
Supplemental Note 1 – Grouping Parameters for MaxQuant and 

SpectrumMill PSMs Data 

MaxQuant: 

Andromeda PSM results were compiled at 1% FDR, and these PSM qValues 

were used in IDGroup definition with default gpGrouper thresholds. PSMs results 

that are filtered at 1% PSM FDR will results in only odd numbered IDGroup bins 

delineated further by spectrum match scores. While Andromeda and Mascot use 

a similar, positively correlated scoring mechanism for indicating the quality of 

spectral match (1), the Andromeda and Mascot scores lie on different scales. To 

determine concrete values for Andromeda score thresholds we adjusted the 

default IonScore bin cutoffs used by gpGrouper (10, 20, 30) such that the same 

fraction of PSMs exists below the cutoffs under each search method. For this, we 

first searched proteomic profiling of 100% human and a 50:50 hs:mm mixture 

searched through Mascot+Percolator and through Andromeda via MaxQuant. 

The conversion was performed by first finding the fraction of PSMs under the 

default Mascot IonScore cutoffs and then by finding the corresponding 

Andromeda Score that allowed for the same fraction of PSMs. For the human 

sample with 80,077 PSMs identified at 1% FDR, the percentage of PSMs under 

the Mascot IonScores of 10, 20, 30 are 6.42%, 21.13%, and 40.68%. This 

corresponds to Andromeda IonScores of approximately 63, 83, and 101 using 

the 102,313 identified PSMs at the same FDR level. For the human-mouse 

mixed sample with 101,091 PSMs identified via Mascot and 94,503 PSMs 



identified from Andromeda, the corresponding Andromeda bins were found to be 

65, 86, and 105. The thresholds are very similar and we suggest that 65, 85, and 

105 can be used to calculate IDGroup bind in Andromeda-based searches. 

Spectrum Mill:  

The Spectrum Mill protein output was obtained from Huang et al. study 

through the CPTAC portal (2, also as reference #24 in the main text). As for the 

MaxQuant cases described above, we calculated the Spectrum Mill PSM score 

thresholds by finding the scores at the same percentiles as the Mascot Ion Score 

thresholds of 10, 20, and 30. The raw files corresponding to WHIM11, WHIM04, 

and WHIM12 were downloaded from https://cptac-data-

portal.georgetown.edu/cptacPublic and searched with the PD/Mascot pipeline 

described above. After filtering for Rank 1 PSMs with a q-value ≤ .05, the 

percentiles were calculated for each of the three Ion Score thresholds 10, 20, 30 

(4, 24, and 51%) corresponding Spectrum Mill Scores (7.5, 9.9, 12.6) and used in 

gpGrouper. These thresholds were used for all WHIM iTRAQ set to calculate 

IDGroup and then SRA bins for iTRAQ-gpG results.  

To approximate qValues in the Spectrum Mill PSMs output, we subtracted 

the deltaForwardReverseScore from each PSM score, removing any zeros 

(which indicate a lack of a decoy match). The qValue for each PSM was then 

calculated from Gaussian Kernel Density functions for the decoy and PSM match 

scores. Based on these models, the majority of the target peptides have 

acceptable values with 89.2% of peptides ≤ 5% FDR. These calculated qValues 

were used under default numerical thresholds for IDGroup bins. 



 

Supplemental Note 2 - Comparison with MaxQuant grouping and 

Quantification Mechanism.  

As MaxQuant is a widely used label-free protein identification and 

quantification tool for MS-based proteomics (3, 4), we decided to benchmark 

gpGrouper against MaxQuant’s inference and quantification algorithm. To 

highlight the handling of multitaxa species, we used 100% human and equal 

human/mouse mixtures for this comparison. Specifically, we compared our 

binning SRA quality mechanism with 1% protein FDR, and quantification based 

on the “winner-take-all” parsimonious razor distribution of peptides by MaxQuant 

with the distribution of shared peptide quantities by gpGrouper.  

