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Supplementary Software 1 

The design tool consists of three MATLAB files. The master file, CRAMtool.m, contains the 

design tool’s functions. The file, CRAMtool.fig, contains the content necessary to launch the 

graphical user interface (GUI). The file, images.mat, contains various images required for the 

GUI. Please click on the following URL or paste the URL directly into a browser to download 

the three required files. Once they have been downloaded, put them all into the same folder on 

your computer and click on the CRAMtool.m file to open it with MATLAB. Once the file is 

open, run it to launch the tool.  

(https://github.com/jonathanbhopkins/Compliant-Rolling-contact-Architected-Materials-for-

Shape-Reconfigurability.git) 

 

Supplementary Note 1: Angular stiffness and maximum stress of ideal CRJs 

This section analytically proves that CRJs would achieve zero angular stiffness and 

would not increase in their internal stress as they are rotated over their full range if their straps 

(i) are fabricated to be perfectly straight with no variation in their geometry or constituent 

properties, (ii) are deformed over perfectly circular cylinders, (iii) are the exact length 

required to prevent them from becoming loose or being stretched when the joints are 

assembled, and (iv) successfully guide their cylinders with perfect rolling-contact motion 

without stretching or slipping. 

                                                 
1Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095 USA 
∗Corresponding author, (email: hopkins@seas.ucla.edu) 
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Consider a CRJ that consists of alternating layers like the layer shown in Supplementary 

Fig. 1. Suppose that the CRJ’s straps are fabricated to be the exact length, Lexact, required to 

wrap around their corresponding cams without becoming sloppy or needing to be stretched 

when the joint is assembled. This length is defined by 

exact b1 1 b2 2
π π

2 2 2 2
t tL R Rβ β     = + − + + −     

     
,                                       (1) 

where Rb1 is the base-circle radius of Cam 1, t is the thickness of the strap, β1 is the fixed 

angle that defines where the strap attaches to Cam 1 as labeled in Supplementary Fig. 1, Rb2 is 

the base-circle radius of Cam 2, and β2 is the fixed angle that defines where the strap attaches 

to Cam 2. As long as the CRJ’s straps are fabricated with this length (i.e., Lexact), the total 

strain energy, Ujoint(Φ2), stored in the joint as a function of how much Cam 2 has rotated, Φ2, 

from its originally assembled angular position relative to Cam 1 is given by  

( )joint 2 layer 2 layer 2( ) ( / 2) ( ) ( )U O U UΦ = Φ + −Φ ,                                       (2) 

where O is the number of layers that constitute the joint and alternate according to the pattern 

shown in Fig. 1b, and Ulayer(Φ2) is the total strain energy stored in each individual layer. This 

strain energy is defined with respect to the coordinate system shown in Supplementary Fig. 1 

as 

1 2 2
3 π

layer 2 1 2π
p1 1 p2 2

1 1( )
24 ( ) ( )

EWtU d d
R R

β β

ψ ψ
φ φ

φ φ
− Φ −

−

 
Φ = +  

 
∫ ∫ ,                           (3) 

where E is the Young’s modulus of the layer’s constituent material, W is the layer’s out-of-

plane thickness, ψ is the angle between the x-axis and the line that connects the centers of 

both cams, Rpi(ϕi) is the pitch radius of Cam i defined as Rpi(ϕi)=Rbi(ϕi)+(t/2), and Rbi(ϕi) is the 

base-circle radius of Cam i as a function of the angle ϕi, labeled in Supplementary Fig. 1, 

where i is either 1 or 2 corresponding to either Cam 1 or Cam 2. Note that supplementary 

equation (2) and (3) are general for CRJs with cams of any shape—not just circles. 

Supplementary equation (3) was derived1 under the assumption that the layer’s strap is 
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initially fabricated straight with no stored strain energy and possesses no variation in its 

thickness, width, or material properties along its length. For CRJs consisting of perfectly 

circular cams like the one shown in Supplementary Fig. 1, supplementary equation (3) 

simplifies to 

3
1 2 1

layer 2
p1 p2

π π( )
24

EWtU
R R
β ψ β ψ − − Φ − − +

Φ = +  
 

,                                      (4) 

because Rbi(ϕi) would remain constant as ϕi varies. If the straps within each layer perfectly 

enforce rolling-contact kinematics so that the cams are not permitted to slip as they rotate 

according to 

p2
2

p1 p2

π
2

R
R R

ψ
 

= Φ +  + 
,                                                     (5) 

supplementary equation (4) reduces to 

( ) ( )3
1 2 2 2

layer 2
p1 p2

π 2 π 2
( )

