Supplementary data to:

Developmental and cancer-associated plasticity of DNA
replication preferentially targets GC-poor, lowly expressed
and late-replicating regions

Wu Xial211, Kabalane Hadi311, Kahli Malik!, Petryk Nataliyal, Laperrousaz Bastien34,
Jaszczyszyn Yan®, Drillon Guenola3, Nicolini Frank-Emmanuel6, Perot Gaélle?, Robert
Aude?8, Fund Cédric?, Chibon Frédéric?, Xia Ruohong?, Wiels Joélle8, Argoul Francoisel9,
Maguer-Satta Véronique#, Arneodo Alain?, Audit Benjamin3* and Hyrien Olivier!”

(D Institut de Biologie de I’Ecole Normale Supérieure (IBENS), Département de Biologie,
Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France. (2)
Physics Department, East China Normal University, Shanghai, China. ®) Univ Lyon, ENS de
Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France. )
CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008
Lyon, France. ©) Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université
Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France. (6) Centre Léon Bérard, Lyon,
France. (") INSERM U1218, Institut Bergonié, F-33000, Bordeaux, France.® UMR 8126,
Université Paris-Sud Paris-Saclay, CNRS, Institut Gustave Roussy, Villejuif, France. ) Ecole
Normale Supérieure, PSL Research University, CNRS, Inserm, IBENS, Plateforme Génomique,
75005 Paris, France. 10 LOMA, Université de Bordeaux, CNRS, UMR 5798, Talence, F-33405,
France.

11 The authors wish it to be known that, in their opinion, the first two authors should be
regarded as joint First Authors

*To whom correspondance should be addressed. Tel :33 1 4432 3920; Fax: 33 1 4432
3941; Email: hyrien@biologie.ens.fr. Correspondance may also be addressed to Benjamin
Audit. Tel: 33 4 7272 8691; Email: Benjamin.Audit@ens-lyon.fr.

Present address: [Malik Kahli] Department of Biology, New York University, New York,
NY 10003, USA.

Present address: [Nataliya Petryk] BRIC - Biotech Research and Innovation Centre,
University of Copenhagen, Ole Maalges Vej 5, 2200 Copenhagen N, Denmark.

Present address: [Frédéric Chibon] INSERM U1037 - CRCT, Institut Claudius Regaud,
31037 Toulouse.

Contents:
Figures S1 to S17

Table S1



FPKM
1

FPKM

FPKM

3

GM06990 BL79 IARC385

N 1 H MMFM |

1

T T T

oM
TF1_GFP TF1_BcrAbl_6M K562
o -
‘_' A M | ‘
T T T T T L ﬂ T — T T AL T T T T T T
m
IMR90 TLSE19 IB118
o 4

1
—

B

2 GM06990
) 4 v Y
o " \/ . W N\
s ~/\\y / \\/\«\J// A /
o
— T T T T T T T T T T T T T T T T T T T T T
2 TF1_GFP K562
o N >~ N

J \1/ 7N ‘
2 1 \V\_{:\\ /’V \ “‘,/‘/x
o (VAN /)

N
o
|_i T T T T T T T T T
o 1 ) IMR90
//V /A\'\u/vv\
LN
o
N s

O' 1 T T T T T T T T T
— 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

chromosome 3 (Mb)

Figure S1. Genome-wide profiling of gene expression (A) and replication timing (B).
Shown are RNA-seq (A) and MRT (B) data for the same genomic region and the same cell
lines as in Figure 1A.
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Figure S2. Cell line classification based on correlations between replication and
gene expression profiles for all biological replicates. (Bottom) Correlation matrices
between RFD profiles (C,.,; A) and RNA-seq (C, Acseq) B) profiles. Pearson correlation
coefficient values are colour-coded from blue (0.4) to red (1) using the colour bar on the
right (Materials and Methods). Dark lines separate cell line groups of biological replicates.
(Top) Dendrogram representation of the hierarchical classification of cell lines based on

the corresponding correlation matrix; ordinate is the correlation distance.
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Figure S3. CGH array analysis of GM06990, Raji, BL79, and IARC385. The log2 ratio of
copy number is plotted along the length of each chromosome. Red and blue horizontal
segments indicate copy number losses and gains, respectively.