 By comparing MaxQuant and gpGrouper results obtained from the same 

Andromeda search, we find that the Strict/Relaxed/All SRA quality metric serves 

as an acceptable alternative to protein-level FDR. First, we converted the 

MaxQuant protein-level output to gene level by mapping protein GIs to gene 

identifiers. For the human sample, over 97% (5841/5983) of the protein groups 

mapped to a single GeneID despite of the fact that many protein groups consist 

of more than one protein (Supplementary Figure 4-A,B). For the human/mouse 

sample, 77% (6590/8550) of the protein groups mapped to a single GeneID, with 

the increase in the number of GeneIDs per protein group largely attributable to a 

split between a human and mouse GeneID (Supplemental Figure 4-C,D). In 

Supplemental Figure 4-E we see the gene-level overlap between MaxQuant and 

gpGrouper results. While gpGrouper lists all gene assignment possibilities, by 



omitting “All” group proteins, which consists of mostly IDSet3 genes 

(parsimonious subsets) and some proteins with low scoring spectra for unique 

peptides sets, we see a reduction in the number of proteins identified exclusively 

by gpGrouper. At the “Relaxed” level for a single taxon, the number of genes 

reported by only MaxQuant (158) or only gpGrouper (180) is similar, while at the 

“Strict” level MaxQuant exclusively reports more genes (348) than gpGrouper 

(81). These genes do not meet the “Relaxed” or “Strict” criteria for gpGrouper 

due to the absence of high quality unique-to-gene peptides (Supplemental Figure 

4-I), while genes with high quality unique-2-gene peptides (PeptideCount_u2g_S) 

as identified by gpGrouper are only identified in MaxQuant at a protein FDR 

above 1%. In fact, genes preserved by gpGrouper but not MaxQuant tend to 

have a lower total number of peptides than genes preserved by MaxQuant, but 

are enriched for unique-to-gene peptides of high quality (Supplemental Figure 4-

J). This demonstrates how gpGrouper preserves identifications that can be 

excluded by more traditional parsimony methods by taking search engine score 

into account. Even with this consideration, at the strict level gpGrouper is 

generally more conservative than 1% protein FDR. 

The discrepancy is larger in the human/mouse mixture sample, with many 

more genes present exclusively in the MaxQuant results than exclusively in the 

gpGrouper results in both the relaxed (1320 vs 188) and strict (2069 vs 111) 

levels. Genes are excluded from gpGrouper results at these thresholds for the 

same reasons as before – a lack of unique-2-gene peptides of high quality and 

genes exclusive to gpGrouper which do not fall below protein FDR of 1% in spite 



of possessing unique-2-gene peptides with high Andromeda scores 

(Supplemental Figure 4-K,L). 

Next, we compared the quantitation between gpGrouper and MaxQuant. 

We examined gene products that were designated as IDSet1 and were the sole 

member of a given protein group in MaxQuant. For the human sample with 5,533 

examined gene products, the two grouping algorithms show very strong positive 

correlation in gene product quantities with a Pearson correlation of 0.99 while the 

human/mouse mixed sample with 6,981 examined gene products also showed a 

strong positive correlation with a Pearson correlation of 0.93, but many gene 

products have significantly higher quantified values by gpGrouper with respect to 

MaxQuant as seen by the deviation from the identity line (Supplemental Figure 4-

F). These gene products that deviate from the identity line have a lower 

proportion of razor+unique peptides, which are used by MaxQuant to quantify 

proteins. The deviation in quantification between gpGrouper and MaxQuant 

increases as the proportion of razor peptides within a gene group decreases with 

a Pearson correlation of -0.81 (Supplemental Figure 4-G). It is clear that as the 

proportion of razor peptides for a given gene product decreases, the difference 

between areas shifts with higher values reported by gpGrouper. With the winner-

take-all assignment of peptide area that MaxQuant uses when razor peptides are 

included for quantification, gene product area is highly influenced by the number 

of razor peptides. This is in contrast to gpGrouper, by which a gene product may 

have relatively high area despite the fact that it has many shared (but not 

designated razor by MaxQuant) peptides. This phenomenon can similarly be 



observed for the gene products that are composed of 100% Razor peptides as 

reported by MaxQuant but contain shared peptides; as the fraction of gpGrouper 

unique to gene peptides decreases, the difference between areas shifts with 

higher values reported by MaxQuant (Supplemental Figure N5-H). For these 

gene products, gpGrouper is assigning a proportion of these shared peptide peak 

areas to the protein while MaxQuant is assigning the entire peptide peak area. 

Similar but less pronounced trends can be seen in the human sample 

comparison (Supplemental Figure 4-M,N).  

Supplemental Note 3 – On Characterization of Shared Peptides in Protein 

and Gene-Centric Databases. 

