SUPPLEMENTARY INFORMATION

THE AER2 RECEPTOR FROM VIBRIO CHOLERAE IS A DUAL PAS-HEME OXYGEN SENSOR

Suzanne E. Greer-Phillips¹, Nattakan Sukomon^{2,3}, Teck Khiang Chua³, Mark S. Johnson¹, Brian R. Crane³, and Kylie J. Watts^{1#}

RUNNING TITLE: V. cholerae Aer2 is a Dual PAS-Heme O2 Receptor

¹Division of Microbiology and Molecular Genetics Loma Linda University Loma Linda, CA, 92350, USA

²Current address: Department of Anesthesiology Weill Cornell Medical College New York, NY, 10065, USA

³Department of Chemistry and Chemical Biology Cornell University Ithaca, NY, 14850, USA

*Corresponding author:
Telephone: +1 (909) 558-1000 x83394
Fax: +1 (909) 558-4035
Email: kwatts@llu.edu

Fig. S1. Average percentage of *E. coli* BT3388 (A-F) and *E. coli* UU2610 (F) cells tumbling in the presence of full-length and N-terminally-truncated *Vc*Aer2 proteins. All cultures contained 25 μ g ml⁻¹ ALA and were induced for 2 h with 200 μ M IPTG. Percentages represent steady-state tumbling in air (A-F) and in N₂ (A-E). All signal-off receptors in (B) are represented by the one set of bar graphs. Compared with WT *Vc*Aer2, the signal-on biased receptors containing W151F and W276L (D) both had 20-50 sec smooth-swimming delays in N₂ that are represented by an asterisk.

A. Steady-state levels of full-length VcAer2 proteins and N-terminal truncation mutants compared with full-length WT VcAer2 after inducing with 50 μ M IPTG. VcAer2-W151E and VcAer2-W151R were instead induced with 200 μ M IPTG.

B. Steady-state levels of the N-terminally truncated PAS1-2 peptides containing H226A compared with *Vc*Aer2-H226A [1-282] after inducing with 50 μM IPTG.

C. Steady-state levels of WT PAS1 [38-157] and PAS2 [165-282] peptides compared with WT VcAer2 [1-282] after inducing with 100 μ M IPTG.

D. Steady-state levels of PAS1 peptides compared with WT PAS1 [38-157] after inducing expression with 100 μ M IPTG. PAS1-W151E, PAS1-W151N, and PAS1-W151R were instead induced with 200 μ M IPTG.

E. Steady-state levels of PAS2 peptides compared with WT PAS2 [165-282] after inducing expression with 100 μ M IPTG.

Fig. S3. Example gas titrations using 10 μ M purified PAS1 [38-157] or PAS2 [165-282] peptides.

A-B. WT deoxy-PAS1 (A) and deoxy-PAS1-W151L (B) peptides titrated with 5 μ l aliquots of air-saturated buffer. WT PAS1 and PAS1-W151L both bind O₂.

C-D. WT deoxy-PAS2 (C) and deoxy-PAS2-W276L (D) peptides titrated with 5 µl aliquots of air-saturated buffer. PAS2-W276L shows rapid oxidation to met-heme (with a soret maximum of 415 nm). The designation of met-heme instead of oxy-heme, was verified spectrophotometrically after oxidizing PAS peptide with potassium ferricyanide and comparing the spectra.

Fig. S4. Homology molecular surface models of the PAS1 and PAS2 domains of *Vc*Aer2, showing differences in electrostatic potential surrounding the heme pocket (red, negative charge; blue, positive charge). PAS1 (B) has a more negative potential within the heme pocket than PAS2 (A).

Wavelength (Å)	0.62790
Resolution range	27.16 - 1.67 (1.73 - 1.67)
Space group	P 3 ₂ 2 1
Unit cell dimensions	
a, b, c (Å)	62.51, 62.51, 157.02
α, β, γ (°)	90, 90, 120
Unique reflections	42171 (4,146)
Completeness (%)	99.60 (98.15)
Wilson B-factor	24.16
R-work	0.2070 (0.3376)
R-free	0.2411 (0.3648)
Number of non-hydrogen atoms	3022
Macromolecules	2569
Ligands	129
Protein residues	336
RMS(bonds)	0.012
RMS(angles)	1.09
Ramachandran favored (%)	99.39
Ramachandran allowed (%)	0.61
Ramachandran outliers (%)	0
Rotamer outliers (%)	0.36
Clashscore	8.69
Average B-factor	30.25
Macromolecules	29.44
Ligands	24.11
Solvent	39.04

Table S1. Data collection and refinement statistics for VcAer2 PAS2-W276L