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Supplementary Note 1: IsoCon method details 

 

In this note we describe some of the additional details about the method.  

Combining pairwise alignments into a multi-alignment 

In this section, we describe our heuristic algorithm to construct a multi-alignment matrix 

𝐴 from a set of pairwise alignments between a sequence 𝑐 and sequences 𝑥𝑖 ∈ 𝑋. Each 

entry in 𝐴 corresponds to either a nucleotide or the gap character “-”.  Our approach is 

heuristic and may produce a multi-alignment that is not the optimal one according to a 

global scoring scheme. However, it is designed to work fast and be accurate on similar 

sequences. It also ensures that identical insertions relative to 𝑐 are aligned in the same 

columns. This is crucial when using the alignment support of strings for both correction 

and statistical testing. But, we note that our strategy may not generalize well to 

alignments for more distant or repetitive sequences. In such cases, a more accurate 

method such as progressive multiple alignment may work better. 

 

First, for every character of 𝑐, we construct the corresponding column of 𝐴. This is done 

in a straightforward manner, where row 𝑖 contains the character of 𝑥𝑖 that aligns to the 

character of 𝑐. 

 

Second, we construct the columns of 𝐴 that will contain a gap character in 𝑐, i.e. those 

columns where at least one sequence in 𝑋  has an insertion with respect to 𝑐. Let 𝑠𝑖(𝑙) 

be the substring of 𝑥𝑖that is inserted between positions 𝑙and 𝑙 + 1 in 𝑐. Here, 𝑠𝑖(0) and 

𝑠𝑖(|𝑐|) will be any string inserted before the start or after the end of 𝑐.  We let 𝑠𝑚𝑎𝑥(𝑙) be 

the longest insertion observed for position 𝑙, over all 𝑥𝑖 ∈ 𝑋. If there is more than one 

longest insertion, we chose the smallest lexicographical string to avoid stochasticity. 

 

For a given insertion site 𝑙, we pairwise align all 𝑠𝑖(𝑙) to  𝑠𝑚𝑎𝑥(𝑙), using the unit cost 

model but not allowing internal deletions in 𝑠𝑚𝑎𝑥(𝑙); that is, the only allowed deletions in 

𝑠𝑚𝑎𝑥(𝑙) are prior to its first character or after its last character. To improve performance, 

we cache the computed pairwise alignments to avoid redundant alignment 

computations. From these pairwise alignments, we construct new columns in 𝐴, in 

between positions 𝑙and 𝑙 + 1 in 𝑐. After we do this for every insertion site, our multiple-

alignment matrix 𝐴 is complete. 



Estimating the probability of a sequencing error 

Recall that we are given a set of reads, a candidate to be tested 𝑐, and a reference 

candidate 𝑑. We align all the reads and 𝑐 to 𝑑. We then build a multi-alignment matrix 𝐴 

of the reads and 𝑐. We denote the probability that position 𝑗 in read 𝑖 (𝐴𝑖,𝑗) is due to a 

sequencing error as 𝑝𝑖𝑗. In this section, we compute 𝑝𝑖𝑗, by multiplying the probability of 

an erroneous base call by the probability that the erroneous base call is exactly the 

character at position 𝑗. We derive these as a function of the Phred quality scores and 

the empirical distribution of the different types of errors (error profile) in the alignment 

matrix. 

 

Each CCS read comes with a Phred base-quality score for each base. Let 𝑄𝑖𝑗 be the 

Phred score of of read 𝑖 at position 𝑗 in the multi-alignment matrix. If 𝐴𝑖,𝑗 is a gap 

character, then the quality of the nucleotide immediately to the right of the gap is used. 

By definition, a Phred quality score of 𝑄𝑖𝑗 corresponds to a probability of an erroneous 

base call of 10𝑄𝑖𝑗/10 1. The CCS caller in PacBio produces quality values in the range of 

3 ≤ 𝑄𝑖𝑗 ≤ 93; however, we generally have found these can be overconfident estimates. 