We explored the impact of shared peptides on single taxon and mixed human 

and mouse proteomes. The shared peptides within a mouse or human 

peptidome effect a substantial portion of proteins. Using the human proteome in 

silico peptidome from 71,315 unique UniProt protein sequences (Swiss-Prot + 

TrEMBL, downloaded on July 21, 2017), we calculate that 45.02% of fully cut 

tryptic peptides (276,028 out of 613,080 potential peptides in the 7 amino acid to 

10kDa range) are shared in 2 or more proteins, with 90.29% of proteins affected 

by at least 1, and 83.86% by 2 or more shared peptides. In NCBI RefSeq 

(downloaded on June 24, 2017) with 110,382 records and 79,788 unique 

proteins sequences, these numbers are 70.52%, 94.53%, and 93.52% 

(Supplemental Figure 5-A). However, the majority of protein ambiguity in 

empirical data comes from completely indistinguishable protein isoforms of the 



same gene due to partial – and often minimal – coverage of protein sequences in 

all bottom-up experiments. This observation alone suggests that gene-level 

reporting may in fact be a more fair representation of empirical profiling data. It is 

also a prudent option for the emerging wealth of proteogenomics projects, where 

information flows between proteomic, genomic and transcriptomic analysis, and 

selection of representative isoforms among indistinguishable gene-specific 

proteins before comparison may artificially increase the difference between multi-

omic results.  

Once we convert the RefSeq to gene-unique FASTA list (RefProtDB, Methods), 

the theoretical fraction of shared peptides in human is reduced to 2.98%, with 

36.37% and 25.50% of gene products containing at least 1 and 2 shared 

peptides, respectively (Supplemental Figure 5-A). The issue is still exacerbated 

in multi-taxa samples, particularly mouse-based PDXs, where the peptidomes of 

the combined species are similar (Supplemental Figure 5-B). A combined human 

and mouse RefProtDB peptidome with 1,015,856 peptides would theoretically 

have 97.39% of proteins and 85.36% of gene products affected by at least 1 

shared peptide (Supplemental Figure 5-D).  

We then evaluated the shared peptide issue in empirical data. For this, we used 

proteomic profiling experiments of single and mixed human/mouse (PDX-like) 

samples. Specifically, we calculated the effect on counts of shared peptide, 

affected genes and proteins, and the total peak area (per gene product and 

overall). In empirical single-taxon profiling data, an average 4.91% of peptides 

are usually shared between 2 or more genes, affecting 2,454 gene products. 



However, in terms of total peak area, the effect is more substantial with 18.47% 

of total peak are being shared across genes (Supplemental Figure 5-C, Human 

Gene Products Empirical). This is expected as many shared peptides actually 

originate from different gene products, adding to the argument against discrete 

parsimonious allocation - at least with regard to protein level estimation. In mixed 

taxa samples, empirical data shows an average of 44.96% (26,439) of peptides 

as shared and 70.65% area belonging to taxon-ambiguous peptides (n = 3, 

standard error < 0.05 for each measurement) (Supplemental Figure 5-D, HS MM 

Gene Products Empirical). Unsurprisingly, this effect is more pronounced for 

MS1 peak area than spectral counts, of which the latter is expected to saturate 

faster than the former (Supplemental Figure 5-E). 

Supplemental Note 4 - On Definition of the Largest Sequence Coverage. 

For proteins identified by a fully shared pool of peptides, parsimony is 

often used to choose a master assignment based on the largest sequence 

coverage. The largest sequence coverage is frequently defined as percent of 

total FASTA that is covered by found peptides.  

Here we reasoned that the largest number of distinct peptide sequences, 

sans modifications and charge distributions, is the more appropriate definition of 

the "largest" identification set for mass spectrometry data. This is distinct from 

the notion that the protein with the highest percent coverage is the most likely 

observed protein. Therefore, in the case where two proteins are present with an 

equal number of shared peptides with no uniques, both proteins are reported as 



equally likely regardless of percent coverage. However, a situation where smaller 

percent of sequence is represented by larger number of MS peptides can arise. 

For MS-based identifications, more sequence hits provide more certainty than 

coverage. 

Supplemental Note 5 - On Two Cases of IDSet2 GPGroup Assignments.  

IDSet 2 assignments follow into two categories.  

The first trivial case is an identical set of peptides that maps to multiple 

gene loci; this results in one GPGroup with multiple indistinguishable GeneID 

assignments.  

The second possibility is a largest gene-specific peptide set, where 

subsets of peptides map to multiple other genes; this results in a GPGroup with 

one GeneID assignment but, importantly, no unique-to-gene peptides.  