24
EWtU

R R
β β − −Φ − +Φ

Φ = +  
 

.                                   (6) 

If supplementary equation (6) is used in conjunction with supplementary equation (2), the 

total strain energy, Ujoint(Φ2), stored in the CRJ as a function of Φ2 is found to be 

3
1 2

joint 2
p1 p2

π 2 π 2( )
48

OEWtU
R R

β β − −
Φ = +  

 
.                                          (7) 

Note that this strain energy remains constant as Cam 2 rotates to various angular positions 

(i.e., as Φ2 changes) and thus no moment is required to rotate the joint. We have, therefore, 

proven that CRJs will achieve zero rotational stiffness if their straps satisfy the ideal 

conditions specified at the beginning of this section.  

The maximum stress, σmax(Φ2), experienced by CRJs that satisfy the same ideal 

conditions is σmax(Φ2)=Et/(2Rps), where Rps is equal to whichever cam’s pitch radius, Rpi, is 

the smallest. Thus, unlike other traditional compliant joints (e.g., Fig. 1a) that increase in 

stress as they rotate, the maximum stress within ideal CRJs remains constant as Φ2 changes 
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over the joint’s full range of motion. Thus, the ranges of CRJs are not limited by the yield 

strength of their constituent materials. 

Although the derivations of this section assume ideal conditions, the general theory that 

governs how CRJs behave without such assumptions for any loading scenario is provided in 

Supplementary Note 2. 

 

Supplementary Note 2: Modeling the behavior of CRJs 

This section provides the analytical theory required to model the full nonlinear behavior 

of general CRJs for any loading scenario. The geometric parameters used to model the 

behavior of CRJs are labeled in Fig. 5e. The CRJ strap thickness is t, the base-circle radii of 

the CRJ’s cams for i=1 or 2 are Rbi. The angles between the lines defined by where the straps 

attach to their cams and the horizontal lines that pass through the centers of the cams after 

they are assembled are βi. The gap distances between the straps and the parallel features cut 

from corresponding cams to facilitate fabrication feasibility are δi. The number of strap-

thickness lengths, t, over which the straps attach to the perimeter of their cams’ base circles is 

C. The angles between the pair of lines that intersect the centers of the cams at either end of 

the cams’ parallel fabrication features are αi. These angles are defined according to 

( )1
b bcos ( ) /i i i iR Rα δ−= − . The fabricated lengths of the CRJ’s straight straps are Lo=L-Δ, 

where L is the length of the straps once the CRJ is assembled and Δ is the amount that the 

straps are stretched during assembly. The assembled length, L, is defined according to 

( ) ( ) ( ) ( )p1 1 p1 1 1 p2 2 p2 2 22 sin / 2 (π / 2) 2 sin / 2 (π / 2)L R R R Rα α β α α β= + − − + + − − ,           (8) 

where Rpi are the pitch radii of the CRJ’s cams defined by Rpi=Rbi+(t/2) for i=1 or 2. The 

width of each alternating layer within the CRJ is W. 

We will now derive the equations that relate the relative locations (i.e., x2 and y2 labeled 

in Fig. 5(f, g)) and angular orientation (i.e., Φ2) of Cam 2 with respect to Cam 1 to the loads 
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that would need to be imparted on Cam 2 to move it there. To this end, we will consider two 

scenarios—tension and compression. 

The tension scenario, shown in Fig. 5f, occurs when D≤0, where 

( ) 2 2
p1 p2 2 2D R R x y= + − + .                                                     (9) 

For this scenario, the angle over which the strap is bent around Cam 1, θ1, is  

1 1 1 1πθ ψ λ α β= − − − − ,                                                     (10) 

where the angle ψ, labeled in Fig. 5a, is  

( )1 2 2
2 2 2cos /x x yψ −= + .                                                  (11) 

Note that the x2 variable is shown as a negative value in Fig. 5a according to the coordinate 

system defined at the center of Cam 1. The angle λ1 from supplementary equation (10), 

labeled in Fig. 5a, is 

( )( ) ( )( )1 2 2
1 2 p1 p1 p1 2 2 p1 p2 p1 p2cos /R R R x y R R R Rλ λ −   = = + + − + +    

.              (12) 

The angle over which the strap is bent around Cam 2, θ2, is 

2 2 2 2 2πθ ψ λ α β= − − − − +Φ ,                                                (13) 

where the angle λ2, labeled in Fig. 5a, is defined in supplementary equation (12), and Φ2 is 

how much Cam 2 has rotated from its originally assembled position relative to Cam 1. 

