1 Supplementary information:

2 The impact of Arctic sea ice loss on mid-Holocene climate

- 3 Park et al.
- 4
- 5

Sea level pressure in winter (DJFM)

7

8 Supplementary Figure 1: Sea level pressure responses to (a) Arctic sea ice loss and (b)
9 insolation forcing in winter (December–March).

10

Supplementary Figure 2: (a, b) Surface air temperature (K), (c, d) zonal-mean zonal winds
 (m s⁻¹) and (e, f) 100-hPa geopotential height (m) responses to Arctic sea ice loss during (left

15	column: a, c, e) early winter (December – January) and (right column: b, d, f) late winter
16	(February – March). In (c, d), purple lines are climatological-mean zonal-mean zonal winds
17	from the mid-Holocene with pre-industrial sea ice simulation. For all plots, statistically
18	significant values ($p < 0.05$) are hatched.
19	

Supplementary Figure 3: The wintertime (December–March) SAT anomalies in the midHolocene simulation (differences between the mid-Holocene and pre-industrial simulations)
from (a) CESM1, (b) the PMIP3 multi-model average (10 models) and (c) PMIP3 average of
4 warmest models in the Arctic.

Supplementary Figure 4: The annual-mean SST anomalies in the mid-Holocene simulation
(differences between the mid-Holocene and pre-industrial simulations) from (a) CESM1 and
(b) the PMIP3 multi-model average (10 models).

Winter (DJFM): averages of the last 150 years

Supplementary Figure 5: The 20-year running averages of (a) Arctic summer (July– November) sea ice concentration (%) and (b) the wintertime (December–March) 200-hPa zonal-mean zonal wind speed (m s-1) averaged from 65°N to 80°N, for the mid-Holocene (red),

41	the mid-Holocene with pre-industrial sea ice (black), and the pre-industrial control (blue)
42	simulations. The gray shadings indicate the range of 1 standard deviation from the mean of the
43	mid-Holocene with pre-industrial sea ice (black) simulations. The wintertime (December-
44	March) responses of (c , d) surface air temperature (K) and (e , f) zonal-mean zonal winds (m s ⁻
45	¹) to mid-Holocene Arctic sea ice loss (c, e) and insolation forcing (d, f), averaged over the last
46	150 years. Supplmentary Fig. 5(c, d, e, f) are same as Fig. 3(a, b, c, d), except that the averaging
47	periods between these two plots are different (last 150 years vs. last 265 years).
48	
49	
50	
51	
52	
53	

Southern Hemisphere summer (DJFM) sea ice concentration

54

55

Supp. Figure 6: Antarctic sea ice concentration (%) from (a) the mid-Holocene simulation, (b) the pre-industrial simulation and (c) the mid-Holocene simulation with increased ice albedo, during southern hemisphere summer (DJFM). Sea ice concentration differences (d) between mid-Holocene and pre-industrial simulations, i.e. (a)–(b), and (e) between mid-Holocene and mid-Holocene with increased ice albedo simulations, i.e. (a)–(c).

61