patients) Specific comorbidities predicting overall survival could not be identified Comorbidities did not influence myelotoxicity, infection or any SAEs. Doses of study drugs were more frequently reduced in patients with ≥ 2 comorbidities vs < 2 comorbidities (40% vs 31%; P < 0.05)
Metaanalysis [4]	 Fludarabine does not confer significant benefit in PFS nor OS to adults ≥ 70 years A trend toward poorer OS with fludarabine versus chlorambucil in subgroup ≥ 70 years Addition of rituximab to fludarabine-containing regimens significantly improves both PFS and OS in younger and older patients
FCR [5, 6]	 Age ≥ 70 years independently associated with inferior response to FCR Patients ≥ 70 years less likely to complete 6 cycles of therapy (46% vs 79%; p < 0.001) Dose reductions more common in patients > 60 years CrCl 30-70mg/ml: more cytopenias, dose reductions and early treatment discontinuations.

Study	Subgroup analysis
F arm of CALGB	No association between age (≥ 70 vs < 70 years) and incidence of
9011	hematologic toxicity or infection during cycle 1 of treatment
[7]	 Strong association between CrCl and time-to-toxicity endpoint.
	 Patients with CrCl < 80 ml/min had increased incidence of toxicity during
	treatment course (P < 0.0001)
BR	 No difference in PFS for patients with CrCl ≥ 70 ml/min vs CrCl < 70
[8]	ml/min
	 No difference in PFS for patients ≥ 70 years vs < 70 years
PCR [9, 10]	 No difference in PFS for patients ≥ 70 years vs < 70 years
	 No difference in number of treatment cycles, dose reductions, or grade ¾
	toxicities for patients ≥ 70 years vs < 70 years
	• No difference in PFS in patients with CrCl ≥ 70 ml/min vs CrCl < 70 ml/min

BR, bendamustine+rituximab; Clb, chlorambucil; CrCl, Creatinine clearance; F, fludarabine; FC, fludarabine+cyclophosphamide; FCR, fludarabine+cyclophosphamide+rituximab; GCLLSG, German CLL Study Group; OS, overall survival; PCR, pentostatin+cyclophosphamide+rituximab; PFS, progression free survival

Supplemental Table 2: RCTs – First-line Chemotherapy (pre-rituximab)

Reference	Treatment	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[11-13] CALGB 9011	F vs Clb	62 months	Median age: 63 years (32-89) ECOG: 0-2	509	ORR: 63% vs 37%, p < 0.001 CR: 20% vs 4%, p < 0.001	Median: 20 months vs 14 months, p < 0.001 At 4 years: 21% vs 6%, p < 0.001	Median: 66 months vs 56 months, p = 0.1 At 8 years: 31% vs 19%, p = 0.07	All: 55% vs 44% p = 0.05 Major infection: 29% vs 17%; p = 0.008 Secondary
						V3 070, p \ 0.001		malignancies similar in F vs Clb, except t- MN > in F arm
[14] LRF CLL4	FC vs F vs Clb	N/R	Median age: 65 years (35-86)	777	ORR: 94% vs 80% vs 72% p < 0.0001 (FC vs F) p = 0.04 (F vs Clb) CR: 38 % vs 15% vs 7% p < 0.0001 (FC vs F) p = 0.006 (F vs Clb)	At 5 years: 36% vs 10% vs 10% p < 0.00005 (FC vs F) NS (F vs Clb)	NS	Neutropenia: 56% vs 41% vs 28%, p < 0.0001 Admission (> 1day): 38% vs 36% vs 22% p < 0.0001 Nausea/vomiting: 53% vs 28% vs 33%, p < 0.0001
[15] NAIT-E2997	F vs FC	N/R	Median age: 61 years (33-86) PS > 2 ECOG 0-2	278	ORR: 59.5% vs 74.3% p = 0.013 CR: 4.6% vs 23.4% p < 0.001	Median: 19.2 months vs 31.6 months, p < 0.0001	NS	All: 33% vs 50 %, p = 0.007 No difference in severe infection

Reference	Treatment	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[16] GCLLSG-CLL4	F vs FC	N/R	Age: ≤ 65 years Median age: 58 years ECOG 0-2	375	ORR: 83% vs 94% p = 0.01 CR: 7% vs 24% p < 0.001	Median: 20 months vs 48 months, <i>p</i> = 0.001	At 3 years: 80.7% vs 80.3%, NS	All: 54% vs 72.6%, p = 0.001 Myelotoxicity: 40% vs 64%, p = 0.001 Leukocytopenia: 26% vs 56%, p < 0.001 No difference in rate of infection
[17] GCLLSG-CLL5	F vs Clb	N/R	Age: 65-80 years Median age: 70 years ECOG: 0-2	193	ORR: 72% vs 51%, p = 0.003 CR: 7% vs 0% p = 0.01 TTF: 18 months vs 11 months p = 0.004	Median: 18 months vs 19 months, NS	Median: 64 months vs 46 months, NS	Myelotoxicity: 42% vs 23% ρ = 0.005
[18, 19]	Clb vs B	54 months	Age: ≤ 75 years WHO PS: 0-2	319	ORR: 31% vs 68%, p < 0.0001 CR: 10.8% vs 21%, p N/R Median TTNT: 10.1 months vs 31.7 months, p < 0.0001	Median: 8.8 months vs 21.2 months, $p < 0.0001$ Difference sustained in patients < 65 years and \geq 65 years	Median: 78.8 months vs NR, NS	Neutropenia: 10.6% vs 23%, <i>p</i> = N/R Leukopenia: 1.3% vs 14.3%, <i>p</i> = N/R