The tension, T, in the strap at any location within one of the CRJ’s layers can be derived 

by applying equilibrium to an infinitely small portion of the strap curved around either cam as 

shown in Supplementary Fig. 2a2. In addition to experiencing a changing tensile force, dT, 

along its axis, this strap portion would experience a normal force increment, dN, from the cam 

around which it is bent, and a force increment, μdN, caused by the friction between the strap 

and the cam as shown. Note that μ is the static coefficient of friction of the CRJ’s material. 

According to principles of force equilibrium 

( ) ( ) ( )cos / 2 cos / 2 0T dT d T d dNθ θ µ+ − − =                                   (14) 



    

7 
 

and 

( ) ( ) ( )sin / 2 sin / 2 0dN T dT d T dθ θ− + − = .                                  (15) 

Using small-angle approximations, supplementary equation (14) simplifies to dN=dT/μ. By 

applying this equation with supplementary equation (15) and using more small-angle 

approximations, supplementary equation (15) simplifies to (dT/dθ)=Tμ. By solving the 

resulting differential equation, it can be shown that the tension in the straight portion of the 

strap between the two cams, Ts, (i.e., the tension at point P labeled in Fig. 5f) is  

   1 2
s α1 α2T T e T eµθ µθ= = ,                                                     (16) 

where Tαi are the tensions in the straight portions of the strap between the angles αi on either 

cam for i=1 or 2, and θ1 and θ2 are defined in supplementary equation (10) and (13) 

respectively. Thus, according to supplementary equation (16) 

( )2 1
α1 α2T T eµ θ θ−= .                                                        (17) 

The total amount that the strap is stretched, S, for a given position of Cam 2 (i.e., for 

certain values of x2, y2, and Φ2) is 

α1 α2 θ1 θ2 sS d d d d d= + + + + ,                                               (18) 

where dαi are the distances the strap is stretched in the regions between the angles αi on either 

cam for i=1 or 2 according to 

( )( ) ( )α α p2 sin / 2i i i i td T R E tWα= .                                           (19) 

The Et parameter in supplementary equation (19) is the tensile Young’s modulus of the strap. 

The values dθi in supplementary equation (18) are the distances the strap is stretched in the 

regions bent over the cams between the angles θi for i=1 or 2 according to 

p α p α
θ 0

t t

1i
i i i i i

i

R T e R T ed d
E tW E tW

µθ µθθ
θ

µ
 −

= =  
 

∫ .                                         (20) 

The distance that the straight portion of the strap is stretched between the two cams, ds, in 

supplementary equation (18) is 
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( ) ( )2
s in α2 td L T e E tWµθ= ,                                                     (21) 

where Lin is the initial length of that portion of the strap before the joint is assembled or 

loaded, and is defined according to 

( ) ( )in o p1 1 p2 2 p1 1 p2 22 sin / 2 2 sin / 2L L R R R Rα α θ θ= − − − − .                       (22) 

The total amount that the strap is stretched, S, from supplementary equation (18) can also be 

defined as 

s inS L L= − ,                                                             (23) 

where Ls is defined as 

( ) ( )s p1 p2 1tanL R R λ= + .                                                   (24) 

Thus, as long as S>0, the tension in the straight portion of the strap on Cam 2, Tα2, between 

the angle α2 can be derived by combining supplementary equation (17)-(21) and (23) 

according to 

( )
( )( ) ( )( ) ( ) ( )

2 1

2 1 2

t s in
α2

2 1
p2 p2 p1 p1 in

1 1
2 sin 2 sin

2 2

E tW L L
T

e e
R R R R e L e

µθ µθ
µ θ θ µθα α

µ µ
−

−
=

    − −       + + + +               

,         (25) 

where Ls is given in supplementary equation (24) and Lin is given in supplementary equation 

(22). Note that Tα2=0 if S≤0. 