Supplemental Note 6 - On Distribution of PSM and Peptide Counts. 

PSMs and peptide counts are not distributed for the sequences that map to 

multiple gene loci. The reason we opted for counting maximum number of PSMs 

and peptides per gene are three-fold:  

(1) These are technically identities, and identity is strictly speaking not dividable. 

We feel that reporting a total number of identities belonging to the locus gives 

a more clear picture of MS evidence.  

(2) A quantity distribution method is implemented on peptide peak AUC level, 

where it is appropriate. 



(3) Because the distribution procedure is implemented on the peptide peak AUC 

level, we did not see a need to distribute either PSMs or peptide counts that 

are semi-quantitative in nature. 

Supplemental Note 7 - On the Distribution and Aggregation of Peak Areas. 

gpGrouper implements three fundamental types of gene-level summed 

areas: (1) maximum assignable area; (2) summed unique-to-gene peptide only 

area; and (3) distributed area based on the ratios of unique peptides. If there is 

evidence of unique to gene peptides in multiple loci that also share peptides, the 

most likely scenario is that the shared peptide amount is a summed amount from 

multiple loci. Therefore, the actual amount of protein gene product is somewhere 

between unique-to-gene and maximum area values, with distributed area being 

the most reasonable estimate we can provide.  

Alternative implementations of “top” peptide sums or averages have also been 

used in the field (5–7). The current version of gpGrouper does not have these 

options; however, they could be calculated from existing rank annotations in 

PSMs table. The top-to-bottom ranking is done by gpGrouper, and the top n 

peptides can be easily found by their sequence ranks (in the PeptRank column). 

Supplemental Note 8 – On the Composition of Species-Indistinguishable 

Gene Products 

A question arose regarding the composition of species-indistinguishable 

gene products across the human/mouse mixtures. Namely, whether the high 



level of species-shared peptide area (~70%) is primarily due to highly conserved 

and expressed housekeeping genes. At the gene level, 30% of shared peptide 

area is fully indistinguishable between and mouse, with no corresponding unique-

to-gene peptides to aid in redistributing the area across genes and species. This 

30% of total peptide area cannot be allocated to either species and gpGrouper 

splits it by taxon ratio. However, we consistently see an additional roughly 40% of 

shared peptide area that does have corresponding unique-to-human or mouse 

genes. This area is split as in single species, via unique-to-gene peptide area 

ratios. 

We further examined these two groups of gene products through GO 

enrichment via the R packages, DOSE and clusterProfiler (8, 9). First we 

examined human gene products that cannot be discerned between species; 

selecting those that consistently appear in the mixtures (12/15 runs) and in the 

human mixture run independently. We find strong enrichment for chromosome 

and ribosome associated genes – typically associated as housekeeping – and 

exhibit high homology between mouse and human. We performed this same 

analysis on those gene products that are species-discernable without finding 

similar enrichment. Thus, while many genes can be classified as house-keeping, 

a substantial proportion a substantial proportion of species-discernable genes 

with various roles are also present. 

 



References 

1.  Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. a., Olsen, J. V., and 

Mann, M. (2011) Andromeda: A peptide search engine integrated into the 

MaxQuant environment. J. Proteome Res. 10, 1794–1805 

2.  Huang, K.-L., Li, S., Mertins, P., Cao, S., Gunawardena, H. P., Ruggles, K. 

V, Mani, D. R., Clauser, K. R., Tanioka, M., Usary, J., Kavuri, S. M., Xie, L., 

Yoon, C., Qiao, J. W., Wrobel, J., Wyczalkowski, M. A., Erdmann-Gilmore, 

P., Snider, J. E., Hoog, J., Singh, P., Niu, B., Guo, Z., Sun, S. Q., Sanati, 

S., Kawaler, E., Wang, X., Scott, A., Ye, K., McLellan, M. D., Wendl, M. C., 

Malovannaya, A., Held, J. M., Gillette, M. A., Fenyö, D., Kinsinger, C. R., 

Mesri, M., Rodriguez, H., Davies, S. R., Perou, C. M., Ma, C., Townsend, 

R. R., Chen, X., Carr, S. A., Ellis, M. J., and Ding, L. (2017) Proteogenomic 

integration reveals therapeutic targets in breast cancer xenografts. Nat 

Commun. 8, 14864 

3.  Cox, J., Matic, I., Hilger, M., Nagaraj, N., Selbach, M., Olsen, J. V., and 

Mann, M. (2009) A practical guide to the maxquant computational platform 

for silac-based quantitative proteomics. Nat. Protoc. 4, 698–705 

4.  Tyanova, S., Temu, T., and Cox, J. (2016) The MaxQuant computational 

platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 11, 

2301–2319 

5.  Braisted, J. C., Kuntumalla, S., Vogel, C., Marcotte, E. M., Rodrigues, A. 

R., Wang, R., Huang, S.-T., Ferlanti, E. S., Saeed, A. I., Fleischmann, R. 



