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Supplementary Methods 

 

PATIENT SAMPLES 

DNA was extracted from samples obtained from first-line CML patients with the Agilent DNA 

extraction kit #200600.  For patients from the PACE trial, genomic DNA was extracted with the 

QIAamp RNA blood kit (Qiagen) via a custom protocol at MolecularMD (Portland, OR).  

Mutation gains in the PACE trial were defined by Sanger sequencing of baseline samples and 

end of treatment samples or surrogate end of treatment samples (last visit prior to treatment 

discontinuation).  Our analysis of mutation gains in PACE patients was restricted to 

appropriately consented patients with both baseline and end of treatment sequencing results.  

Specifically, among all PACE patients, we required (i) availability of both baseline and end of 

treatment Sanger sequencing, (ii) on-treatment mutation gain, and (iii) appropriate consent for 

high-sensitivity molecular genetics testing.  Specific consent language varied among trial sites, 

and overall 30 out of 49 potentially eligible patients had completed consent which was 

considered to allow Duplex Sequencing.  “Treatment failure” in first-line CML patients (1,2) was 

defined according to European LeukemiaNet guidelines (3) (e.g. BCR-ABL1/ABL1>10% at 6 

months or >1% at 12 months).  BCR-ABL1/ABL1 transcript ratios were determined by RT-PCR.  

In the TOPS trial, beta-2-microglobulin was used as the control gene rather than ABL1.  These 

values were converted to BCR-ABL1/ABL1 as previously described (4).  Patient information is 

shown in Supplementary Table 4. 

DUPLEX SEQUENCING 

Duplex Sequencing of the ABL1 gene from genomic DNA was performed essentially as 

previously described (5,6).  Duplex Sequencing data analysis has been described (5), and 
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software for data analysis can be found at the following website: 

https://github.com/loeblab/Duplex-Sequencing  All mutations were individually inspected in 

the Integrative Genomics Viewer (7).  Germline polymorphisms (i.e. variants having allele 

fraction of 50%-100% which are listed in dbSNP) were excluded from analysis.  All mutations 

identified are shown in Supplementary Table 6.  Mutation frequency was calculated by dividing 

the total number of unique mutations identified by the total number of Duplex nucleotides 

obtained.  Only unique mutations were counted in the numerator, as observing the same 

mutation twice in a sample with a low mutation burden is unlikely to reflect two independent 

mutational events, but rather is expected to indicate a single mutational event with subsequent 

clonal expansion.  This calculation likely under-estimates the mutation frequency in the RT-PCR 

amplified samples, as the high error rate of RT-PCR resulted in mutations in a large fraction of 

the positions in the sequenced target. 

RT-PCR 

To determine the extent of artefactual mutations introduced by RT-PCR amplification, nested 

reverse transcription PCR of ABL1 exons 4-8 (codons 199-456) was performed as previously 

described (8), followed by Duplex Sequencing without hybrid capture (9).  Read depth was poor 

at amino acid positions 265-274.   These positions (which encompass only a single previously 

reported resistance mutation, L273M), were excluded from analysis, resulting in 733 nucleotide 

positions that were evaluated for each of the RT-PCR samples.  RT-PCR error frequency was 

determined by dividing the total number of unique mutations identified by the total number of 

nucleotides sequenced (e.g. 323 unique mutations seen upon sequencing of 6.1x106 

nucleotides corresponds to an error frequency of 5.3x10-5 errors per nucleotide sequenced). 

https://github.com/loeblab/Duplex-Sequencing


 3 

PHASING OF COMPOUND MUTATIONS 

Ion Torrent PGM sequencing of a 400bp region of the ABL1 kinase domain was performed on all 

baseline samples for which Sanger sequencing presented an ambiguous interpretation of the 

sequencing result, and in all patients with putative triple mutants.  We used the method of 

Deininger et al. (10) to determine the phasing of point mutations in individual patients.  