The tension, Tα2, is the magnitude of three forces, shown blue in Fig. 5f, that the strap 

imparts on Cam 2 at its position defined by x2, y2, and Φ2. One of these forces acts at point OA 

and the other two forces act at point OB. The effects of two of these forces cancel because 

they are equal in magnitude and point in opposite directions along the same line of action. The 

remaining force acts on Cam 2 at point OB, and its component along the x-axis, FOBx, is given 

by 

( )OBx α2 sinF T= ϒ ,                                                    (26) 

where 
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2 2 2β αϒ = Φ − − .                                                      (27) 

The component of the same force along the y-axis, FOBy, is given by 

( )OBy α2 cosF T= − ϒ .                                                  (28) 

The moment, MOBz, resulting from this force acting at point OB on Cam 2 about the coordinate 

system shown in Fig. 5f is 

( )( ) ( )( )OBz OBy 2 p2 OBx 2 p2cos sinM F x R F y R= + ϒ − + ϒ .                      (29) 

The sum of the normal force increments, dN, shown green in Fig. 5f, from the strap on 

Cam 2 can be determined by recognizing that supplementary equation (15) simplifies to 

dN=Tdθ using small-angle approximations. Thus, the component of force along the x-axis, 

FNx, that results from summing these increments together can be derived using this equation 

and supplementary equation (16) according to 

( ) ( ) ( ) ( ) ( ) ( )
( )22

2 2α2
Nx α2 2

sin cos sin cos2cos
1 2 2
T eF T e d

e e

µ
µ ζ

µ µ θθ

µ θ µ θ
ζ ζ

µ

ϒϒ ϒ−
ϒ ϒ−ϒ−

    ϒ − ϒ ϒ − − ϒ − 
= − = − −      +      
∫ ,   (30) 

where ζ is defined in Fig. 5f. The component of the force along the y-axis, FNy, that results 

from summing the same increments together can be derived similarly according to 

( ) ( ) ( ) ( ) ( ) ( )
( )22

2 2α2
Ny α2 2

sin cos sin cos2sin
1 2 2
T eF T e d

e e

µ
µ ζ

µ µ θθ

µ µ θ θ
ζ ζ

µ

ϒϒ ϒ−
ϒ ϒ−ϒ−

    − ϒ − ϒ − ϒ − − ϒ − 
= − = − −      +      
∫ .   (31) 

The moment, MNz, resulting from this force on Cam 2 about the coordinate system shown in 

Fig. 5f is 

Nz 2 Ny 2 NxM x F y F= − .                                                 (32) 

The sum of the force increments, μdN, shown purple in Fig. 5a, from the friction between 

the strap and Cam 2 on Cam 2 can be similarly calculated. The component of force along the 

x-axis, Ffx, that results from summing these friction increments together is 

( ) ( )
2

fx α2 NysinF T e d Fµ ζ

θ
µ ζ ζ µ

ϒ ϒ−

ϒ−
= = −∫ .                                  (33) 
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The component of the force along the y-axis, Ffy, that results from summing the same friction 

increments together can be derived similarly according to 

( ) ( )
2

fy α2 NxcosF T e d Fµ ζ

θ
µ ζ ζ µ

ϒ ϒ−

ϒ−
= − =∫ .                                    (34) 

The moment, Mfz, resulting from this force on Cam 2 about the coordinate system shown in 

Fig. 5f is 

( )2
fz 2 fy 2 fx b2 α2 1M x F y F R T eµθ= − − − .                                       (35) 

There is also a pure moment, which acts on Cam 2, that is produced by the strap because 

it is bent. This moment can be determined by calculating the strain energy in the strap due to 

bending. This energy, Ubend, is  

bend θ OA OB OE OFU U U U U U= + + + + ,                                        (36) 

where Uθ is the bending energy stored in the strap as a result of it being bent around both 

cams over the angles θi. By using a similar approach to that introduced in Supplementary 

Note 1, this energy is determined to be  

3
1 2

θ
p1 p224

EWtU
R R
θ θ 

= +  
 

.                                                  (37) 

Since the straps within each layer will enforce rolling-contact kinematics about the point 

where the alternating straps crisscross (i.e., the point P labeled in Fig. 5a), we can apply 

pp2
2

pp1 pp2

π
2

R
R R

ψ
 

= Φ +  + 
,                                                  (38) 

to supplementary equation (10) and (13) to change supplementary equation (37) to  

( ) ( )3
1 1 1 2 2 2 2 2

θ
p1 p2

π 2 π 2
24

EWtU
R R

λ α β λ α β − − − −Φ − − − +Φ
= +  

 
,                        (39) 

where Rppi from supplementary equation (38) are the distances from the centers of each Cam i 

to the point P, labeled in Fig. 5f. These distances are    

( ) ( )2 2
pp p 2 2 p1 p2i iR R x y R R= + + .                                              (40) 
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The energies UOA and UOB from supplementary equation (36) are the bending energies that 

result from the tensioned strap being sharply bent at the points OA and OB, labeled in Fig. 5f. 

