SUPPLEMENTARY DATA

RGG-box in hnRNPA1 specifically recognizes the telomere Gquadruplex DNA and enhances the G-quadruplex unfolding ability of UP1 domain

Meenakshi Ghosh¹ and Mahavir Singh^{1,2,*}

¹Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012 ²NMR Research Centre, Indian Institute of Science, Bengaluru, 560012

* To whom correspondence should be addressed

Tel: +91 80 2293 2839; Fax: +91 80 2293 2839; Email: singh@iisc.ac.in

Overview:

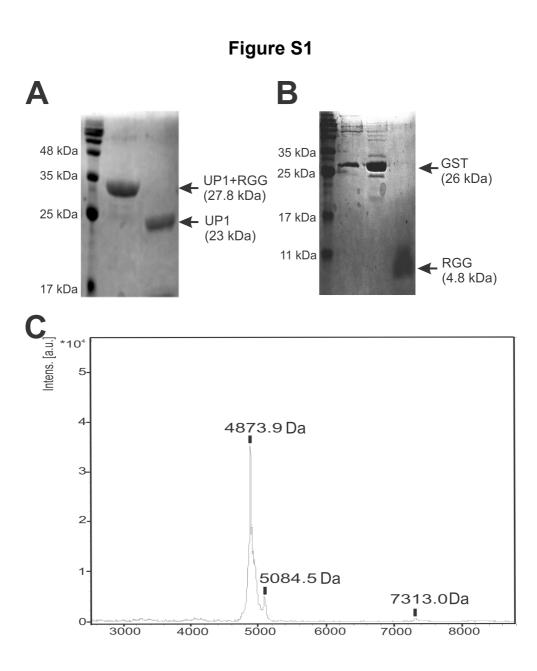
SI Figure 1. Purification of the proteins used in this study.

SI Figure 2. Strip plots showing NMR resonance assignment of the residues present in the RGG-box.

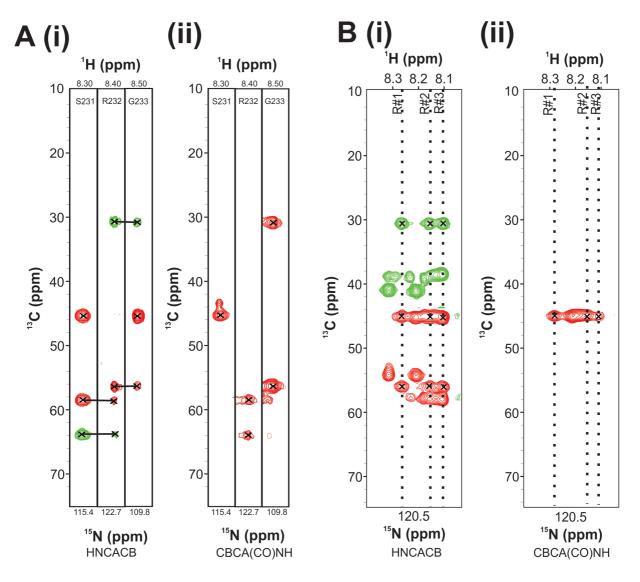
SI Figure 3. Identification of the phenylalanine and tyrosine residues from selectively ¹⁵N unlabeled sample of the RGG-box.

SI Figure 4. Structural characterization of DNA sequences by CD spectroscopy.

SI Figure 5. Imino region of 1D ¹H NMR spectra of DNA used in this study.


SI Figure 6. Arginine residue R#1 undergoes weak chemical shift perturbation upon binding to Tel22 and Tel12.

SI Figure 7. A subset of unassigned residues of the RGG-box that show specific fast exchange chemical shift perturbations upon addition of Tel22DNA.


SI Figure 8. Titration of K^{+} form of Tel22 with UP1 and UP1+RGG and monitored through NMR.

SI Figure 9. Unfolding of the 5'-FAM and 3'-TAMRA labeled Na⁺ form of Tel22 (5'FAM-Tel22-TAMRA3') by UP1 and UP1+RGG monitored by observing the emission of FAM at 516 nM.