Therefore, we remap them onto the range of [3, 𝑇], with 𝑇 = 43 (default), using the 

linear map 𝑓(𝑄𝑖𝑗) = (𝑄𝑖𝑗 − 3)
𝑇−3

93−3
+ 3. With this adjustment, the probability of an 

erroneous base call is 𝑞𝑖𝑗 = 10−𝑓(𝑄𝑖𝑗)/10, which in practice means that no base call is 

allowed a Phred quality score larger than T. 

 

Next, we need to compute the probability that the error results in character 𝐴𝑖,𝑗, as 

opposed to some other character. Ideally, one would want the base caller to provide 

such information, but it is not currently provided. Instead, we use empirical estimates of 

the relative frequencies of different error types from the read’s alignment. While not 

ideal, it does model the fact that the error profile across the reads is different for reads 

with different passes and in different homopolymer regions (Supplementary Fig. 2). 

According to the CCS base call uncertainty protocol 2, the only variant for which we can 

fully attribute the base-call uncertainty 𝑞𝑖𝑗 to a given error is when the variant is an indel 

in the first nucleotide of a homopolymer region. The uncertainty 𝑞𝑖𝑗 over that position 

reflects the uncertainty of the homopolymer length. We therefore attribute the whole 

uncertainty 𝑞𝑖𝑗 in those cases. For the other variants we are testing, let 𝑟𝑆, 𝑟𝐼 , 𝑟𝐷 be the 

relative frequencies of substitutions, insertions, and deletions in each read 𝑥𝑖 in 𝐴. For a 

given variant at position 𝑗 with a state of either substitution, insertion, or deletion in the 

candidate to be tested (𝑐) with respect to the reference (𝑑), we define 𝑝𝑖𝑗 as follows: 

 

● 𝑝𝑖𝑗 = 𝑞𝑖𝑗, if 𝑗is an insertion or deletion in homopolymer region (≥ 2bases) in 

reference 𝑑 

https://paperpile.com/c/Hc84AA/Hs1t
https://paperpile.com/c/Hc84AA/Qg0J


● 𝑝𝑖𝑗 = 𝑞𝑖𝑗 ∗ 𝑟𝑆/3, if substitution 

● 𝑝𝑖𝑗 = 𝑞𝑖𝑗 ∗ 𝑟𝐼/4, if insertion (not in homopolymer region) 

● 𝑝𝑖𝑗 = 𝑞𝑖𝑗 ∗ 𝑟𝐷, if deletion (not in homopolymer region) 

 

In some cases, Phred quality values are not available, e.g. in simulated data or if the 

CCS reads have been somehow post-processed prior to IsoCon. In this case we use 

the same formula as before but estimate 𝑞𝑖𝑗 empirically as the total number of 

mismatches (substitutions, deletions, insertions) in read 𝑖 in its alignment to 𝑑, divided 

by the length of 𝑑. For a homopolymer of length ℎ, since a deletion can happen in any of 

the ℎ bases (similarly, insertion after any of ℎ bases) we let the uncertainty be ℎ𝑞𝑖𝑗 in 

these regions. We have 

● 𝑝𝑖𝑗 = 𝑚𝑖𝑛(0.5, ℎ𝑞𝑖𝑗), if 𝑗is an insertion or deletion in homopolymer region (≥ 2 

bases) in reference 𝑑 

● 𝑝𝑖𝑗 = 𝑞𝑖𝑗 ∗ 𝑟𝑆/3, if substitution 

● 𝑝𝑖𝑗 = 𝑞𝑖𝑗 ∗ 𝑟𝐼/4, if insertion (not in homopolymer region) 

● 𝑝𝑖𝑗 = 𝑞𝑖𝑗 ∗ 𝑟𝐷, if deletion (not in homopolymer region) 

 

Implementation details 

We avoid any non-determinism by always having explicit tie-breakers. For example, if 

the number of reachable vertices are the same for two vertices when partitioning the 

nearest neighbor graph in the PartitionStrings() routine (Supplementary Fig. 1), we take 

the one with the most number of neighbors. If still a tie, we chose the lexicographically 

smallest sequence. 