These energies can be calculated according to 

( )( )2
OA OB hinge 22 2U U K α= = ,                                                 (41) 

where Khinge can be approximated as the stiffness of a compliant living hinge according to3  

( )
2 4

hinge 4
1 0.21 1

2 1 3 12
EWt t tK

v W W
   

= − −     +    
,                                         (42) 

where ν is the Poisson’s ratio of the CRJ’s material. The bending energies UOE and UOF from 

supplementary equation (36) result from the tensioned strap being sharply bent at the points 

OE and OF, labeled in Fig. 5f. These energies can be calculated according to 

( )( )2
OE OF hinge 12 2U U K α= = .                                              (43) 

The pure moment, Mm2, that would need to be imparted on Cam 2 to counteract the moment 

imposed by the strap on Cam 2 due to the total bending energy in the strap, Ubend from 

supplementary equation (36) can be determined by taking the derivative of this energy with 

respect to the rotation of Cam 2, Φ2, relative to Cam 1 according to 

3
bend

m2
2 p2 p1

1 1
24

dU EWtM
d R R

 
= = −  Φ  

.                                            (44) 

Note that although the derivatives of all of the energies in supplementary equation (36) 

become zero except for dUθ/dΦ2, we will later show that other regimes within the tension 

scenario exist where the bending energies at the various points OA, OB, OE, and OF would 

have an effect. 

Thus, the total force component along the x-axis, F2x, the total force component along the 

y-axis, F2y, and the total moment, M2z, that would need to be collectively imparted on Cam 2 

to hold the single CRJ layer shown in Fig. 5f in static equilibrium at the location, x2 and y2, 

and the orientation Φ2, would be 

( )2x OBx Nx fxF F F F= − + + ,                                                     (45) 
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( )2y OBy Ny fyF F F F= − + + ,                                                     (46) 

and 

( )2z OBz Nz fz m2M M M M M= − + + + .                                            (47) 

To determine the total load that must be imparted on a full CRJ consisting of O 

alternating layers in the tension scenario depicted in Fig. 5f such that the entire joint will be in 

static equilibrium at the location, x2 and y2, and the orientation Φ2, the loads determined using 

supplementary equation (45)-(47) must be calculated for each layer and summed together. To 

determine the loads on the layers with straps that crisscross with the straps from the layers 

shown in Fig. 5f, the same equations provided above can be used but where x2=-x2, y2=y2, and 

Φ2=-Φ2. The resulting loads calculated must also be changed before they are summed with the 

other loads such that F2x=-F2x, F2y=F2y, and M2z=-M2z. Note that this analysis only works if all 

out-of-plane loads cancel because the layers alternate according to the pattern shown in Fig. 

1b and the number of layers, O, is a multiple of four. Finally, note from supplementary 

equation (39) and (44) that as long as the straps are bent around both cams such that θ1 and θ2 

are greater than zero for all the layers within the CRJ, the moments from each alternating 

layer due to strap bending, Mm2, will always cancel so that the only loads imparted on Cam 2 

that have any effect on the joint’s stiffness are those caused by the strap being stretched. 

We will now consider the compression scenario shown in Fig. 5g that occurs when D>0 

(see supplementary equation (9)). For a given x2 and y2 that satisfy D>0, the magnitude of the 

compression force, Fc, imparted on Cam 2 from Cam 1 shown in Fig. 5g as well as the 

distance over which the cams are compressed flat, b, can both be calculated by simultaneously 

solving the following two equations, which are adaptations from Hertzian-contact theory4. 