Reference	Treatment	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[20]	F vs CAP vs CHOP	70 months	Age: < 75 Years Median age: N/R	938	ORR: 71% vs 58% vs 71%, <i>p</i> < 0.0001 (for F vs CAP and CHOP vs CAP) CR: 40% vs 15% vs 30%, <i>p</i> = 0.003 (for F vs CAP)	Median: 31.7 months vs 27.7 months vs 29.5 months, $p =$ 0.09	Median: 69 months vs 70 months vs 67 months, NS	Neutropenia: 38% vs 30% vs 38%, p = 0.06 Thrombocytopenia 15% vs7% vs 8%, p = 0.003 Alopecia: 0 vs 15% vs 16%, p < 0.0001
[21]	Clb+theo vs Clb	48 months (mean)	Median age: Clb+theo: 58 years (44-76) Clb: 61 years (40- 74)	210	PR: 35.7% vs 34.9%, <i>p</i> = N/R CR: 25.7% vs 12.8%, <i>p</i> = 0.01	Median : 44 months vs 30 months , p = 0.006	Median : 56 months vs 55 months, <i>p</i> = 0.371	Rates of toxicities N/R
[22, 23] PALG-CLL2	2-CdA vs 2-CdAC vs 2-CdACM	N/R	Median age: 2-CdA: 61 years (28-81) 2-CdAC: 62 years (28-80) 2-CdACM: 59 (33- 79) WHO-PS <4	508	ORR: 78% vs 83% vs 80%, $p = 0.1$ (2-CdA vs 2-CdAC), $p = 0.4$ (2-CdA vs 2-CdACM) CR: 21% vs 29% vs 36%, $p = 0.08$ (2-CdA vs 2-CdAC), $p = 0.004$ (2-CdA vs 2-CdACM)	Median: 23.5 months vs 22.4 months vs 23.6 months, $p =$ 0.49	Median: 51.2 months vs NR vs NR, $p = 0.73$	Neutropenia: 20% vs 32% vs 38%, p = 0.01 (2-CdA vs 2-CdaC) p = 0.004 (2-CdA vs 2-CdACM)

Reference	Treatment	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[24]	2-CdAP vs	N/R	Median age:	229	ORR: 87% vs 57%,	At 24 months:	At 24 months:	Neutropenia (all):
,	ClbP	.,	2-CdA+P: 61 years (31-92) Clb+P: 62 years (31- 88) WHO-PS <4		P = 0.0001 CR: 47% vs 12%, p = 0.0001	46% vs 33% p = 0.01	78% vs 82%, <i>p</i> = 0.6	23% vs 11%, p = 0.02 Infection (all): 56% vs 40%, p = 0.02
[25] PALG-CLL3	2-CdAC vs FC	38 months	Median age: 2-CdAC: 58 years (37-81) FC: 59 years (27-81) WHO-PS <4	395	ORR: 88% vs 82%, p = 0.11 CR: 47% vs 46% p = 0.25	Median: 2.34 years vs 2.27 years, <i>p</i> = 0.51	4-year estimate: 62.4% vs 60.6%, p = 0.16	Neutropenia: 20% vs 21%, p = 0.81 Thrombocytopenia: 12% vs 11%, p = 0.62 Infections: 28% vs 27%, p = 0.84
[26] CAM307	A vs Clb	24.6 months	Median age: A: 59 years (35-86) Clb: 60 years (36- 83) WHO PS 0-2	297	ORR: 83% vs 55%, p < 0.0001 CR: 24% vs 2%, p < 0.0001	HR: 0.58, 95% CI (0.43-0.77) p = 0.0001	Median: NR vs NR	Infusion-related: 15.7% vs 0

²⁻CdA, cladribine; 2-CdAC, cladribine+cyclophosphamide; 2-CdACM, cladribine+cyclophosphamide+mitoxantrone; 2-CdAP, cladribine+prednisone; A, alemtuzumab; B, bendamustine; CAP, cyclophosphamide+prednisone+doxorubicin; CHOP, cyclophosphamide+vincristine+prednisone+doxorubicin; Clb, chlorambucil; Clb+theo, chlorambucil+theophylline; ClbP, chlorambucil+prednisone; CR, complete response rate; F, fludarabine; FC, fludarabine+cyclophosphamide; GCLLSG, German CLL Study Group; N/R, not reported; NR, not reached; NS, not significant; Ob, obinutuzumab; Obs, observation; Of, ofatumumab; ORR, overall response rate; OS, overall survival; PC, pentostatin+cyclophosphamide; PCOf, pentostatin+cyclophosphamide+ofatumumab; PCR, pentostatin+cyclophosphamide+rituximab; PFS, progression free survival; PR, partial response rate RCT, randomized controlled trial; Theo, theophylline