Methods : Total genomic DNA was extracted from 3-5x10° exponentially growing
GM06990, Raji, IARC385 or BL79 cells by using QIAamp DNA mini Kit (Qiagen) according
to the manufacturer’s manuals. In all experiments, sex-matched normal DNA from a
pooled human female or male (Promega, Madison, WI, USA) was used as a reference.
Oligonucleotide aCGH processing was performed as detailed in the manufacturer’s
protocol (version 7.5; http://www.agilent.com). Equal amounts (500 ng) of tumour and
normal DNAs were fragmented with Alul and Rsal (Fermentas, Euromedex, France). The
fragmented DNAs were labelled with cyanine Cy3-deoxyuridine triphosphate (dUTP) or
Cy5-dUTP. Hybridization was carried out on SurePrint G3 Human CGH Microarray
4x180K (Agilent Technologies, Santa Clara, CA, USA) arrays for 40 h at 65°C in a rotating
oven (Robbins Scientific, Mountain View, CA) at 20 rpm. The hybridization was followed
by appropriate washing steps. Scanning of glass microarrays was performed with an
Agilent G2505C DNA Microarray scanner at 100% PMT with 3 um resolution at 20°C in
low ozone concentration environment. Data were extracted from scanned TIFF images
using the Feature Extraction software (v11.5.1.1, Agilent), along with protocol
CGH_1105_0ct12. All further data manipulation were performed under the R statistical
environment in v3.4 (http://cran.r-project.org). Acquired raw intensities were
normalized by subtracting the respective labelling dye differences, and pre-computed
local GC% content through a lowess regression. Test and reference intensities were then
combined as log2(test/ref) and segmented using the CBS [refCBS] algorithm
implementation from the ‘DNAcopy’ package (v.1.50.1) with default parameters.
Centering of profiles was performed using a in-house method selecting the most-centered
mode in the distribution density of probes’ log2(ratio) values. Aberration status calling
was automatically performed for each profile according to its internal noise (measured as
the half of the median absolute variation of log2(ratio) values across consecutive probes
on the genome).
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Figure S4. RFD correlation analysis is robust to CNVs determined by CGH arrays
and OK-seq coverage. (A) Same analysis as in Figure 2A after filtering out aneuploid
regions determined by CGH array analysis in lymphoid cell lines (Figure S3). (B)
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TF1 cell lines based on OK-seq coverage.
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Figure S5. Cell line classification based on correlations between replication and gene
expression profiles for each chromosome. Correlation matrices between RFD profiles
(Crep ; A), RNA-seq (Crna-seq ; B) and MRT profiles (Cygrr ; C); Pearson correlation
coefficient values are colour-coded from blue (0.4) to red (1) using the colour bar on the
right. A corresponding dendrogram representation of the hierarchical classification of cell
lines is shown on top of each correlation matrix; ordinate is the correlation distance.

The results obtained for the entire genome were recapitulated for each chromosome,
with the following minor exceptions. Lymphoid, myeloid and adherent cells formed three
separate RFD clusters, except that for chromosome 19, HeLa clustered with myeloid rather
than adherent cells, and for chromosome 16, HeLa was equally distant from both groups.
Distances within and between groups were conserved, except that for chromosome 22,
myeloid cells were closer to adherent than to lymphoid cells, and for chromosome 17,
[ARC385, rather than GM06990, was the most distant among lymphoid cells. As to RNA-seq
data, the clustering of HeLa with myeloid rather than adherent cells was again observed for
each chromosome, although for chromosomes 10 and 11 HeLa appeared equidistant from
myeloid and adherent cells. In addition, IMR90 clustered with HelLa and myeloid cells
rather than adherent cells for chromosomes 6 and 20, and was equidistant from both
groups for chromosomes 13, 14, 18 and 21. As to MRT data, the global classification was
reproduced for each chromosome except that the branching point of HeLa and K562 was
somewhat unstable.
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Figure S6. Hierarchical clustering of the 12 RFD profiles depending on GC-content.
Dendrogram representations of the hierarchical classification of cell lines is shown on top
of the same correlation matrices as in Figure 4A-E.
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Figure S7. Analysis of the scale dependence of the cell line classification based on
RFD profiles. Correlation analysis and hierarchical classification of RFD profiles was
performed as in Figure 2A at 10kb, 100 kb, 200 kb and 1 Mb scales. The same classification
of cell lines was obtained at all scales.
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Figure S8. Analyses of the scale dependence of the mean correlation difference
between isochore- and global genome-based RFD correlation matrices. The mean
values of correlation differences ACkpp = Chpp — Crep (Where I can be L1, L2, H1, H2 or H3)
were computed for each isochore as in Figure 4F-] at 10kb, 100 kb, 200 kb and 1 Mb scales.
The mean correlation differences increase with GC-content at all analysis scales.
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Figure S9. Transcription program conservation for regions with different GC-content.
Same as Figure 4 but using RNA-seq data instead of RFD data.
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Figure S10. The largest RFD changes between 1 month and 6 months of BCR-ABL1
expression are observed in GC-poor, lowly-expressed and late replicating regions.
Same as Figure 5 but for the largest RFD changes between TF1-BCRABL-1M and TF1-