Compound mutations were not phased in Duplex Sequencing analyses, as Duplex Sequencing 

utilizes relatively short fragments of randomly sheared DNA (average fragment size ~200 

nucleotides). 

PREDICTION OF RESISTANCE POPULATION SIZES 

To be eligible for a population size prediction, patients had to have a visible reduction in BCR-

ABL1 levels and a visible rebound. A visible difference was defined as a reduction of one log of 

molecular response and one log of molecular relapse. Of 30 patients who had a change in 

mutation status at the end of treatment, 12 gained and lost one log of molecular response, and 

had quantitatively measurable molecular response (i.e. no CMR where BCR-ABL1/ABL1 levels 

are undetectable) at all time points.  Starting from the last local minimum of molecular 

response, we then fit the log-linear model: 

log10(𝑌𝑌) = 𝑚𝑚𝑚𝑚 + 𝑏𝑏 

 

where Y is the BCR-ABL1/ABL1 measurement, t is time, and m and b are parameters to describe 

the response.  Note that BCR-ABL1/ABL1 levels are directly proportional to cell number (11).  

Assuming exponential growth, which has been shown in 2 prior studies (12,13), i.e. 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘 

it can be shown that 

𝑘𝑘 = 𝑚𝑚
log10(𝑒𝑒)

  . 

 

The same log-linear model was used to derive the decay parameter for the sensitive regime of 

the molecular response. 

In order to determine if resistant cells were present at the start of treatment, simulations were 

run using a joint stochastic-deterministic branching process model.  The tau-leaping method 

(14,15) was used to stochastically simulate subpopulations of fewer than 104 cells.  The birth-

death dynamics of larger subpopulations were modeled using deterministic ordinary 

differential equations for the sake of computational efficiency, as was done in Bozic et al. (16). 

The differential equations used to describe the stochastic birth-death process are as follows: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽 + 𝜇𝜇𝜇𝜇 

The net decay of the sensitive population and net growth of the resistant populations as 

determined by the log-linear fit of the molecular response were used to determine the division 

and death frequencies of both subpopulations.  The mutational frequency was the same as 

prior work and is set to be 4e-7 (13).  The stem cell size (i.e. the proportion of the sensitive 

population capable of seeding a resistant population) was assumed to be 1/1000 of the 

measured tumor burden (a highly conservative measure considering the discussion later in this 

supplement).  The initial sensitive population was the measured white blood cell count at the 
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start of treatment assuming 5 L of peripheral blood in the body.  To compare the patient 

response with the predicted response given the counterhypothesis that there were no resistant 

cells at the start of treatment, the initial resistant population was set to zero.  With these 

parameters and initial conditions, the branching process model was simulated 100 times for 

each patient using MATLAB. 

The simulated responses were then translated from subpopulation size in cells to equivalent 

BCR-ABL1/ABL1 levels using the equation: 

𝑌𝑌 =
𝑅𝑅𝑅𝑅
𝑃𝑃

 

 

where R is the predicted resistant population size, T is the final measured transcript level, and P 

is the final measured tumor burden. 

For nearly all patients, the predicted molecular response lagged several hundred days behind 

the observed response.  In fact, in many instances, spontaneously arising resistant clones failed 

to seed a clinically-detectable subpopulation at all.  These results suggest that the counter 

hypothesis that there were no pre-existing resistant cells at the start of treatment is unlikely to 

be true. 

PREDICTION OF MUTATIONAL EVENTS 

Patient specific simulations 

Each patient entering the PACE trial with a baseline mutation that is detectable by Sanger 

sequencing has a leukemia population size P in the peripheral blood that can be estimated 

because each patient had a known white blood cell (WBC/liter) count w, a starting disease 

allele frequency given by nested PCR from Sanger sequencing S, and an initial allele frequency 
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given by genomic DNA pull down and Duplex Sequencing D.  Thus, the leukemia population size 

in the peripheral blood P is approximately 𝑃𝑃 = 𝑤𝑤 � 𝑆𝑆
100
� �𝐷𝐷

50
� ∗ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿). Patient specific 

mutation burdens B are measured as the absolute count of unique mutations m (regardless of 