Supplemental Table 3: Phase II Studies – First-line Therapy

Chemoimm	unotherapy							
Reference	Treatment	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[5, 6, 27]	FCR	12.8 years	Median age: 57 years (17-86)	300	ORR: 95% CR: 72%	Median: 6.4 years At 12.8 years:	Median: 12.7 years At 6 years: 77%	Neutropenia:52% Infection:2% 2 nd cancers in 101
[28, 29]	FCR-lite	N/R	Median age: 58 (36-85)	63	ORR : 93% CR : 73%	30.9% At 5 years : 66.9%	At 5 years : 85.5%	patients Infection: 6% MDS: 3 patients
[30]	FCR-lite+Len	17.4 months	Median age: 62.5 years (42-75) ECOG 0-2	20	ORR: 90% CR: 75%	At 17.4 months: 95%	At 17.4 months: 95%	Leukopenia: 20.3% Neutropenia: 51.6%
[31]	FCR + GM- CSF	56 months	Median age: 55 years (35-77) ECOG 0-2	60	ORR: 100% CR: 75%	Median: NR	Median: NR	Neutropenia: 83% Infection: 16%
[32]	FCR-M	38.5 months	Age: < 70 years ECOG 0-2	30	ORR: 93% CR: 83%	Median: NR	Median: NR	Neutropenia: 67% No infection requiring hospitalization
[33]	FCR-A	25 months	Median age: 59 years (42-69)	60	ORR: 92% CR: 70%	Median: 38 months	Median: NR	Neutropenia: 33% Infection: 11%
[34]	FER	34 months	Median age: 65	38	ORR: 95% CR: 63%	Median: 61 months	Median:NR	Neutropenia: 56% No infection (grade ≥ 3)
[35, 36]	FR-con FR-seq	117 months	Median age: 65 years (36-86) CALGB PS ≤3	104	ORR: FR-con:90% FR-seq:77% CR: FR-con:33% FR-seq:15%	At 5 years (all): 28% Median (all): 42 months	At 5 years (all): 71% Median (all): 85 months	Neutropenia: 76% vs 39%

Reference	Treatment	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[37]	FA	nr	Age ≤ 60 years Presence of high- risk genetic features	45	ORR: 95% CR: 30%	At 3 years: 42.5%	At 3 years: 79.9%	Neutropenia: 33% Infection: 11%
[9, 10]	PCR	26 months	Median age: 63 years (38-80) ≥ 70 years: 28% ECOG ≤3	64	ORR: 91% CR: 41%	Median: 32.6 months	Median: NR	All: 55% Neutropenia:44%
[38]	PCOf	24 months	Median age: 65 (50-83) ECOG ≤2	48	ORR: 96% CR: 46%	At 24 months: 89%	Median: NR	Hematologic toxicity: 27% Nonhematologic toxicity: 23%
[39]	PCOf	22 months	Age ≥ 65 Median age: 72 years (65-83) ECOG 0-2 CIRS ≤ 6 CrCl ≥ 70 ml/min	47	ORR: 89.4% CR: 51.1%	Median: NR At 24 months: 69%	Median: NR At 24 months: 97.9%	Neutropenia: 53.2% Hospitalization: 6.4%
[40]	P+R	14 months	Median age: 65 (45-81) ECOG ≤3	33	ORR: 76% CR: 27%	24 months: 89%	Median: NR	Hematologic toxicity: 12% Nonhematologic toxicity: 15%
[8]	BR	27 months	Median age: 64 years (34-78) ECOG ≤2	117	ORR: 88% CR: 23%	Median EFS: 33.9 months	Median: NR At 27 months: 90.5%	Hematologic toxicity: 52.1% Nonhematologic toxicity: 41.6%
[41]	ClbR	30 months	Median age: 70 years (43 to 86) Median no. of comorbidities: 7 (0-20)	100	ORR: 84% CR: 10%	Median: 23.5 months	Median: NR At 30 months: 84%	Neutropenia and lymphopenia: 41% Leukopenia: 23% Anemia: 19% Thrombocytopenia: 18%

Monoclona	l Antibody the	erapy						
Reference	Treatment	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[42]	R+GM-CSF	79 months	Age: ≥ 70 years	40	ORR: 59%	Median: 15 months	At 7 years: 67%	2 patients experienced serious infection
[43]	Ob (1000) Ob (2000)	20.3 months	Median age: 67 years (34-91) ECOG ≤ 2	80	ORR: 49% vs 67% p = 0.08 CR: 5% vs 20% p < 0.05	At 18 months: 59% vs 83%	Median: NR	All: 55.0% vs 65% Neutropenia: 30% vs 31.6%
[44]	AR-st AR-lo	24.6 months	Median age: 76 years (67-92) ECOG ≤ 2	25	ORR: 90% CR: 45%	Median: AR-st:12.8 months AR-lo:23.3 months	Median: NR	Neutropenia: AR-st:75% AR-lo:47% p = 0.15
[45]	AR	58.3 months	Median age: 58 years (28-80) ECOG ≤ 2	30	ORR: 70% CR: 23%	At 58.3 months: 80%	Median: NR	Neutropenia: 30%
Lenalidomi	de							
Reference	Treatment	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[46, 47]	Len	48 months	Age ≥ 65 Median age: 71 years (65-84) ECOG 0-3	60	ORR: 65% CR: 15%	At 2 years: 60% Median: NR	At 4 years: 82%	Neutropenia: 88% Thrombocytopenia: 47% Severe infection: 13% 1 fatality
[48, 49]	Len	53.2 months	Median age: 60 years (33-78) ECOG 0-3	25	ORR: 72% CR: 20%	At 3 years: 64.6% Median: 40.4 months	At 3 years: 85.3%	Neutropenia: 72% Thrombocytopenia: 28% Severe infection: 36%