These equations are 

2
c b1 b2 c

c c

2 8 81 2 ln ln
π 3

F R R F tD
W E b b E Wb

ν  −    = + + +     
     

                                  (48) 

and 
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( )( ) ( )( )2
c c b1 b24 2 (1 ) / / π (1/ ) (1/ )b F E W R Rν= − + ,                                   (49) 

where Ec is the compressive Young’s modulus of the CRJ material. Once these values are 

known, the same geometric-compatibility equations used for the tension scenario (i.e., 

supplementary equation (10)-(13)) apply to the compression scenario except that 

supplementary equation (12) is replaced by 

( )( )1
psin 2i ib Rλ −=                                                       (50) 

such that λ1 and λ2 are no longer equal for different-sized cams. A free body diagram of the 

loads acting on the straight portion of the strap that is sandwiched between the two cams of 

Fig. 5g is shown in static equilibrium in Supplementary Fig. 2b. Note that μFc are the friction 

forces generated between the strap and the cams, and MOC,bend and MOD,bend are the bending 

moments imposed on the strap due to the fact that the tensioned strap is bent sharply at points 

OC and OD. The free body diagram of Supplementary Fig. 2b proves that the tension in this 

portion of the strap, Ts, remains constant over its length. Thus, the same equations used to 

calculate the tension in the strap at any location for the tension scenario (i.e., supplementary 

equation (14)-(25)) apply to the compression scenario except that supplementary equation 

(24) is replaced by Ls=b. Furthermore, the loads imparted by the tensioned strap on Cam 2 

that were derived for the tension scenario (i.e., supplementary equation (26)-(35)) apply to the 

compression scenario except that additional loads exist for the compression scenario. 

The tension, Ts, is the magnitude of two forces, shown red in Fig. 5g, that the tensioned 

strap imparts on Cam 2 at point OC. The component along the x-axis, FOCx, of both of these 

forces summed together is given by 

( ) ( )( )OCx s 2sin sinF T θ ψ= − ϒ − + .                                          (51) 

The component of the same force along the y-axis, FOCy, is given by 

( ) ( )( )OCy s 2cos cosF T θ ψ= ϒ − + .                                          (52) 
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The moment, MOCz, resulting from the same force acting at point OC on Cam 2 about the 

coordinate system shown in Fig. 5g is 

( ) ( )OCz OCy p1 1 OCx p1 1cos sinM F R F Rψ λ ψ λ= − − − .                            (53) 

Additionally, the component of the compressive force along the x-axis, Fcompx, shown black 

and labeled with its magnitude, Fc, in Fig. 5g is given by 

( )compx c cosF F ψ= .                                                    (54) 

The component of the same force along the y-axis, Fcompy, is given by 

( )compy c sinF F ψ= .                                                    (55) 

Note that no moment is applied to Cam 2 by this compressive force about the coordinate 

system shown in Fig. 5g.  

There is also a pure moment, which acts on Cam 2, that is produced by the strap because 

it is bent. This moment can be determined by calculating the strain energy in the strap due to 

bending. This energy, Ubend, is similar to that given in supplementary equation (36) but with 

two additional terms according to 

bend θ OA OB OC OD OE OFU U U U U U U U= + + + + + + .                               (56) 

The energy, Uθ, in supplementary equation (56) can be found by applying supplementary 

equation (38) with supplementary equation (10), (13), and (37) using    

( )22
pp p 2i iR R b= −                                                      (57) 

instead of supplementary equation (40). The resulting energy is 

( ) ( )3
pp1 pp21 1 1 2 2 2 2

θ
p1 p2 p2 p1 pp1 pp2

π 2 π 2
24

R REWtU
R R R R R R
λ α β λ α β   − − − − − − Φ

= + + −      +   
.          (58) 

The energies UOA, UOB, UOE, and UOF in supplementary equation (56) are the same as those 

given in supplementary equation (41) and (43). The two new terms in supplementary equation 

(56), UOC and UOD, are the bending energies that result from the tensioned strap being sharply 

bent at the points OC and OD, labeled in Fig. 5g. These energies can be calculated according to 
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( ) ( ) ( ) ( ) ( )( )( )21
OC hinge 2 22 cos sin sin cos cosU K ψ θ ψ θ−= − ϒ − − ϒ −                   (59) 

and 

( ) ( ) ( ) ( ) ( )( )( )21
OD hinge 1 12 cos sin sin cos cosU K ψ ψ λ ψ ψ λ−= + + + .                  (60) 