 

We calculate edit distances using edlib 3 to find the closest neighbors, using the 'global' 

method. We then align with parasail, before error correction and statistical tests, with 

parameters gap_open=-2, gap_extend=0 match=2, and mismatch we set to either -1,-2 

or -4 depending on how many percent the edit distance is to the total length of the 

alignment, <1%, <5% or above 5%. Note that higher edit distance have a higher 

mismatch score to favor indels, as they are more common for PacBio sequencing.  

 

We do not assign reads to candidates in each iteration of the IsoCon algorithm 

(Supplementary Fig. 1, Algorithm 3, line 6) from scratch. Instead, we only realign reads 

assigned to a candidate that was filtered out. 

 

We remove any edge in the nearest neighbor graph that was formed from an alignment 

with an internal gap of more than W nucleotides (parameter to IsoCon set to 20 by 

https://paperpile.com/c/Hc84AA/w5vq


default). Here, internal means that aligned sequence occur both before and after the 

gap. The intuition behind this is that a larger internal gap in a CCS read likely stems 

from an exon difference. The reason behind keeping edges that were formed despite 

gaps in ends is that sequences might be cut at different end positions in the Iso-Seq 

protocol. IsoCon also has a parameter to ignore smaller length differences on otherwise 

identically derived candidate transcripts (set by default to 15 base pairs). This is to 

account for the small variation in primer cutting-sites when they are removed. This 

parameter will, after the CCS read correction phase, treat all candidates that have 

identical sequences -- up to a start or end offset with less or equal to 15 base pairs -- as 

coming from the same transcript. In practice, the candidate with the highest CCS read 

support after the correction will be kept (most common primer cut-site), and the 

candidates with only an offset to this candidate are removed.  



Supplementary Note 2: Generating simulated data 

Generating gene families 

To simulate a gene family with m member genes, we chose a reference gene as a 

starting point and download its exons from Ensembl4. We concatenate the exons in the 

order they appear on the genome. We use this artificial transcript as a start sequence, 

i.e., this is the root node in our evolutionary tree. We then branch the node into two 

children. We let one child be identical to its parent and in the other child we simulate 

mutations with mutation rate μ (a parameter). For each nucleotide, we simulate a 

substitution with probably μ/3, a deletion with probability μ/3, and an insertion with 

probability μ/3. With probability 1 - μ, we do not alter the nucleotide. We then recursively 

continue the branching process for each child, in a breadth-first manner until we have m 

leaves. The sequences at the leaves are then taken as the gene family members. For a 

meaningful evaluation, if two members have identical sequences, we redo the 

simulation. The result is a set of m distinct gene family members with identical exon 

structures and where each exon may or may not be different between members. 

 

Next, we can create n isoforms from a single gene by dropping exons as follows. Let e 

be the number of exons. One isoform is always taken to be the full set of exons. We can 

generate up to e -1 additional isoforms by dropping one exon at a time. If n > e, then we 

can generate up to e(e-1)/2 more isoforms by dropping 2 exons at a time, and so on. 

We make sure that each isoform we generate is not identical to an isoform we 

generated for another gene in the family. This could arise if all the mutations that 

discriminate between the two genes lie in the dropped exons. In such cases, the isoform 

is skipped the next is one is generated. Our deterministic approach to dropping exons is 

motivated to make isoforms within and between copies as similar as possible, thereby 

giving the most challenge to an error-correction algorithm.  

 

Finally, each isoform is given an abundance (i.e. the relative frequency of the isoform in 

the pool of transcripts). In the case of equal abundance, each transcript has the same 

abundance. In the case of unequal abundance, where we set the relative abundances 

of isoforms to be exponentially increasing as follows. Given a sequence of n isoforms 

𝑓0, … , 𝑓𝑛−1, we first randomly permute them and then assign isoform 𝑓𝑖 an unnormalized 

abundance of 2𝑖 𝑚𝑜𝑑 8. We then obtain the abundance frequency by dividing each 

unnormalized abundance by the sum of all the unnormalized abundances. For example, 

if there are 4 isoforms, the unnormalized abundances are 1, 2, 4, and 8, and the 

abundances are 1/15, 2/15, 4/15, and 8/15. 