Reference	Treatment	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[50]	Len+R	20 months	Arm A: < 65 years Median: 57 years (45-64)	Arm A: 40 Arm B: 29	Arm A: ORR: 95% CR: 20%	Arm A median: 19 months	Median: NR	Neutropenia: Arm A: 53% Arm B: 66%
			Arm B: ≥ 65 years Median: 70 years (65-80)		Arm B: ORR: 79% CR: 10%	Arm B median: 20 months		
			ECOG 0-2					

A, alemtuzumab; AR, alemtuzumab+rituximab; BR, bendamustine+rituximab; ClbR, chlorambucil+rituximab; CR, complete response rate; CrCl, Creatinine clearance; FCA, fludarabine+cyclophosphamide+alemtuzumab; FCR, fludarabine+cyclophosphamide+rituximab; FR, fludarabine+rituximab; GM-CSF, granulocyte macrophage colony stimulating factor; Len, lenalidomide; Len+R, lenalidomide+rituximab; N/R, not reported; NR, not reached; NS, not signifiacnt Ob, obinutuzumab; Obs, observation; ORR, overall response rate; OS, overall survival; PC, pentostatin+cyclophosphamide; PCOf, pentostatin+cyclophosphamide+ofatumumab; PCR, pentostatin+cyclophosphamide+rituximab; PFS, progression free survival; P+R, pentostatin+rituximab

Supplemental Table 4: RCTs - Maintenance Drug Therapy After First-line Treatment

Reference	Induction Therapy	Maintenance Therapy	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[51]	FCR (71%) BR (21%) Other (8%)	R (maint) vs Obs	33.4 months	Median age: 63 years (35-85) ECOG 0-1	263	Conversion of PR to CR or Cri: 13% vs	Median: 47.0 months vs	NR	Neutropenia: 21% vs 11%
	First-line (80%)			CR, Cri, or PR after induction		2%	35.5 months		Infection: 20% vs 8%
	Second-line (20%)						<i>p</i> = 0.00077		
							Median TNT: NR vs 47.3		
							months P=0.0051		

Reference	Induction Therapy	Maintenance Therapy	Median Follow up	Patients	N	Response	PFS	OS	Toxicity (Grade ≥ 3)
[52] (Abstract)	FCR (4 cycles)	R (maint) vs Obs	43.6 months	Age ≥ 65 years; Median age: 71.3 years Fit, no del(17p) PR or CR after induction	409	N/R	Median: 59.3 months vs 49.0 months p = 0.0011 At 3 years: 83.0% vs 64.2%	At 3 years: 92.6% vs 87.2%	Hematological toxicity: 6.9% vs 1.9% <i>p</i> = 0.027 Infections: 18.8% vs 10.1% <i>p</i> = 0.036
[53]	FCR, BR, or FC	Len (maint) vs Obs	17.9 months (Recruitment closed prematurely due to poor accrual)	Median age: 64 years (57-69) High risk: ≥ intermediate MRD + IGHV-U or TP53 aberration CR, Cri, or PR after induction	85	MRD status at cycle 12: Negative (7% vs 0); Intermediate (48% vs 22%); Positive (44% vs 78%)	Median: NR vs 13.3 months	NE	Neutropenia: 34% vs 6% GI disorders: 13% vs 0 Infections: 15% vs 9%

BR, bendamustine+rituximab; Con, consolidation; CR, complete response rate; Cri, complete response with incomplete blood count recovery; FCR, fludarabine+cyclophosphamide+rituximab; IGHV-U, unmutated IGHV gene; Len, lenalidomide; Maint, maintenance; MRD, minimal residual disease; N, number of patients; N/R, not reported; NE, not evaluable; NR, not reached; Obs, observation; ORR, overall response rate; OS, overall survival; PCOf, pentostatin+cyclophosphamide+ofatumumab; PFS, progression free survival; PR, partial response rate; R, rituximab; TFS, treatment-free survival

Supplemental Table 5: Phase II Studies – Maintenance and/or Consolidation Drug Therapy After First-line Treatment