allele frequency) per genome (g) per bp sequenced (b) and is described as: 𝐵𝐵 = 𝑚𝑚/(𝑔𝑔𝑔𝑔) . B is 

an estimate of the success rate of the discovery of new mutations as more and more unique 

genomes are sequenced. However, since m is rare (much less than 0.5), we modeled the 

distribution of the success probabilities using the beta distribution: B ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑚𝑚,𝑔𝑔𝑔𝑔).  We did 

this because the Clopper-Pearson Exact Confidence Interval can be derived from a beta 

distribution. Thus simulating B using the beta distribution gives a conservative estimate of the 

distribution of potential success rates of mutation discovery in an individual patient. The 

success rate of mutation discovery B and the population size P can be used to parameterize a 

binomial distribution: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀~𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵;𝑚𝑚� ,𝑃𝑃). We then modeled the occurrence of 

mutational events 𝑚𝑚�  as a Bernoulli process.  We simulated the estimated total number of 

mutational events 𝑚𝑚�  in a population size P using patient specific estimates of m, g and b. to 

initiate a simulation in R we used the rbeta() and rbinom() functions in the {stats} package  Each 

unique mutational event 𝑚̀𝑚 within the total number of estimated mutational events 𝑚𝑚�  is then 

assigned randomly to a particular mutation at a particular codon position c1j……cbj where b is 

the total length the kinase domain that is measured by Duplex Sequencing.  At each position ci 

3 different nucleotide substitutions denoted as j may take place.  Thus, the total number of 

unique mutational events that a mutation can be assigned to is 3*b.  The likelihood of each of 

the 12 nucleotide substitutions on the sense strand (A>C, T>G, etc.) is approximated from all of 

the Duplex Sequencing data across all of the patients sequenced. This gives us an estimate of 
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the biases of mutational processes within the ABL1 gene within Ph+ malignancies in situ.  The 

number of each type of mutational event Xij is then simulated according to a multinomial 

distribution:Pr (�𝑝𝑝𝑖𝑖𝑖𝑖 … . . 𝑝𝑝𝑏𝑏𝑏𝑏�; �𝑋𝑋𝑖𝑖𝑖𝑖….𝑋𝑋𝑏𝑏𝑏𝑏�,𝑚𝑚�). We recorded the absolute number of total 

mutational events, the number of predicted double mutants, the proportion of codon 

substitutions observed and the specific number of T315I, E255K, E255V and other mutations.  

These are supplied per patient per simulation and were used to generate the boxplots in figure 

4.  Notably, we simulate mutational events, not population sizes.  Clearly, a lack of fitness at a 

particular residue, and the exact generation at which a given mutation occurs is necessary to 

simulate the population structure of resistance.  We do however know that resistance 

mutations like T315I do not have large fitness disadvantages, so the number of mutational 

events at the T315I position will tend to underestimate the population size because it will not 

account for rare situations when the mutational event occurs early in clonal expansion. 

Probabilities are provided in Supplementary Table 6. 

LEUKEMIA INITIATING CELL FRACTION 

Leukemia initiating cell fractions can be experimentally defined by determining the number of 

patient cells needed for engraftment in immunodeficient mice.  Injection of cells from human 

CP-CML patients into sub-lethally irradiated SCID mice requires a cell dose of >8E7 for efficient 

engraftment, while BP-CML cells engrafted at all tested levels (1-4x107 cells) (17).  In a second 

study, >=5x107 CP-CML cells are needed for consistent engraftment into NOD/SCID mice (18), 

with almost no engraftment at a dose of 2x107 cells.   