 

https://paperpile.com/c/Hc84AA/EQ9S


For each gene family and mutation rate in Figures 1 and Supplementary Figure 3, we 

simulated four gene family members and, for each member, we simulated 2, 4, 8, and 

16 isoforms, respectively. For each gene family and mutation rate in Supplementary 

Figures 1 and 4, we simulate eight family members with one isoform each. For Figures 

1 and 2, unequal abundances are used, while for Supplementary Figure 3 and 4, equal 

abundances are used. In each experiment, the number of simulated reads were also 

varied. We can obtain the isoform depth based on the relative abundance of isoforms. 

For example, in Figure 1, the isoform abundance ranges from 1/828 to 128/828. With 

2,500 reads, the coverage ranges from 3.02x (= 2500 ∗ 1/828) to 387x (=2500 ∗

128/828). 

Generating PacBio CCS reads 

Before implementing our own circular consensus (CCS) PacBio read simulator, we 

explored the possibility of using already existing PacBio read simulators such as PBSIM 
5, LongISLND 6, and SiLiCO 7. However none of the options were viable for our purpose 

of simulating full length non chimeric reads. SiLiCO does not simulate the circular 

consensus (CCS) protocol, which we use. PBSIM and LongISLND both assume 

genomic (i.e. not transcriptome) data. We tried both PBSIM and LongISLND with 

different parameters but were unable to get reads that would cover our full transcripts. 

This is because start and end positions in these tools are simulated to be within the 

reference sequence that are assumed to be a genome, while for our case the reference 

sequences are transcripts. 

 

We therefore wrote our own PacBio CCS read simulator. The length of PacBio 

polymerase reads (i.e. the total length prior to the passes being collapsed by CCS) is 

simulated from a triangular distribution  8 to roughly mimic the shape of the polymerase 

read length distribution given in 9. In the triangular distribution, we set smallest read 

length to 0 (start base of triangular distribution), the mode read length to 10,000 (top of 

triangle), and the largest read length to 45,000 (end of base in triangle). The 

polymerase lengths are generated from this distribution and the the number of passes 

of each read through a transcript is determined by this read length. We let the number 

of passes be  𝑝 = 𝑓𝑙𝑜𝑜𝑟(𝐿/𝑛), where L is the polymerase length and 𝑛 is the transcript 

length. Reads where L<n are discarded, as we only use reads that span the whole 

transcript. The CCS read will then be simulated with nucleotide accuracy that 

corresponds to p passes using the reported PacBio CCS error rates 10. For the case of 

just one pass, the simulated accuracy will be 13%, using the raw accuracy of the 

PacBio polymerase 9 and for more than 18 passes, we fix the error rate to 0.99910. 

When an erroneous nucleotide is simulated, the type of error is simulated according to 

published probabilities for PacBio reads without CCS 11 12: 68.75% for insertions, 25% 

for deletions and 6.25% for substitutions.  

https://paperpile.com/c/Hc84AA/JyAT
https://paperpile.com/c/Hc84AA/mPXb
https://paperpile.com/c/Hc84AA/PP62
https://paperpile.com/c/Hc84AA/QtCK
https://paperpile.com/c/Hc84AA/tsU5
https://paperpile.com/c/Hc84AA/hRBr
https://paperpile.com/c/Hc84AA/tsU5
https://paperpile.com/c/Hc84AA/hRBr
https://paperpile.com/c/Hc84AA/fDTH
https://paperpile.com/c/Hc84AA/slEd


Computing recall and precision 

To measure the accuracy of the results of an algorithm on the simulated data, we 

defined a true positive as a predicted sequence that is identical to a true isoform, a false 

positive as all other predicted sequences, and a false negative as a true isoform that is 

not present exactly in the predicted sequences. Matches were required to be exact, in 

order to capture nucleotide level accuracy. We then computed recall and precision 

based on these definitions.  