Reference	Induction Therapy	Maintenance Therapy	Median Follow up	Patients	N	Response	PFS	os	Toxicity (Grade ≥ 3)
[54, 55]	FCR-M	R (maint)	48.7 months	Median age: 60 (35-70) CR or PR after induction	64	CR (MRD- neg): 40.6% CR (MRD- pos): 40.6% PR: 4.8% TF: 14% Improved response: 21%	At 4 years: 74.8% Median: NR	At 4 years: 93.7% Median: NR	2 deaths due to adverse events Serious infection: 25%
[56]	FR	R (con + maint) vs Obs	26 months	Median age: 60 (35-70) CR or PR (MRD-pos) after induction: R or Obs MRD-neg: Obs	71 MRD-pos:28 R vs 18 Obs MRD-neg: 25 Obs	N/R	At 5 years: 87% vs 32% p = 0.001	At 5 years: 90% for all patients	Few SAEs
[57]	ClbR	R (maint) vs Obs	34.9 months	Age ≥ 60 Median age: 70 (61-84) CR, CRi or PR after induction	66 randomized to R or Obs post- induction	ORR: 55.9% vs 34.4% P= 0.079 (Among 50 PR/nPR randomized after induction, ORR: 56.7% vs 26.7% p = 0.027)	Median: 38.2 vs 34.7 months At 3 years: 48.6% vs 31.8% p = 0.07	N/R	SAEs equal across both arms; only one R-related event (neutropenia)

Reference	Induction Therapy	Maintenance Therapy	Median Follow up	Patients	N	Response	PFS	os	Toxicity (Grade ≥ 3)
[58]	FR (4 cycles)	A (con)	41 months	Median age: 60 (40-80) Rai II-IV requiring treatment ECOG 0-2	34 started Ale, only 20 completed prescribed dose	ORR: 76% CR: 21%	Median: 42 months At 4 years: 47%	At 4 Years: 82%	Neutropenia: 12% Thrombocytopenia: 9% Infusion-related: 21% Infection: 21%
[59, 60]	FR	A (con)	36 months	CR, PR or SD after induction	58 received A consolidation	ORR: 90% CR: 57% 61% of patients achieving PR after induction attained CR after A; 42% became MRD-neg	Median: 36 months 2 years: 72%	2 years: 86%	7 patient deaths due to infection following A consolidation
[61]	PCOf	Of (con)	33 months	ECOG 0-2 CR or PR after induction	28	ORR: 96% CR:32% 25% had improvement in depth of response after Of con	Median TFS: NR TFS at 36 months: 84%	N/R	2 deaths due to sepsis Neutropenia: 42% Infection: 6%
[62]	PCR	Len (con)	37 months		34 initiated Len consolidation	improved response with Len CR: 38.3 after induction to 52.99 after Len	Median TFS: NR TFS at 37 months: 75%	At 37 months : 86.4%	Hematologic toxicity : 65%

A, alemtuzumab; ClbR, chlorambucil+rituximab; Con, consolidation; CR, complete response rate; Cri, complete response with incomplete blood count recovery; FCR-M, fludarabine+cyclophosphamide+rituximab+mitoxantrone; FR, fludarabine+rituximab;

Len, lenalidomide; Maint, maintenance; N, number of patients; N/R, not reported; NR, not reached; Obs, observation; Of, ofatumumab; ORR, overall response rate; OS, overall survival; PCOf, pentostatin+cyclophosphamide+ofatumumab; PFS, progression free survival; PR, partial response rate; R, rituximab; TFS, treatment-free survival

Supplemental Table 6: RCTs – Autologous Transplant After First-line Treatment

Reference	Patients	Treatment	N	EFS	os	Toxicity (Grade ≥ 3)
[63]	1st and 2nd line, response after induction	After 1st or 2nd line treatment (various): Obs vs ASCT	223	5 years: 24% vs 42% p < 0.001	5 years: 84.3% vs 85.5% NS	Low rates of grade3/4 toxicity in each group
[64]	1st line, CR after induction	CHOP/F -> Obs vs CHOP/F -> ASCT	105	3 years: 35.5% vs 79.8% p = 0.003	3 years: 97.8% vs 95.7% NS	Low rates of grade3/4 toxicity in each group
[64]	1st line, PR after induction	CHOP/F -> DHAP -> FC vs CHOP/F -> DHAP -> ASCT	94	3 years: 48.9% vs 44.4% NS	3 years: 87.0% vs 81.7% NS	Low rates of grade3/4 toxicity in each group
[65]	1st line, CR after induction	CHOP + CHOP maintenance vs CHOP + ASCT	82	Median: 22 vs 53 months <i>p</i> < 0.0001	Median: 104.7 months vs 107.4 months NS	Secondary malignancies: 15% vs 13% Infection: 11.5% vs 34.5% (1 fatal) $p = N/R$
[66]	< 65 years Binet Stage B or C 1st line treatment + con/maint	FCR + R maintenance vs FCR + (HDT + ASCT)	96	5 years: 65.1 months vs 60.4 months NS	5 years: 88.1% vs 88% NS	Bacterial infection: 19% vs 35.4% p = 0.067 Treatment related deaths: 6% vs 6%

ASCT, autologous stem cell transplant; CHOP, cyclophosphamide+vincristine+prednisone+doxorubicin; Con, consolidation; CR, complete response rate; EFS, event-free survival; FCR, fludarabine+cyclophosphamide+rituximab; HDT, high-dose therapy; Maint, maintenance; N/R, not reported; NS, not significant; Obs, observation; OS, overall survival; PR, partial response rate RCT, randomized controlled trial.