BCRABL-6M.
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Figure S11. RNA-seq (A) and MRT (B) profiles of the same 2Mb regions of the same cell
lines as in Figure 6.
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Figure S12. Initiation zones efficiency changes in response to 1 month of BCR-ABL1
expression are observed in GC-poor, lowly-transcribed and late replicating regions.
Same as Figure 8 but using transcription (B) and MRT (C) data from TF1-GFP instead of
TF1-BCRABL-1M.
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Figure S13. Initiation zones efficiency changes between 1 month and 6 months of BCR-
ABLI1 expression are observed in GC-poor, lowly-transcribed and late-replicating regions,
except for weakened IZs which show the opposite tendency. Cumulative distribution
functions (cdf) of GC content (A), transcription in TF1-BCRABL-6M (FPKM6M) (B) and MRT
in TF1-BCRABL-1M (C) computed in non-overlapping 200 kb windows of the 22 autosomes
(Materials and Methods). Cdfs were determined for all windows (all, black) or limited to
windows with Silenced (blue), Weakened (green), Enhanced (violet) and New (red) IZ
between 1 month and 6 months BCR-ABL1 expression.
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Figure S14. Weakened initiation zones between 1 month and 6 months of BCR-ABL1
expression are associated with transcription repression. (A) Logio-ratio of FPKM
values in TF1-BCRABL-6M over TF1-BCRABL-1M as a function of their logio (geometric)
mean. FPKM values were computed in non-overlapping 200 kb windows. Only windows
expressed in both cell lines were considered (FPKM > 0.01). Windows containing at least
one weakened IZ at Step 2 are in orange, the rest is in blue. (B) Cdf of the FPKM logo-ratios
for windows with FPKM (geometric) mean > 0. Blue and orange, as in (A).
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Figure S15. The largest RFD changes in early replicating regions between 1 month
and 6 months of BCR-ABL1 expression are associated with transcription repression,
but transcription changes do not predict RFD changes. (A,B), Same as Figure S14A,B but
for all early replicating regions (MRT < 0: 33). The 5% with the largest RFD changes are in
orange, the rest is in blue. (C) Cdf of ARFDeu'M between TF1-BCRABL-6M and TF1-
BCRABL-1M for windows with FPKM (geometric) mean > 0. Results in green, red and
purple correspond to the 5% of the regions plotted in blue with the largest absolute FPKM
ratio,the largest FPKM ratio and the lowest FPKM ratio, respectively.
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Figure S16. Copy number chromosomal profiles of TF1 cell lines determined by OK-

seq coverage. OK-seq coverage (log2(cRPKG)) is plotted along the length of each

chromosome. Stable and unstable diploid and triploid regions are colour-coded (by 100 kb

bins) as in Figure 9.
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Figure S17. Relative densities of the different types of I1Z efficiency changes at Step 1
(A) and Step 2 (B) of CML progression according to ploidy evolution at Step 2. Same as
Figure 11C,D but after decomposing Stable and Unstable regions according to initial ploidy.



TF1-BCRABL-1M
Active 1Z Inactive 17 Total
TF1-GFP Enhanced Weakened Silenced
Active 1Z 127 260 39 426
New
Inactive 1Z 50 - 50
Total 437 39 476
TF1-BCRABL-6M
Active IZ Inactive 17 Total
TF1- Enhanced Weakened Silenced
BCRABL-1M
Active 1Z 123 514 86 723
New
Inactive 1Z 51 - 51
Total 688 86 774
K562
Active 1Z Inactive 1Z Total
TF1- Enhanced Weakened Silenced
BCRABL-6M
Active 1Z 157 230 315 702
New
Inactive 1Z 14 - 14
Total 401 315 716

Table S1. Database of replication initiation zone efficiency changes. Summary of the
manual annotation of RFD profiles for changes in IZ efficiency between TF1-GFP and
TF1-BCRABL-1M (top), TF1-BCRABL-1M and TF1-BCRABL-6M (middle) and, TF1-
BCRABL-6M and K562 cell lines (bottom). Note that for the latter case, only the 1027
loci presenting an IZ efficiency change in at least one of the first two comparisons were
analysed. IZ change types (New, Enhanced, Weakened and Silenced) were organised to
highlight the active or inactive status of IZ in each cell line.
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