SI Table S1. Individual fit dissociation constants (K_d) values determined for residues of the RGG-box for its interaction with Tel22 G-quadruplex DNA.

SI Figure 1. Purification of the proteins used in this study. **(A)** SDS PAGE showing purified UP1 and UP1+RGG proteins. **(B)** SDS PAGE of purified RGG-box after removal of GST-tag and size exclusion chromatography. **(C)** The mass of the RGG-box was further confirmed by MALDI –TOF MS analysis.

SI Figure 2. Strip plots showing NMR resonance assignment of the residues present in the RGG-box. **(A) (i)** HNCACB and **(ii)** CBCA(CO)NH strip plots showing sequential assignment of S231, R232, and G233 residues of the RGG-box. **(B i, ii)** The peaks pertaining to the arginine residues could be identified based on the chemical shift values for the residues and by the presence of the preceding glycine residues in HNCACB/CBCA(CO)NH spectra.

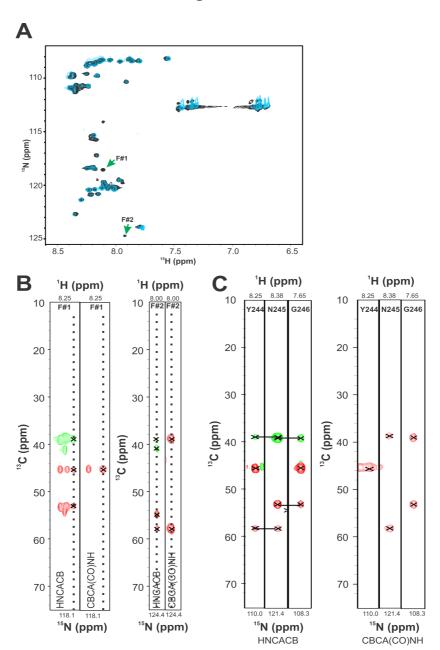
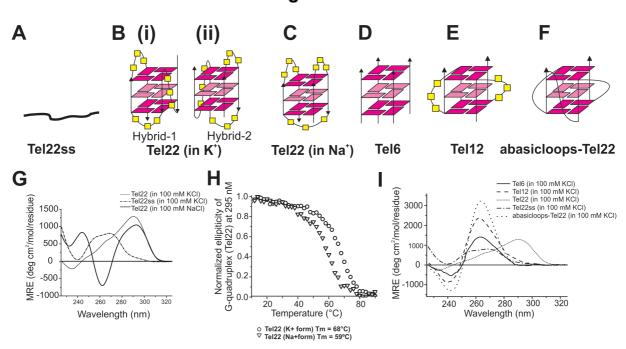
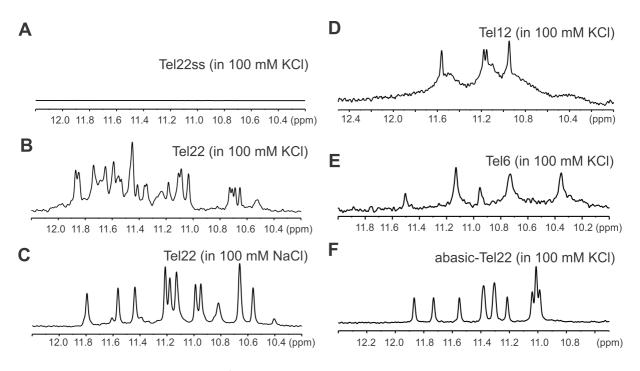
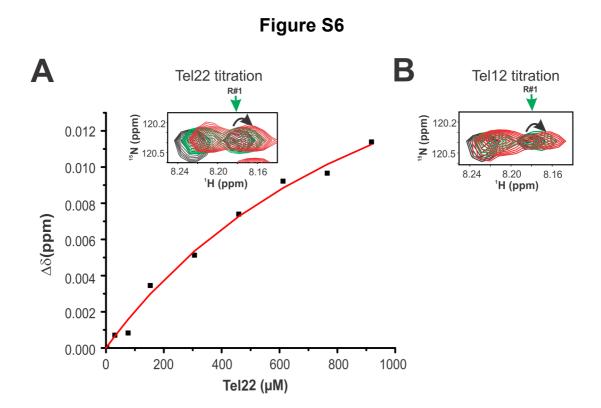
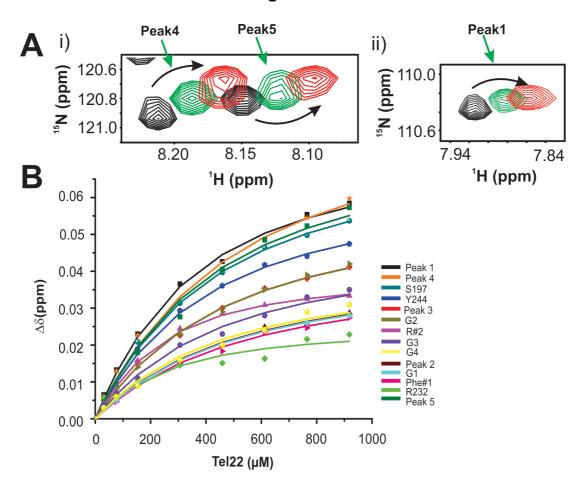
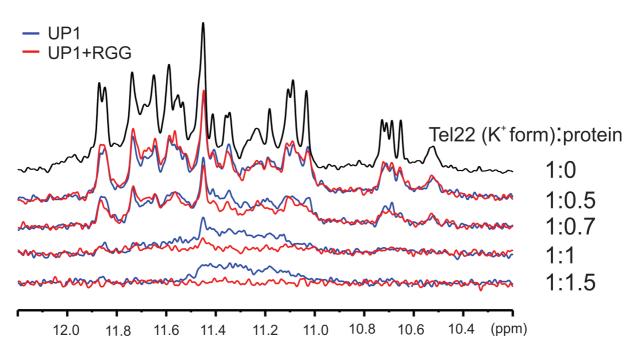
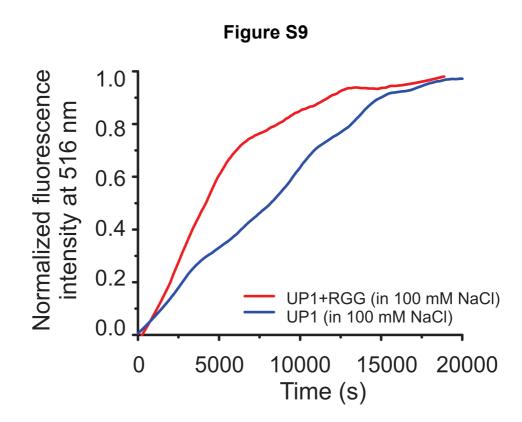