1. Hallek, M., et al., Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet, 2010. **376**(9747): p. 1164-74.

- 2. Eichhorst, B., et al., First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol, 2016. **17**(7): p. 928-42.
- 3. Goede, V., et al., Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. Haematologica, 2014. **99**(6): p. 1095-100.
- 4. Woyach, J.A., et al., *Impact of age on outcomes after initial therapy with chemotherapy and different chemoimmunotherapy regimens in patients with chronic lymphocytic leukemia: results of sequential cancer and leukemia group B studies.* J Clin Oncol, 2013. **31**(4): p. 440-7.
- 5. Tam, C.S., et al., Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood, 2008. **112**(4): p. 975-80.
- 6. Keating, M.J., et al., *Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia*. J Clin Oncol, 2005. **23**(18): p. 4079-88.
- 7. Martell, R.E., et al., Analysis of age, estimated creatinine clearance and pretreatment hematologic parameters as predictors of fludarabine toxicity in patients treated for chronic lymphocytic leukemia: a CALGB (9011) coordinated intergroup study. Cancer Chemother Pharmacol, 2002. **50**(1): p. 37-45.
- 8. Fischer, K., et al., Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol, 2012. **30**(26): p. 3209-16.
- 9. Kay, N.E., et al., Combination chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B chronic lymphocytic leukemia. Blood, 2007. **109**(2): p. 405-11.
- 10. Shanafelt, T.D., et al., *Pentostatin, cyclophosphamide, and rituximab regimen in older patients with chronic lymphocytic leukemia.* Cancer, 2007. **109**(11): p. 2291-8.
- 11. Rai, K.R., et al., *Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia*. N Engl J Med, 2000. **343**(24): p. 1750-7.
- 12. Rai, K.R., et al., Long-Term Survival Analysis of the North American Intergroup Study C9011 Comparing Fludarabine (F) and Chlorambucil (C) in Previously Untreated Patients with Chronic Lymphocytic Leukemia (CLL). ASH Annual Meeting Abstracts, 2009. **114**(22): p. 536-.
- 13. Morrison, V.A., et al., *Impact of therapy With chlorambucil, fludarabine, or fludarabine plus chlorambucil on infections in patients with chronic lymphocytic leukemia: Intergroup Study Cancer and Leukemia Group B 9011.* J Clin Oncol, 2001. **19**(16): p. 3611-21.

- 14. Catovsky, D., et al., Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet, 2007. **370**(9583): p. 230-9.
- 15. Flinn, I.W., et al., *Phase III trial of fludarabine plus cyclophosphamide compared with fludarabine for patients with previously untreated chronic lymphocytic leukemia: US Intergroup Trial E2997.* J Clin Oncol, 2007. **25**(7): p. 793-8.
- 16. Eichhorst, B.F., et al., *Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia*. Blood, 2006. **107**(3): p. 885-91.
- 17. Eichhorst, B.F., et al., *First-line therapy with fludarabine compared with chlorambucil does not result in a major benefit for elderly patients with advanced chronic lymphocytic leukemia.* Blood, 2009. **114**(16): p. 3382-91.
- 18. Knauf, W.U., et al., *Phase III randomized study of bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukemia.* J Clin Oncol, 2009. **27**(26): p. 4378-84.
- 19. Knauf, W.U., et al., Bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukaemia: updated results of a randomized phase III trial. Br J Haematol, 2012. **159**(1): p. 67-77.
- 20. Leporrier, M., et al., *Randomized comparison of fludarabine, CAP, and ChOP in 938 previously untreated stage B and C chronic lymphocytic leukemia patients.* Blood, 2001. **98**(8): p. 2319-25.
- 21. Mabed, M., et al., *Chlorambucil plus theophylline vs chlorambucil alone as a front line therapy for B-cell chronic lymphatic leukemia*. Leuk Lymphoma, 2004. **45**(10): p. 2029-35.
- 22. Robak, T., et al., Cladribine alone and in combination with cyclophosphamide or cyclophosphamide plus mitoxantrone in the treatment of progressive chronic lymphocytic leukemia: report of a prospective, multicenter, randomized trial of the Polish Adult Leukemia Group (PALG CLL2). Blood, 2006. **108**(2): p. 473-9.
- 23. Robak, T., et al., Long-term results of the Polish Adult Leukemia Group PALG-CLL2 phase III randomized study comparing cladribine-based combinations in chronic lymphocytic leukemia. Leuk Lymphoma, 2014. **55**(3): p. 606-10.
- 24. Robak, T., et al., Cladribine with prednisone versus chlorambucil with prednisone as first-line therapy in chronic lymphocytic leukemia: report of a prospective, randomized, multicenter trial. Blood, 2000. **96**(8): p. 2723-9.
- 25. Robak, T., et al., Comparison of cladribine plus cyclophosphamide with fludarabine plus cyclophosphamide as first-line therapy for chronic lymphocytic leukemia: a phase III randomized study by the Polish Adult Leukemia Group (PALG-CLL3 Study). J Clin Oncol, 2010. **28**(11): p. 1863-9.
- 26. Hillmen, P., et al., *Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia.* J Clin Oncol, 2007. **25**(35): p. 5616-23.
- Thompson, P.A., et al., Fludarabine, cyclophosphamide and rituximab achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood, 2015.
- 28. Foon, K.A., et al., Chemoimmunotherapy With Low-Dose Fludarabine and Cyclophosphamide and High Dose Rituximab in Previously Untreated Patients With Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2009. **27**(4): p. 498-503.
- 29. Foon, K.A., et al., *Long-term results of chemoimmunotherapy with low-dose fludarabine, cyclophosphamide and high-dose rituximab as initial treatment for patients with chronic lymphocytic leukemia.* Blood, 2012. **119**(13): p. 3184-3185.