D., Peterson, S. N., and Pieper, R. (2008) The APEX Quantitative 

Proteomics Tool: Generating protein quantitation estimates from LC-

MS/MS proteomics results. BMC Bioinformatics. 9, 529 

6.  Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., and 

Mann, M. (2005) Exponentially Modified Protein Abundance Index (emPAI) 

for Estimation of Absolute Protein Amount in Proteomics by the Number of 

Sequenced Peptides per Protein. Mol. Cell. Proteomics. 4, 1265–1272 

7.  Silva, J. C., Gorenstein, M. V., Li, G.-Z., Vissers, J. P. C., and Geromanos, 

S. J. (2006) Absolute Quantification of Proteins by LCMS E. Mol. Cell. 

Proteomics. 5, 144–156 

8.  Yu, G., Wang, L.-G., Yan, G.-R., and He, Q.-Y. (2015) DOSE: an 

R/Bioconductor package for disease ontology semantic and enrichment 

analysis. Bioinformatics. 31, 608–609 

9.  Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012) clusterProfiler: an R 

package for comparing biological themes among gene clusters. OMICS. 

16, 284–7 

  



Supplemental Figure Legends 

Supplemental Figure 1. Overview of the Input Data and Processing 

Workflow for gpGrouper Algorithm. 

A (Input). A tab separated PSMs file and a fasta file are provided as inputs. The 

PSMs file can originate from any search engine as long as it contains the 

necessary information of Sequence, Spectrum Score, FDR q-value, MS1 Peak 

Area, and MS2 Reporter Ion Intensities (if applicable). The input fasta file 

critically contains annotations for the GeneID and TaxonID for each protein 

sequence. B (Process). Each PSM record is mapped to and split among all 

potential GeneIDs. If the experiment is isotopic or isobaric, each PSM is further 

split on their isotopic/isobaric labels. If the experiment has gene products from 

more than one taxon, an estimate of the proportion of each taxon is made. For 

each gene product, if unique peptides are present then shared peptides are 

distributed by unique peptide ratios. In the absence of unique peptides, all shared 

peptides are first distributed across species based on the estimated taxon ratios 

(if applicable), and then divided equally across all species-specific genes. C 

(Output). An annotated PSMs (psms table) and gene product table (experiment-

2-gene, “e2g” table) are provided as output. 

 

Supplemental Figure 2. Key parameters in gpGrouper PSMs output tables.  

 



 

Superscripts:  

1user specified integers, or unspecified = 1; 2True=1, False=0; 3 integer flags for 

label free = 0; SILAC (+6) = 1; iTRAQ = 114, 115, 116, or 117; TMT = 126 (for 

126C), 1270 (for 127C), 1271 (for 127N), 1280 (for 128C), 1281 (for 128N), 1290 

(for 129C), 1291 (for 129N), 1300 (for 130C), 1301 (for 130N), or 131 (for 131C). 

 

Supplemental Figure 3. Key parameters in gpGrouper experiment-to-gene 

(e2g) output tables. 

 

Supplemental Figure 4. Panels A-D. Characterization of the Protein Groups 

as Reported By MaxQuant. A/B. Number of GeneIDs per protein group for 

human (A) and human/mouse (B; hs:mm) 1:1 mixed samples. Majority of 

proteins in each protein group map to a single GeneID in the human data. The 

rise in the number of multiple GeneIDs per protein group in the hs:mm data is 

driven by proteins that are indistinguishable between species. C/D. Relationship 

between the number of GeneIDs and proteins within a given protein group for 

human (C) and hs:mm (D) samples shows that many protein groups contain 

multiple proteins that all map to one or few GeneIDs. 