  



Supplementary Note 3: Additional analysis of 

simulated data 

We expect IsoCon's precision and recall to approach 1 at very high read depths. 

Supplementary Figure 1 shows accuracy at read depth of 12,500. In all except a few 

cases (described below), IsoCon successfully captures low abundant gene copies 

having edit distance 1 to other copies. This includes transcripts with abundance ratio 

4:64 and 1:32 in TSPY, with μ=0.0001 and 0.001 respectively, and transcripts with 

abundance ratio 4:64 and 1:32 in HSFY and DAZ datasets with 0.0001 respectively 

(Supplementary Figure 1 and 2). There are two cases of false negatives. At mutation 

rate 0.0001, the lowest abundance transcript did not get captured in HSFY. This 

transcript has an edit distance of one to a copy to which it has an abundance ratio of 1:4 

and an edit distance of two to a copy to which it has an abundance ratio 1:64 

(Supplementary Figure 2). This presents a difficult case for the algorithm due to the 

presence of similar transcripts which are drastically more abundant. For DAZ, the 

transcript with the second lowest abundance is not captured in 9 out of the 10 replicated 

experiments, and it has an edit distance of one to a copy to which it has an abundance 

ratio 1:2 (Supplementary Figure 2). Further investigation showed that this transcript was 

not a closest neighbor of any node in IsoCon's error correction step, indicating room for 

future improvement.  

 

We also evaluate IsoCon’s and ICE’s accuracy and recall on datasets with only one 

gene copy but several isoforms. We investigated this to confirm that there were no bias 

in separating transcripts on exon level. We investigated to separate 8 different isoforms 

for a copy where isoforms were samples with equal and unequal abundance. Recall and 

precision is shown in Supplementary Figure 5. As expected, since isoforms have 

different exon structures they are more dissimilar than gene copies differing in only 

mutations, and therefore, should be easier to capture compared to highly similar gene 

copies as in previous experiment. Supplementary Figure 5 confirms this for IsoCon. For 

ICE this is also true in general except for the DAZ datasets with 125000, panel A and B. 

ICE’s recall drops significantly and we are unable to determine the reason for this. 

 

Somewhat counterintuitively, IsoCon's recall is higher for lower mutation rates for the 

lowest read depth datasets for HSFY and DAZ (Supplementary Figure 5A, 20 reads for 

HSFY, 20 and 100 reads for DAZ). This is because with low read depth, IsoCon will 

cluster the highly similar copies into the same partition and, therefore, get increased 

coverage to recover one of the copies. For the more divergent cases, this cluster 

merging—giving increased coverage—will not happen and both the copies are instead 

lost. P-values of all IsoCon’s predictions for the simulated datasets are shown in 

Supplementary Figure 14A. 



 

While our investigation of the dependence of recall on read depth in Figure 2 aimed for 

a somewhat realistic scenario, we also performed a more controlled experiment in order 

to see the trends more clearly.  We simulated pairs of transcripts with varying relative 

abundance, edit distance, and read depth (Supplementary Figure 12). The trends show 

that more reads are needed to recover a transcript when it has lower abundance, when 

the edit distance to the close transcript is smaller, or when the CCS read quality is 

lower. Supplementary Figure 12 can be used as a guideline for a prediction of the read 

depth needed to capture a transcript. A conservative estimate of the total number of 

reads required to capture a specific transcript can be obtained simply by multiplying the 

number of reads from the figure by the relative abundance in the figure and dividing by 

the estimated fraction of the target transcript in the sample. Alternatively, given the read 

depth of an experiment, Supplementary Figure 12 can give the maximum achievable 

recall for a transcript based on its abundance and the divergence of its gene family. 

Finally, we note that the controlled nature of the experiment means that in reality, more 

reads may be required to achieve the same recall.    