Figure S3


SI Figure 3. Identification of the phenylalanine and tyrosine residues from selectively ¹⁵N unlabeled sample of the RGG-box. **(A)** ¹⁵N -¹H HSQC spectra of selectively Phe unlabeled ¹⁵N RGG-box spectra overlaid on ¹⁵N-¹H HSQC spectra of ¹⁵N uniformly labeled RGG-box. **(B)** HNCACB and CBCA(CO)NH strip plots of identified Phe residues (F#1 and F#2). **(C)** HNCACB and CBCA(CO)NH strip plots showing the assignment of Y244, N245, G246 residues of the RGG-box.


SI Figure 4. Structural characterization of DNA sequences by CD spectroscopy. **(A-F)** Cartoon representation of single stranded Tel22ss **(A)**, Tel22 intramolecular G-quadruplex in KCI **(B (i) and (ii)**), Tel22 intramolecular G-quadruplex in NaCl **(C)**, Tel6 tetrameric Gquadruplex in KCI **(D)**, Tel12dimeric G-quadruplex in KCI **(E)**, and abasicloops-Tel22 intramolecular G-quadruplex in KCl **(F)**. **(G)** CD spectra of Tel22ss and Tel22 in the presence of 100 mM NaCl and KCI. The Na⁺ form of Tel22 shows positive peaks at 295 nm and 245 nm and a negative peak at 265 nm. The K⁺ form of Tel22 shows maxima at 295 nm. Tel22ss does not show any of the characteristic peaks of G-quadruplex formation in either NaCl or KCI. **(H)** CD melting curve of Na⁺ and K⁺ for of Tel22 G-quadruplex monitored at 295 nm by CD spectroscopy. The melting temperature, T_m deduced for both the forms are mentioned. **(I)** CD spectra of Tel22ss and quadruplexes formed by Tel6, Tel12, Tel22 and abasicloops-Tel22 in 100 mM KCI. Tel22 spectrum is characterized by a positive maxima at 295 nm. K⁺ form of Tel6, Tel12 and abasicloops-Tel22 spectra are characterized by positive ellipticity at 260 nm and minima at 240 nm. The spectrum of single stranded Tel22ss is also shown.


SI Figure 5. Imino region of 1D ¹H NMR spectra of DNA used in this study. **(A)** Tel22ss does not show any peak in the imino region, which reinstates the fact that it does not form basepairs and remains in single stranded conformation. **(B-F)** The imino peaks of G-quadruplex formed byTel22 in 100 mM KCI **(B)**, Tel22 in 100 mM NaCI **(C)**, Tel12 in 100 mM KCI **(D)**, Tel6 in 100 mM KCI **(E)** and abasicloops-Tel22 in 100 mM KCI **(F)**.


SI Figure 6. Arginine residue R#1 undergoes weak chemical shift perturbation upon binding to Tel22 (A, inset) and Tel12 (B). The CSPs observed versus added Tel22 DNA concentration for R#1 is plotted. An apparent individual fit K_d of 913.13±33.92 μ M was calculated from this fitting.

SI Figure 7. A subset of unassigned residues of the RGG-box that shows specific fast exchange chemical shift perturbations upon addition of Tel22DNA (**A** (i) and (ii)). (**B**) The CSPs of the residues used for the calculation of the global fit K_d are plotted as a function of added Tel22 DNA.

SI Figure 8. Titration of K^+ form of Tel22 with UP1 and UP1+RGG and monitored through NMR spectroscopy. Imino region of the 1D ¹H NMR spectra of K^+ form of Tel22 are shown at varying DNA to protein ratios. The DNA was titrated with increasing concentration of UP1 (blue) and UP1+RGG (red).

SI Figure 9. Unfolding of the 5'-FAM and 3'-TAMRA labeled Na⁺ form of Tel22 (5'FAM-Tel22-TAMRA3') by UP1 (blue) and UP1+RGG (red) monitored by observing the emission of FAM at 516 nM. 5'FAM-Tel22-TAMRA3' DNA was mixed with 4 molar equivalent of UP1 or UP1+RGG and the emission spectra were recorded over a time period. UP1+RGG proceeds with an unfolding rate of k_{obs} = (1.93±0.01) ×10⁻⁴ s⁻¹ and UP1 proceeds with an unfolding rate of k_{obs} = (0.63±0.01) ×10⁻⁴ s⁻¹, calculated from a single exponential fit of the data in Origin 9.0.

Supplementary Table S1. Individual fit dissociation constant (K_d) values determined for residues of the RGG-box for its interaction with Tel22 G-quadruplex DNA based on the observed chemical shift perturbations.

SI. No.	Residues	Individual fit K _d (in μM)
1	Peak1	263.89±9.19
2	Peak2	399.43±13.72
3	Peak3	375.07±15.49
4	Peak4	406.1±15.9
5	Peak5	349.5±19.7
6	F#1	432.86±15.56
7	S197	346.49±10
8	R232	171.81±34.36
9	Y244	305.18±12.926
10	R#2	150.76±7.31
11	G#1	404.96±7.81
12	G#2	377.23±9.89
13	G#3	348.67±18.08
14	G#4	342.60±23.44
Global fit K _d for all these residue: 349±35 μM		