Note, also that the bending moments, MOC,bend and MOD,bend, labeled in the free body diagram 

of Supplementary Fig. 2b are 

( ) ( ) ( ) ( )( )1
OC,bend hinge 2 2cos sin sin cos cosM K ψ θ ψ θ−= − ϒ − − ϒ −                      (61) 

and 

( ) ( ) ( ) ( )( )1
OD,bend hinge 1 1cos sin sin cos cosM K ψ ψ λ ψ ψ λ−= + + + .                     (62) 

The pure moment, Mm2, that would need to be imparted on Cam 2 to counteract the moment 

imposed by the strap on Cam 2 due to the total bending energy in the strap, Ubend from 

supplementary equation (56), can be determined by taking the derivative of the energy with 

respect to the rotation of Cam 2, Φ2, relative to Cam 1 according to 

3
pp1 pp2bend

m2
2 pp1 pp2 p2 p1

1
24

R RdU EWtM
d R R R R

  
= = −    Φ +  

.                              (63) 

Note that the derivatives of all of the energies in supplementary equation (56) become zero 

(even the two new terms) except for dUθ/dΦ2. Additionally, note from supplementary 

equation (58) that as long as the straps are bent around both cams such that θ1 and θ2 are 

greater than zero for all the layers within the CRJ, the moments from each alternating layer 

due to strap bending, Mm2, will always cancel for the compression scenario as well as for the 

tension scenario. 

If the friction force, shown orange and labeled by its magnitude, μFc, in Fig. 5g, is 

temporarily neglected, the total force component along the x-axis, F2x, the total force 

component along the y-axis, F2y, and the total moment, M2z, that would need to be collectively 
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imparted on Cam 2 to hold the single CRJ layer shown in Fig. 5g in static equilibrium at the 

location, x2 and y2, and the orientation Φ2, would be 

( )2x OBx Nx fx OCx compxF F F F F F= − + + + + ,                                      (64) 

( )2y OBy Ny fy OCy compyF F F F F F= − + + + + ,                                      (65) 

and 

( )2z OBz Nz fz OCz m2M M M M M M= − + + + + .                                   (66) 

To include the friction force, shown orange and labeled by its magnitude, μFc, in Fig. 5g, 

within our analysis, the loads required to keep Cam 2 in static equilibrium for the case of two 

alternating CRJ layers need to be considered simultaneously. After summing the loads in 

supplementary equation (64)-(66) for two such alternating layers using the approach described 

at the end of the tension-scenario discussion, the direction of the resulting force along the 

length of the portion of the strap that is sandwiched between the two cams determines the 

direction of the friction force. If that component of the resulting force is positive according to 

the coordinate system shown in Fig. 5g, the component of the friction force acting on Cam 2 

from the two layers of alternating straps along the x-axis, Ffricx, is 

( )fricx c2 sinF Fµ ψ= − .                                                 (67) 

The component of the same friction force along the y-axis, Ffricy, is 

( )fricy c2 cosF Fµ ψ= .                                                  (68) 

The moment, Mfricz, resulting from the same friction force on Cam 2 about the coordinate 

system shown in Fig. 5g is 

( ) ( ) ( ) ( ) ( ) ( )2 22 2
fricz fricy p1 * fricx p1 *2 2 cos 2 2 sinM F R b t F R b tψ ψ   = − + − − +   

   
,          (69) 

where t* is the compressed thickness of the strap labeled in Supplementary Fig. 2b. This 

thickness is given by 

( )( )( )* c c1t t F E Wb= − .                                                (70) 
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If, however, the component of the resulting force discussed previously is negative according 

to the coordinate system shown in Fig. 5g, supplementary equation (67)-(69) should be 

multiplied by negative one. If the component of the force is zero, supplementary equation 

(67)-(69) should be multiplied by zero. Whatever the case may be, the appropriate version of 

supplementary equation (67)-(69) should be multiplied by negative one and summed with 

supplementary equation (64)-(66) applied to two alternating layers. The result should then be 

multiplied by O/2 to calculate the total load that should be imparted on the CRJ to keep it in 

static equilibrium at the position and orientation defined by x2, y2, and Φ2. 

