Supplemental Data

Evaluation of oral anticoagulants with vitamin K epoxide reductase in its native milieu

Xuejie Chen, Da-Yun Jin, Darrel W. Stafford, and Jian-Ke Tie

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill,

North Carolina 27599, USA

Correspondence: Jian-Ke Tie

Department of Biology

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599, USA

Email: jktie@email.unc.edu

The Supplemental Data includes:

Supplemental Tables 1 to 6

Supplemental Figure 1 to 3

Supplemental Table 1	Comparison of inhibition	efficiency of clinical	used VKAs on	VKOR activity
----------------------	--------------------------	------------------------	--------------	----------------------

VKAs	IC₅₀ (nM)	R square
Warfarin	5.1 ± 0.5	0.9963
Phenprocoumon	4.2 ± 0.6	0.9934
Fluindione	6.6 ± 0.7	0.9964
Acenocoumarol	0.81 ± 0.11	0.9936

 IC_{50} is calculated by GraphPad Prism and presented as mean \pm SD

(Standard Deviation).

R square: correlation coefficient.

VKOR mutations	EC₅₀ ± SD (nM)	VKOR mutations	EC₅₀ ± SD (nM)
Wide-type	27.6 ± 1.9	S56F	24.4 ± 1.9
A26P	40.8 ± 4.9	R58G	26.6 ± 0.8
A26T	22.2 ± 2.7	W59R	42.0 ± 5.3
L27V	28.8 ± 1.6	W59C	43.9 ± 6.9
H28Q	20.4 ± 2.4	W59L	35.2 ± 1.6
V29L	37.3 ± 3.7	V66G	37.3 ± 3.1
A34P	32.2 ± 4.8	V66M	29.1 ± 3.3
D36G	28.1 ± 2.5	H68Y	26.1 ± 1.7
D36Y	26.6 ± 3.4	G71A	26.1 ± 3.8
A41S	22.3 ± 2.0	N77S	30.0 ± 2.8
V45A	24.1 ± 2.4	N77Y	27.9 ± 3.4
S52L	35.8 ± 4.4	I123N	25.5 ± 4.1
S52W	31.4 ± 4.8	L128R	55.2 ± 5.1
V54L	26.2 ± 2.4	Y139H	63.5 ± 5.3

Supplemental Table 2 EC₅₀ of KO for naturally occurring VKOR mutations

Supplemental Table 3 Apparent Vmax and Km of VKOR reducing KO under different fluindione concentrations determined by cell-based assay

Fluindione (nM)	Vmax (nM/min, x10⁵)	Km (nM)
30	109.1 ± 1.5	626.6 ± 24.8
15	127.0 ± 2.7	544.8 ± 34.9
7.5	137.1 ± 2.5	486.9 ± 28.1
3.75	133.3 ± 4.5	322.6 ± 37.4
1.88	127.2 ± 5.9	163.1 ± 30.1
0.94	126.7 + 3.2	69.5 ± 8.1
0	146.9 ± 2.3	53.6 ± 4.0

Supplemental Table 4 R square of fitting fluindione inhibition of VKOR by non-linear regression with different inhibition models

Eluindiono (nM)		Inhibition model			
	Competitive	Noncompetitive	Uncompetitive	Mixed type	
30	0.9344	0.8246	0.7411	-	
15	0.9823	0.8908	0.8327	-	
7.5	0.995	0.8995	0.8731	-	
3.75	0.9622	0.9095	0.9158	-	
1.88	0.9392	0.9347	0.9469	-	
0.94	0.9751	0.8913	0.8594	-	
0	0.9597	0.7294	0.6388	-	
Global (shared)	0.9722	0.892	0.8613	Ambiguous	

Supplemental Table 5 Apparent Vmax and Km of VKOR reducing KO under different warfarin concentrations determined by cell-based assay

Warfarin (nM)	Vmax (nM/min, x10⁻⁵)	Km (nM)
20	80.3 ± 1.4	970.0 ± 45.0
10	112.1 ± 3.8	851.6 ± 78.1
5	139.0 ± 5.3	616.6 ± 69.0
2.5	140.0 ± 8.7	364.4 ± 76.1
1.25	152.8 ± 8.8	168.5 ± 38.2
0.625	172.7 ± 6.2	79.7 ± 12.7
0	188.7 ± 2.2	49.7 ± 2.7

Supplemental Table 6 R square of fitting warfarin inhibition of VKOR by non-linear regression with different inhibition models

Warfarin (nM)	Inhibition model			
	Competitive	Noncompetitive	Uncompetitive	Mixed type
20	0.8562	0.5966	0.3454	0.9517
10	0.9204	0.708	0.4868	0.9852
5	0.9638	0.8035	0.6526	0.9892
2.5	0.9026	0.8239	0.7486	0.9191
1.25	0.9266	0.9117	0.9068	0.9367
0.62	0.8737	0.953	0.9452	0.9373
0	0.9686	0.8898	0.8268	0.9911
Global (shared)	0.9545	0.9178	0.8741	0.9752

Supplemental Figure

Supplemental Figure 1 Half-maximal inhibition (IC₅₀) of clinically used VKAs for the naturally occurring VKOR mutations. For a better visualization, data from Table 1 were presented as column charts for side-by-side comparison. W: warfarin, P: phenprocoumon, A: acenocoumarol, F: fluindione.

Supplemental Figure 2 Fitting kinetics data of fluindione inhibition of VKOR to different inhibition models by non-linear regression using GraphPad Prism. Experimental data are the same as in Figure 5A.

Supplemental Figure 3 Fitting kinetics data of warfarin inhibition of VKOR to different inhibition models by non-linear regression using GraphPad Prism. Experimental data are the same as in Figure 5D.