- 30. Mato, A.R., et al., *Reduced-dose fludarabine, cyclophosphamide, and rituximab (FCR-Lite) plus lenalidomide, followed by lenalidomide consolidation/maintenance, in previously untreated chronic lymphocytic leukemia*. Am J Hematol, 2015. **90**(6): p. 487-92.
- 31. Strati, P., et al., *Fludarabine*, *cyclophosphamide* and *rituximab* plus granulocyte macrophage colony-stimulating factor as frontline treatment for patients with chronic lymphocytic leukemia. Leuk Lymphoma, 2014. **55**(4): p. 828-33.
- 32. Faderl, S., et al., *Fludarabine*, *cyclophosphamide*, *mitoxantrone plus rituximab* (*FCM-R*) *in frontline CLL* <70 *Years*. Leuk Res, 2010. **34**(3): p. 284-8.
- 33. Parikh, S.A., et al., *Frontline chemoimmunotherapy with fludarabine, cyclophosphamide, alemtuzumab, and rituximab for high-risk chronic lymphocytic leukemia.* Blood, 2011. **118**(8): p. 2062-8.
- 34. Chow, K.U., et al., *Clinical efficacy of immunochemotherapy with fludarabine, epirubicin and rituximab in the treatment for chronic lymphocytic leukaemia and prolymphocytic leukaemia*. Eur J Haematol, 2011. **87**(5): p. 426-33.
- Byrd, J.C., et al., Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: results from Cancer and Leukemia Group B 9712 (CALGB 9712). Blood, 2003. **101**(1): p. 6-14.
- 36. Woyach, J.A., et al., *Chemoimmunotherapy with fludarabine and rituximab produces extended overall survival and progression-free survival in chronic lymphocytic leukemia: long-term follow-up of CALGB study 9712.* J Clin Oncol, 2011. **29**(10): p. 1349-55.
- 37. Mauro, F.R., et al., Fludarabine plus alemtuzumab (FA) front-line treatment in young patients with chronic lymphocytic leukemia (CLL) and an adverse biologic profile. Leuk Res, 2014. **38**(2): p. 198-203.
- 38. Shanafelt, T., et al., *Ofatumumab-based chemoimmunotherapy is effective and well tolerated in patients with previously untreated chronic lymphocytic leukemia (CLL).* Cancer, 2013. **119**(21): p. 3788-96.
- 39. Tedeschi, A., et al., *A phase II multi-center trial of pentostatin plus cyclophosphamide with ofatumumab in older previously untreated chronic lymphocytic leukemia patients.* Haematologica, 2015. **100**(12): p. e501-4.
- 40. Kay, N.E., et al., *Pentostatin and rituximab therapy for previously untreated patients with B-cell chronic lymphocytic leukemia.* Cancer, 2010. **116**(9): p. 2180-7.
- 41. Hillmen, P., et al., *Rituximab plus chlorambucil as first-line treatment for chronic lymphocytic leukemia: Final analysis of an open-label phase II study.* J Clin Oncol, 2014. **32**(12): p. 1236-41.
- 42. Strati, P., et al., A phase II study of the combination of rituximab and granulocyte macrophage colony stimulating factor as treatment of patients with chronic lymphocytic leukemia. Leukemia & Lymphoma, 2015. **56**(6): p. 1878-80.
- 43. Byrd, J.C., et al., *Randomized phase 2 study of obinutuzumab monotherapy in symptomatic, previously untreated chronic lymphocytic leukemia.* Blood, 2016. **127**(1): p. 79-86.
- 44. Zent, C.S., et al., A phase II randomized trial comparing standard and low dose rituximab combined with alemtuzumab as initial treatment of progressive chronic lymphocytic leukemia in older patients: a trial of the ECOG-ACRIN cancer research group (E1908). Am J Hematol, 2016. **91**(3): p. 308-12.
- 45. Frankfurt, O., et al., *Phase II study of alemtuzumab-rituximab therapy in previously untreated patients with chronic lymphocytic leukemia: short- and long-term outcomes.* Leuk Lymphoma, 2015. **56**(2): p. 315-23.