 

 

  



Supplementary Note 4: Data processing pipeline 

 

We used a snakemake 13 workflow for the bioinformatic pipeline to process the Iso-Seq 

data. Supplementary Figure 13 shows the workflow as a graph. The raw data was 

converted to BAM files using bax2bam, then PacBio’s consensus caller 2 was used to 

obtain CCS reads from subreads. We used the “classify” algorithm (part of the Tofu 

pipeline for processing Iso-Seq reads) to separate the CCS reads into reads having at 

least one full pass and reads shorter than one pass. We further separated the reads 

having at least one full pass based on the primers into batches using a customized 

script. We used these primer separated batches of reads for downstream analysis with 

all tools. That is, ICE, IsoCon and proovread was run on each of these batches 

separately. Both ICE and IsoCon takes a set of full-pass CCS reads and the base pair 

quality values and perform clustering and error correction. ICE also uses the reads with 

less than one full pass in a post-polishing step and we supplied ICE with these reads.  

ICE further classifies its output transcripts as "high quality" if they have >99% base pair 

accuracy (default parameter value). We observed that the number of "low quality" 

transcripts was very high (70-80% of the number of CCS reads) and would give ICE 

extremely low precision. We therefore used only the high quality transcripts for 

evaluation. 

 

The consensus caller that generated CCS reads has two modes “--polish” and “--

noPolish.” IsoCon and proovread were evaluated on CCS reads generated with the 

default --polish option, which is the default option. When we evaluated the original 

PacBio reads we also used CCS reads generated with the --polish option. On the other 

hand, ICE documentation suggests using reads from the --noPolish option instead. We 

tried both versions and our experiments confirmed that that the --noPolish option 

resulted in slightly better metrics in our evaluations of ICE, compared with --polish. ICE 

with --noPolish predicted 475 high quality transcripts, compared to ICE with --polish, 

which predicted only 335 high quality transcripts. We observed that ICE with --noPolish 

had a higher number (9) and percentage (1.9%) of transcripts fully supported by 

Illumina RNA-seq reads compared to three transcripts (0.9%) with --polish; it had only 

slightly lower median transcript support of 93.5%, compared to 93.7% with --polish; 

finally, ICE with --noPolish option also had two more predictions shared between 

samples (4 compared to 2). ICE with --noPolish however had only 8 exact matches to 

ENSEMBL compared to 11 for ICE with --polish. It is therefore ambiguous to which input 

data should be considered giving the best results with ICE, but we conclude that the 

difference is minor when compared to results of other approaches, irrespective of which 

dataset we use. Based on these findings and on ICE's documentation, we decided to 

present the results for ICE with --noPolish reads in the paper. 

https://paperpile.com/c/Hc84AA/lHRC
https://paperpile.com/c/Hc84AA/Qg0J


 

Finally, we note that for simulated data, we did not run the polishing step. It is not 

applicable, as we did not generate any base call quality values or non-full-length reads 

(Sup. Note B).  

 

We provide the exact run-commands used below: 

 

Ccs 

ccs --numThreads=64 --polish --minLength=10 --minPasses=1 -

-minZScore=-999 --maxDropFraction=0.8 --

minPredictedAccuracy=0.8 --minSnr=4 {input.bam_subreads} 

{output.ccs_bam} 

 

We ran version ccs 2.0.5 (GitHub commit 390a42e), part of the PacBio SMRTlink 

4.0 suite. As described above, we also specified the flag --noPolish to generate 

non-polished reads. 

 

Classify  

pbtranscript classify  --flnc {output.flnc} --nfl 

{output.nfl} -d {out} --cpus 64 --min_seq_len 30 -p 

{targeted_primers} --ignore_polyA {input.ccs_bam} 

{draft_file} 

 

We ran version 1.0.0.177900 of pbtranscript, part of the PacBio SMRTlink 

4.0 suite. 