Note that the analysis of this section applies only to the tension and compression 

scenarios when the straps within each CRJ layer are bent around both cams such that θ1 and θ2 

are greater than zero. There are, however, 8 other regimes within the tension scenario, and 10 

other regimes within the compression scenario where the above analysis would require minor 

to drastic alterations. Consider, for instance, the two alternating layers shown in 

Supplementary Fig. 2(c, d). The first layer shown would possess an angle θ1=0 and the second 

layer shown would possess an angle θ2=0. For a CRJ consisting of layers with cams arranged 

in this way, much of the conclusions deduced from the previous analysis would no longer 

hold true. The bending moment imposed on Cam 2 by the strap of the second layer where the 

strap attaches to Cam 2 would no longer be zero, for example. Moreover, the straps stop 

enforcing rolling-contact kinematics when their CRJ’s axis of rotation, which occurs where 

the alternating layers of straps crisscross (i.e., point P), no longer lies on the line that connects 

the centers of both cams. Thus, the other regimes invoke different mechanics, which model 

the effects that prevent the cams from rotating with respect to each other when some of their 

straps have unwrapped off of their circular contours. The theory to model the mechanics of all 

9 regimes in the tension scenario and all 11 regimes in the compression scenario for fully 

modeling a CRJ in any configuration are detailed in the MATLAB script provided. 
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Supplementary Note 3: CRAM software design tool 

This section describes how the theory of Supplementary Note 2 was used to enable the 

new MATLAB design tool provided in Supplementary Software 1. Other theoretical advances 

that enabled the capabilities of this software are also described and cited as specific functions 

or lines of code within the tool. Instructions for launching the software are also provided. 

The software design tool simulates the behavior of general CRAMs by applying the 

equations of Supplementary Note 2 to determine the local stiffness values of each constituent 

CRJ within the CRAM’s lattice at any configuration about the CRJ’s axis of rotation (i.e., 

point P). These stiffness values are determined by identifying how the static-equilibrium loads 

change for small perturbations of x2, y2, and Φ2. The resulting stiffness values are organized 

within local stiffness matrices that are analytically stitched together to construct the CRAM’s 

global stiffness matrix using the theory detailed in the “BuildStiffnessMatrix” function, 

included within the MATLAB script provided. This function also constructs local stiffness 

matrices where cams that are not joined together by CRJs attempt to collide so that the tool 

doesn’t let any cams unrealistically pass through each other’s geometry. 

The theory necessary to calculate the pitch radius of every circular cam within a general 

CRAM lattice once the pitch radius of any one of those cams have been specified is provided 

in lines 1288-1373 of the MATLAB script. The theory necessary to calculate the strap lengths 

within a general CRAM design such that the straps are as long as possible to maximize the 

lattice’s deformation range while satisfying geometric compatibility is provided in lines 1379-

1506 of the MATLAB script. The theory necessary to determine if a designed CRAM will 

yield when it is assembled is provided in lines 1551-1575 of the MATLAB script. The theory 

necessary to reverse engineer a CRAM design to determine how each unassembled layer 

should be fabricated with straight straps is provided in the “drawlayerundeformed” function in 

the MATLAB script.  
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Supplementary Figure 1. Compliant rolling-contact joint (CRJ) geometric parameters. 

Parameters necessary to prove that the strain energy and stress of an ideal CRJ with multiple 

alternating layers does not change as it rotates. 
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Supplementary Figure 2.  Free body diagrams and compliant rolling-contact joint (CRJ) 

layers deformed within different regimes. a, A free body diagram of an infinitely small 

portion of strap wrapped around either cam. b, A free body diagram of the portion of the strap 

that is sandwiched between the flattened cams in the compression scenario shown in Fig. 5g. c 

and d, two alternating layer examples that constitute a single CRJ but belong within different 

regimes. 
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Supplementary Figure 3.  Fabricated compliant rolling-contact architected material 

(CRAM) photos. a-f, Scanning-electron-microscope (SEM) images of a square-tessellated 

CRAM fabricated using the two-photon stereolithography (2PS) portion of our system (scale 

bar in a-d, 10 μm, e, 50 μm, f, 40 μm). 
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Supplementary Figure 4. Calculating the number of compliant rolling-contact 

architected material (CRAM) degrees of freedom (DOFs). a, Example diagram of a 

CRAM provided to demonstrate the approach for calculating the number of DOFs achieved 

by general CRAM tessellations. Plots are given to show how the number of lattice DOFs 

increases as the lattice size increases for b, a square-octagon tessellation, c, a hexagon 

tessellation, d, a square tessellation with one circular cam between each pair of neighboring 

vertices, and e, a square tessellation with two circular cams between each pair of neighboring 

vertices. 

 