 



Panels E-H. Comparing The Identification and Quantification of Gene 

Products After Grouping by gpGrouper and MaxQuant from Human and 1:1 

Human Mouse Mixture Samples. E. Overlap of gene products identified in 

gpGrouper and MaxQuant at three filtering levels on the gpGrouper data and 1% 

protein FDR on the MaxQuant data for human and 1:1 human mouse mixture 

samples. Strict : IDGroup_u2g ≤ 3 and IDSet < 3 (or IDGroup ≤ 3 if no unique 

peptides), Relaxed : IDGroup_u2g ≤ 5 and IDSet < 3 (or IDGroup ≤ 5 if no unique 

peptides), All : all potential gene products, including IDSet 3. F. Correlation plots 

of gene products identified in both gpGrouper and MaxQuant for human (left) and 

hs:mm (right) samples. Gene products were filtered to those that are IDSet 1 as 

classified by gpGrouper and is only present in one MaxQuant protein group. G. A 

negative correlation between the fraction of peptides in a protein group that are 

"Razor" as reported by MaxQuant and the log10 transformed gene quantification 

ratio in the human:mouse mixture sample is observed. H. For gene products with 

100% "Razor" peptides, a positive correlation between the number of unique 

peptides as identified by gpGrouper and the log10 transformed gene 

quantificaiton ratio in the human:mouse mixture sample is observed. 

 

Supplemental Figure 4, Panels I-J. Characterization of Non-Overlapping 

GeneIds Between gpGrouper Strict and Relaxed Levels and MaxQuant for 

Human Profiling Data. I. Barplots show a lack of strict unique-to-gene peptides 

for gene products reported by MaxQuant only (left) while gene products reported 

by gpGrouper have fewer but higher quality peptides as indicated by strict 



unique-to-gene counts. J. Radviz projection of the non-overlapping GeneIDs 

showing that gpGrouper reports gene products enriched for strict unique-to-gene 

while MaxQuant reports gene products with higher total number of PSMs. 

 

Supplemental Figure 4, Panels K-L. Characterization of Non-Overlapping 

GeneIDs Between gpGrouper Strict and Relaxed Levels and MaxQuant for 

HS:MM Mixture Profiling Data. K. Barplots show a lack of strict-unique-to-gene 

peptides for gene products reported by MaxQuant only (left) while gene products 

reported by gpGrouper have few peptides but of high quality as indicated by strict 

unique-to-gene counts. L. Radviz projection of the non-overlapping GeneIDs 

showing that gpGrouper reports gene products enriched for strict unique-to-gene 

while MaxQuant reports gene products with higher total number of PSMs. 

 

Supplemental Figure 4, Panels M-N. Comparing the Quantification of Gene 

Products in the Human Profiling Data After Grouping by gpGrouper and 

MaxQuant. M. A negative correlation between the fraction of peptides in a 

protein group that are "Razor" as reported by MaxQuant and the log10 

transformed gene quantification ratio in the human:mouse mixture sample is 

observed. N. For gene products with 100% "Razor" peptides, a slight positive 

correlation between the number of unique peptides as identified by gpGrouper 

and the log10 transformed gene quantitation ratio is observed. 



Supplemental Figure 5. Characterization of In Silico Trypsin/P Digestion of 

Proteomes Reported by Different Databases. SwissProt+TrEMBL, NCBI 

RefSeq, RefSeq after mapping to GeneIDs, and empirical results from profiling 

data searched and grouped against NCBI RefSeq after mapped to GeneIDs. 

A/B. Number of protein or GeneID that each peptide maps to in human (A) and 

concatenated human/mouse (B) databases. C/D. For each identifier, the number 

of peptides shared across multiple proteins or GeneIDs for human (C) and 

concatenated human/mouse (D) databases. E. Emprical data for total Spectral 

Counts and AUC for each 1 or more gene in human (left) and human/mouse 

(right) mixtures. n = 3 technical replicates. 

 

Supplemental Figure 6. Comparison of Alternative Methods for Handling 

Species-shared Peptide Peaks for 50% Human Sample to Expected Values 

via the 100% Human Sample. (A) Assume all species shared peptides belong 

to human. (B) Razor peptide peak assignment by which shared peptide 

quantities are assigned to the protein with the largest number of unique peptides. 

(C) Random distribution of shared peptide peaks areas. 