In contrast to the large number of CP-CML cells required for engraftment, John Dick and 

colleagues have reported that cells from Ph+ ALL patients engraft in immunodeficient mice with 
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high efficiency (19).  Samples from 18 out of 20 patients studied engrafted with a cell dose of 

<=1x106.  10 of the patient samples led to rapidly progressive disease after transplantation; 

these samples engrafted all recipient mice tested, even when transplanted at near-limiting 

doses.  Limiting dilution analysis performed across multiple patient samples was consistent with 

leukemia initiating cell fractions ranging from 1/10 to 1/1x106.  Consistent with the high burden 

of leukemia initiating cells indicated by this study, in a murine model of Ph+ ALL, as few as 20 

cells can produce a rapidly fatal disease within weeks (20).   

The fraction of leukemia initiating cells can also be estimated by mathematical modeling. CP-

CML is observed to have a biphasic response after initiation of therapy with an initial, relatively 

rapid drop in tumor burden by 2-5 orders of magnitude followed by a much slower decrease in 

tumor burden.  Under the assumption that the initial phase turnover of differentiated cells 

while the second phase reflects turnover of leukemia initiating cells, Werner et al. (21) 

determined the number of leukemia-initiating cells in individual patients, which resulted in an 

estimate of 1 leukemia-initiating cell for every 104-1012 total cells. Ph+ ALL, in contrast, does not 

have a biphasic response curve, which implies a much higher burden of leukemia initiating cells. 

PARAMETER SWEEPS FOR PH+ ALL VERSUS CP-CML 

To examine the complete landscape of pre-existing mutational events, we used the pbinom() 

function in R to calculate low and high estimates of the confidence intervals for mutation 

burden across all patients in both disease type. Simulations were performed as in individual 

patients, except that we explored the full range of possible parameters that are relevant in the 

different diseases. To simulate the phenotypic heterogeneity, we accounted for the leukemia 

initiating fraction. So instead of P we adjust by the stem cell proportion to create a smaller 
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effective population size Ps . For Ph+ ALL we simulated mutation burdens between 2X10-7 and 

3X10-6 . Leukemia initiating fractions between 1/10 and 1/106 and population sizes between 108 

and 1011.  For CP-CML we simulated mutation burdens between 4X10-8 and 6x10-7 . Leukemia 

initiating fractions between 1/1000 and 1/107 and population sizes between 108 and 1011.  We 

assumed that mutation burdens, which were measured in the bulk population, are the same as 

those in the sub-population of cells which comprise the leukemic cell population.  Simulation 

values are given as Supplementary Data 1. 

To provide for a more quantitative comparison of the role that stem cells may play in resistance 

in Philadelphia positive malignancies, we sought to go beyond parameter exploration and do 

statistical tests for the role of the tumor initiating fraction across all mutation burdens 

measured in this study.  To do this we decided on a single metric of initiating fraction, cells that 

are capable of re-seeding an immune-compromised mouse. This experiment has been 

performed by the Dick lab for both CP-CML and Ph+ ALL. We reasoned that a single 

experimental definition of initiating fraction performed by the same group would give a 

reasonable approximation of of initiating fraction in these two diseases. Thus, we performed 

simulations as described above, but instead of exploring all possible parameters, we sampled 

the tumor initiating cell fraction from an eCDF generated from the engraftment assays of Notta 

et al 2011 (for Ph+ ALL) and Lewis et al. 1998 (for CP-CML). Population size in the simulations 

was 1011 and mutation burden was that observed across CML and ALL. At all levels of mutation 

burden, we simulated 1000 individuals. We plotted the proportion of these individuals 

containing pre-existing T315I mutations in Figure 5C. We did this for both Ph+ ALL and CP-CML 
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eCDFs of initiating cell numbers.  We then compared the difference in counts (simulations with 

a pre-existing T315I mutation at baseline) for the two disease types using a Fisher’s Exact Test. 