- 46. Badoux, X.C., et al., Lenalidomide as initial therapy of elderly patients with chronic lymphocytic leukemia. Blood, 2011. **118**(13): p. 3489-98
- 47. Strati, P., et al., *Lenalidomide induces long-lasting responses in elderly patients with chronic lymphocytic leukemia*. Blood, 2013. **122**(5): p. 734-7.
- 48. Chen, C.I., et al., *Single-agent lenalidomide in the treatment of previously untreated chronic lymphocytic leukemia.* J Clin Oncol, 2011. **29**(9): p. 1175-81.
- 49. Chen, C.I., et al., Long-term follow-up of a phase 2 trial of single agent lenalidomide in previously untreated patients with chronic lymphocytic leukaemia. Br J Haematol, 2014. **165**(5): p. 731-3.
- James, D.F., et al., *Lenalidomide and rituximab for the initial treatment of patients with chronic lymphocytic leukemia: a multicenter clinical-translational study from the chronic lymphocytic leukemia research consortium.* J Clin Oncol, 2014. **32**(19): p. 2067-73.
- 51. Greil, R., et al., Rituximab maintenance versus observation alone in patients with chronic lymphocytic leukaemia who respond to first-line or second-line rituximab-containing chemoimmunotherapy: final results of the AGMT CLL-8a Mabtenance randomised trial. Lancet Haematol, 2016. **3**(7): p. e317-29.
- Dartigeas C, V.D.N.E., Maisonneuve H, Berthou C, Dilhuydy MS, De Guibert S, Stephane Leprêtre, Philippe Rodon, Therese Aurran, Jean-Pierre Vilque, Beatrice Mahe, Marie C. Bene, Florence NGuyen-Khac, Remi Letestu, Alain Delmer, Pierre Feugier, Vincent Levy, Julie Leger, Philippe Colombat, Veronique Leblond, *Rituximab maintenance after induction with abbreviated FCR in previously untreated elderly* (≥ 65 years) CLL patients: Results of the randomized CLL 2007 SA trial from the French FILO Group (NCT00645606). J Clin Oncol 34, (suppl; abstr 7505), 2016.
- Fink, A.M., et al., Lenalidomide maintenance after first-line therapy for high-risk chronic lymphocytic leukaemia (CLLM1): final results from a randomised, double-blind, phase 3 study. Lancet Haematol, 2017. **4**(10): p. e475-e486.
- 54. Abrisqueta, P., et al., *Rituximab maintenance after first-line therapy with rituximab, fludarabine, cyclophosphamide, and mitoxantrone (R-FCM) for chronic lymphocytic leukemia.* Blood, 2013. **122**(24): p. 3951-9.
- 55. Bosch, F., et al., *Rituximab, fludarabine, cyclophosphamide, and mitoxantrone: a new, highly active chemoimmunotherapy regimen for chronic lymphocytic leukemia.* J Clin Oncol, 2009. **27**(27): p. 4578-84.
- 56. Del Poeta, G., et al., Consolidation and maintenance immunotherapy with rituximab improve clinical outcome in patients with B-cell chronic lymphocytic leukemia. Cancer, 2008. **112**(1): p. 119-28.
- 57. Foa, R., et al., *Chlorambucil plus rituximab with or without maintenance rituximab as first-line treatment for elderly chronic lymphocytic leukemia patients.* Am J Hematol, 2014. **89**(5): p. 480-6.
- 58. Hainsworth, J.D., et al., Combination therapy with fludarabine and rituximab followed by alemtuzumab in the first-line treatment of patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase 2 trial of the Minnie Pearl Cancer Research Network. Cancer, 2008. **112**(6): p. 1288-95.
- 59. Jones, J.A., et al., *Patients with chronic lymphocytic leukemia with high-risk genomic features have inferior outcome on successive Cancer and Leukemia Group B trials with alemtuzumab consolidation: subgroup analysis from CALGB 19901 and CALGB 10101.* Leuk Lymphoma, 2013. **54**(12): p. 2654-9.

- 60. Lin, T.S., et al., Consolidation therapy with subcutaneous alemtuzumab after fludarabine and rituximab induction therapy for previously untreated chronic lymphocytic leukemia: final analysis of CALGB 10101. J Clin Oncol, 2010. **28**(29): p. 4500-6.
- 61. Strati, P., et al., *Ofatumumab monotherapy as a consolidation strategy in patients with previously untreated chronic lymphocytic leukaemia: a phase 2 trial.* Lancet Haematol, 2016. **3**(9): p. e407-14.
- 62. Shanafelt, T.D., et al., Long-term repair of T-cell synapse activity in a phase II trial of chemoimmunotherapy followed by lenalidomide consolidation in previously untreated chronic lymphocytic leukemia (CLL). Blood, 2013. **121**(20): p. 4137-41.
- 63. Michallet, M., et al., *Autologous hematopoietic stem cell transplantation in chronic lymphocytic leukemia: results of European intergroup randomized trial comparing autografting versus observation.* Blood, 2011. **117**(5): p. 1516-21.
- 64. Sutton, L., et al., Autologous stem cell transplantation as a first-line treatment strategy for chronic lymphocytic leukemia: a multicenter, randomized, controlled trial from the SFGM-TC and GFLLC. Blood, 2011. **117**(23): p. 6109-19.
- 65. Brion, A., et al., *Autologous transplantation in CLL patients with B and C Binet stages: final results of the prospective randomized GOELAMS LLC 98 trial.* Bone Marrow Transplant, 2012. **47**(4): p. 542-8.
- 66. Magni, M., et al., Results of a randomized trial comparing high-dose chemotherapy plus Auto-SCT and R-FC in CLL at diagnosis. Bone Marrow Transplant, 2014. **49**(4): p. 485-491.