 

Supplemental Figure 7. Metrics for Each Species for all Human/mouse Cell 

Mixture Data. Number of Gene Products (A) and Gene Product Groups (B) that 

are uniquely identified to originate from either human or mouse, or shared across 

species. The number of identified gene products increases with the percentage 



of each species, while the number of species-indistinguishable gene products 

remains roughly constant across dilutions. C,D Number of gene products 

identified across all dilutions and between each dilution and the 100% 

human/mouse sample). E. RMSE between the expected and measured values 

for each quantified human and mouse gene product after filtering for gene 

products identified and quantified across all samples. F. RMSE between the 

expected values (based on 100% human/mouse samples) and the measured 

values for each quantified human and mouse gene product. Note that only gene 

products that were identified and quantified both within the dilution and the 100% 

species sample were included in the counts. G. Percentage of total MS1 peak 

area for PSMs that are shared across multiple genes. PSMs that map to genes 

which also have unique-to-gene peptides are contained within human or mouse 

categories, while PSMs with no corresponding unique-to-gene nor unique-to-

taxon peptide are designated as fully shared.   n = 3 technical replicates. 

 

Supplemental Figure 8. Area Distribution Schematics. A. A theoretical 

scenario in which three gene products (GPs) contain both unique and shared 

peptides. The calculation of the distributed peptide area sum for each gene 

product comprises of the sum of unique peptides and shared peptides after 

weighting by the unique peptide ratio. B. Flowchart for peptide splitting in mixed-

species samples when no unique peptides exist. First, peptides P1 and P2 are 

split by taxon ratios (here 75% human and 25% mouse). Second, P1 and P2 are 



split by the number of mapped genes within each species (here 3 for human and 

2 for mouse). 

 

Supplemental Figure 9. Human/Mouse Ratios and Identifications for WHIM 

PDX Profiles. A. Estimated species percentages for each WHIM PDX from data 

generated and analyzed previously by Huang et al. These are the gpGrouper 

results based on the PSMs table from the Spectrum Mill search performed as 

described in the original publication (PSMs data table available at https://cptac-

data-portal.georgetown.edu/cptacPublic/). B. Estimated species percentages 

from label free profiling data for later passages of WHIM PDX generated and 

analyzed in BCM. These data were searched with Proteome Discoverer/Mascot 

and compiled by gpGrouper. 

 

Supplemental Figure 10. Comparison between Grouping Methods for 4 

PDXs of BCM-4913 Tumor with Drastically Different Stromal Contributions. 

Each PDX for Tumor BCM-4913 was grouped using three different approaches 

for dealing with peptides shared across species: (1) an unbiased approach 

grouping against a human/mouse concatenated RefSeq and distributing peptide 

peaks across species as necessary, (2) ignoring species-shared peptides, and 

(3) assuming all peptides originate from human by grouping with the human 

RefSeq. Scatterplots of the mutually identified gene products are shown in the 

bottom panels, with the Pearson correlations and number of gene products in 



each comparison listed in the upper panels. The diagonal axis labels the 

grouping approach with the number of quantified human gene products. Full data 

for each of these grouping methods available in Supplemental Table 6. 

 

Supplemental Figure 11. Correlation between MS1 Peptide Peak Area and 

Summed Reporter Ion Intensity for TMT SPS Data Used in Figure 3 of Main 

Text. 

 

Supplemental Figure 12. Human Go Cellular Component enrichment for 

Species Indistinguishable (A) and Species Discernable (B) gene products 

consistently observed across human/mouse mixtures. 

 



 Supplemental Figure 1: gpGrouper Pipeline 

return annotated PSMs table (psms table) 

distribute fully shared peptide areas across genes 

split experiments by isotopic labels if isotopic 

split experiments and peak areas by isobaric ratios if isobaric 

estimate taxon ratios from unique-2-taxon peak areas if multitaxa 

distribute fully shared peptide areas across taxa if multitaxa 

distribute shared peptides by unique peptide ratio has unique 
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 Supplemental Figure 2: PSMs Output Table Features 
 

EXPRecNo 
EXPRunNo 

EXPSearchNo 
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PSMAmbiguity 
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PrecursorArea 

q_value 
PEP 

IonScore 
Charge 

*Reporter Intensities 
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LabelFLAG 