PREDICTION OF COMPOUND RESISTANCE 

Putative ponatinib compound resistance mutations were taken from prior reports (22,23).  The 

total number of compound mutations for any simulation parameter set is recorded during a 

simulation.  This incidence of any compound mutation is then corrected by the probability that 

a compound mutation is resistant.  The estimated probability of compound resistance utilizes 

the single site probabilities derived for equation 6 �𝑝𝑝𝑖𝑖𝑖𝑖 … . .𝑝𝑝𝑏𝑏𝑏𝑏�.  The set of compound 

resistance mutations that were considered potential resistance mutations is I315M, 

T315I/E255V, T315I/E255K, T315I/M351T, T315I/G250E, Q252H/T315I, Y253H/T315I, 

F317L/T315I, Y253H/E255V, E255V/F317I.  I315M is considered a compound mutation as two 

distinct nucleotide substitutions need to occur for this variant to arise.  To calculate the total 

probability of compound resistance, individual mutations were assumed to be independent.  

Under this assumption, the probability of compound resistance is simply the product of the 

probability of the mutation at each position.  The total probability of any compound resistance 

is then the sum of these individual compound resistance probabilities. ∑ 𝑝𝑝𝑖𝑖𝑝𝑝𝑏𝑏𝐿𝐿
𝑘𝑘=1 Where L is the 

total number of putative compound resistance mutations, and pipb represents the product of 

the probability of each of the 2 independent resistance alleles. 

ESTIMATION OF THE PROBABILITY OF DISCOVERING T315I 

We approximated the process as a pure birth discrete generation branching process.  The 

number of cells N can be thought of as an effective number of generations.  This effective 
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generation number is defined as the number of measurable productive generations. This is 

approximately: 

~𝐿𝐿𝐿𝐿𝐿𝐿2(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

and it is bounded by the integer values above or below the result. 

Thus, to estimate the cumulative probability of an individual detected mutation occurring at or 

below a certain detection threshold we use the equation: 

CPT=∑ 2(𝑖𝑖−1)𝑙𝑙𝑙𝑙𝑙𝑙2( 1
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

𝑖𝑖=1 /(𝑁𝑁 − 1)   

1/Tolerance gives the effective population size when a mutation occurred.  For instance, if the 

tolerance that is sequenced to is ~1 in 524,000 genomes, then the mutation must arise at or 

before the 19th effective generation.  Thus, summing equation 9 from 1st generation (i) to the 

19th generation (i) gives the cumulative probability of detecting a mutational event occurring at 

or before the 19th generation in a population of size N.  Next, given the same population size N 

and the output of the simulations from equation 6 (parameterized for the average CP-CML 

patient 1011 cells and 3X10-7 mutation burden) we simulate the expected number of T315I 

mutational events that would exist in an average CP-CML leukemia (regardless of stem cell 

fraction) since the observed T315I mutation frequency is independent of cellular phenotype.  

This is approximately 20,000 T315I events.  Next we model every T315I mutation as a binomial 

process where a success occurs if that mutation arises at or before the ith generation that 

defines the sequencing Tolerance.  Thus, the probability of 0 T315I successes occurring before 

the threshold generation can be calculated from the binomial distribution by using CPT as the 

probability of success in each of 20,000 independent mutation trials. 
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SENSITIVITY ANALYSIS 

While we do not have mutation burden measurements in frontline Ph+ ALL patients in this 

study, it is difficult to hypothesize that they would have a substantially higher burden than 

treatment refractory Ph+ ALL patients, or less mutation burden than frontline CP-CML patients.  

Thus, we believe the present study can be interpolated to provide conservative biological upper 

and lower bounds for frontline Ph+ ALL mutation burden.  To investigate the influence of 

mutation burden on our conclusions, we performed a sensitivity analysis by permuting CP-CML 

mutation burden measurements with Ph+ ALL stem cell fractions and vice versa.  This result 

(Supplementary Figure 7), suggests that the largest determinant of pre-existing resistance is 

the stem cell burden.  In the presence of a CP-CML mutation burden, most Ph+ ALL simulation 

parameter sets still indicate that resistance mutations pre-exist.  Thus, even without frontline 

Ph+ ALL data, if one uses CP-CML data as a conservative lower bound for mutation burden, we 

suggest that most plausible frontline Ph+ ALL parameter sets are likely to indicate pre-existing 

resistance.  
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