IDG 
SequenceModi 

SequenceModiCount 
PSM_UseFLAG 
AUC_UseFLAG 
Peak_UseFLAG 

 
PrecursorArea_split 

SequenceArea 
PrecursorArea_dstrAdj 

PeptRank 
 

GeneID 
GeneIDs_All 

GeneIDCount_All 
ProteinGIs 

ProteinGIs_All 
ProteinGICount_All 

ProteinRefs 
ProteinRefs_All 

ProteinRefCount_All 
HIDs 

HIDCount_All 
TaxonID 

TaxonIDs_All 
TaxonIDCount_All 

numerical experiment identifier (defines sample1) 
serial run number (defines mass spectrometry sequencing run1) 
serial search number (defines search configuration1) 
 
from input: peptide aminoacid sequence 
from input: assignment ambiguity (Default: Unambiguous) 
from input: list of modifications 
from input: peak AUC or equivalent intensity 
from input: Percolator q-Value or other equivalent FDR metric 
from input: PEP or other equivalent probability metric 
from input: Mascot IonScore or other equivalent spectrum score 
from input: precursor ion charge 
from input: isobaric tag reporter intensities 
 
binary flag2 marking original record rows in input 
numeric flag3 marking label type 
IDGroup bin of the PSM 
standardized modification-containing sequence annotation 
count of modifications 
binary flag2 indicating whether the PSM will be counted for e2g 
binary flag2 indicating whether the AUC will be counted for e2g 
binary flag2 marking PSM that represents a distinct peak 
 
precursor are split on reporter ratios 
sum of peak areas for equivalent peptides 
distributed SequenceArea of shared peptides 
MS1 intensity-based rank of peptides (per GeneID) 
 
GeneID assignment (only one GeneID) 
all GeneIDs in a given reference that the sequence maps to 
value count of GeneIDs_All 
Protein GIs (per GeneID) that the sequence maps to 
all protein GIs in a given reference that the sequence maps to 
value count of ProteinGIs_All 
Protein Accessions (per GeneID) that the sequence maps to 
all protein Accessions in a reference that the sequence maps to 
value count of ProteinRefs_All 
Homologene IDs 
value count of HIDs 
TaxonID (per GeneID) 
all TaxonIDs in a given reference that the sequence maps to 
value count of TaxonIDs_All 
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 Supplemental Figure 3: 
 Experiment-to-gene (e2g) Output Table Features 
 

EXPRecNo 
EXPRunNo 

EXPSearchNo 
EXPLabelFLAG 
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GeneSymbol 
GeneDescription 

TaxonID 
PeptidePrint 

GPGroup 
GPGroups_All 

ProteinGIs 
ProteinGIs_Count 

ProteinRefs 
ProteinRefs_Count 

ProteinGI_GIDGroups 
ProteinGI_GIDGroupCount 
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IDGroup 

IDGroup_u2g 
Coverage 

Coverage_u2g 
PSMs 

PSMs_u2g 
PeptideCount 

PeptideCount_u2g 
PeptideCount_S 

PeptideCount_S_u2g 
AreaSum_u2g_all 

AreaSum_max 
AreaSum_dstrAdj 

GeneCapacity 
iBAQ_dstrAdj  

numerical experiment identifier 
serial MS sequencing run number 
serial search configuration number 
numerical identifier for the experiment label channel 
 
NCBI Gene ID (from RefProtDB) 
NCBI gene symbol (from RefProtDB) 
NCBI gene description (from RefProtDB) 
NCBI taxon identifier (from RefProtDB) 
all identified peptide sequences 
serial number for distinct gene-based peptide group 
all gene groups for any of the assignable peptides 
all possible protein GIs for any of the assignable peptides 
count of ProteinGIs 
all possible protein accession numbers 
count of ProteinRefs 
list of gene-specific distinguishable protein isoform groups 
count of protein isoform groups 
 
Strict/Relaxed/All quality bins 
homology/inference set (unique/indistinguishable/subsets) 
best peptide quality 
best unique-to-gene peptide quality 
average coverage of all gene product isoform (by all peptides) 
average coverage of isoforms (by unique-to-gene peptides) 
spectral counts 
unique-to-gene spectral counts 
count of distinct peptide sequences 
count of distinct unique-to-gene peptide sequences 
strict quality distinct peptide sequences 
strict quality distinct unique-to-gene peptide sequences 
sum of all unique-to-gene peptide peak AUCs 
sum of all peptide peak AUCs (shared not distributed) 
sum of all peptide peak AUCs (shared distributed) 
theoretical number of tryptic peptide sequences for the gene 
iBAQ of AreaSum_dstrAdj 
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 Supplemental Figure 6 

A. 
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C. 

no split: estimated AUC with whole value assigned to human origin  

razor: estimated AUC based on razor peptide assignment 

random: estimated AUC by random splitting of peaks (x1000) 
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Tumor BCM-4913 

PDX #1 : 63% Human  PDX #2 : 30% Human  

PDX #3 : 9% Human  PDX #4 : 3% Human  
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