 

ICE 

pbtranscript cluster --quiver  --nfl_fa 

{input.nfl_by_primer} --bas_fofn {input.bas_fofn}  --

blasr_nproc 64 --quiver_nproc 64 --max_sge_jobs 64 -d 

{out_folder} {input.flnc_by_primer} 

{output.consensus_transcripts}  

 

We ran version 1.0.0.177900 of pbtranscript, part of the PacBio SMRTlink 

4.0 suite. We initially tried running ICE using the the --targeted_isoseq option but 

the program stopped with a runtime error, a bug that is not fixed to date (see  

https://github.com/PacificBiosciences/IsoSeq_SA3nUP/issues/16)  

 

IsoCon 

 ./IsoCon pipeline -fl_reads {reads} -outfolder 

{out_folder} --ccs {ccs_reads.bam} 

https://github.com/PacificBiosciences/IsoSeq_SA3nUP/issues/16


 

The results of isocon was obtained with commit 79589f3 on GitHub, which is 

version 0.2.4 of IsoCon. IsoCon predicted transcripts are also included in Sup. 

Data. 

 

proovread  

proovread -l {CCS_reads} -s {illumina1} -s {illumina2} -p 

{tmp_out} -t  64  --overwrite --no-sampling 

  

We ran version 2.14.0 of proovread. We used the --no_sampling option as 

suggested by the software author, see https://github.com/BioInf-

Wuerzburg/proovread/issues/88). 

 

  



Supplementary Note 5: Analysis of human testes 

data 

Comparing against database: We downloaded coding DNA sequences (CDS) for our 9 

ampliconic gene families from the Ensembl database. There were 61 unique sequences 

in this database. We aligned the predicted transcripts to the Ensembl databases. We 

consider a perfect match of a transcript to a CDS if the read is a perfect substring of the 

CDS transcript with at most 100bp missing in the 3’ and 5’ ends. We allow the missing 

ends because primers in our targeted approach will attach within the start and end exon 

of a transcript, resulting in missing ends (we observed values in the range of ~20-70 

bp). If a predicted transcript has more than one perfect match, we chose the match with 

the smallest sum of clipped bases in the ends. In case there are several perfect 

matches with the same number of clipped bases, we pick the lexicographically smallest 

accession as the match, in order to assign a prediction to a unique transcript in the 

database.  

 

Support from Illumina reads: We aligned our barcode-separated Illumina reads to the 

predicted transcripts from IsoCon, ICE and the original CCS reads. We used BWA-MEM 

with default mapping parameters. We then used a customized script available at 

https://github.com/ksahlin/IsoCon_Eval/blob/master/analysis/nucleotide_level/get_unsu

pported_positions.py to count positions on the predicted transcripts that have at least 

two Illumina reads supporting the base pair. As IsoCon, ICE, original, and Illumina-

corrected CCS reads have different number of predicted transcripts for each gene 

family, the Illumina coverage per transcript is highly different between the four 

approaches (especially for TSPY and RBMY). Therefore, the coverage per transcript 

would be lower for original and Illumina corrected reads, thus favoring ICE and IsoCon 

in the evaluation. To account for this artifact, we split each method's predictions into 

batches of  50 transcripts. We then align all Illumina reads to each batch separately. 

This makes Illumina coverage constant across methods and removes any bias resulting 

from coverage differences. 

 

Number of groups computation: To compute the number of groups, we implemented 

following post processing algorithm to separate the transcripts into groups (i.e. maximal 

cliques): 

1. Perform Smith-Waterman alignments between all pairs of transcripts in each 

family. We used SW parameters of gap_open = -50, gap_extend = 0, mismatch = 

-20, and match = 1.  

2. Create graph where a node represents an isoform and an edge means that two 

isoforms can potentially come from the same copy (i.e., no substitution or indel 

https://github.com/ksahlin/IsoCon_Eval/blob/master/analysis/nucleotide_level/get_unsupported_positions.py
https://github.com/ksahlin/IsoCon_Eval/blob/master/analysis/nucleotide_level/get_unsupported_positions.py


smaller than 3 base pairs in the pairwise alignment). Graphs are included in Sup. 

Data. 

3. Enumerate all maximal cliques in the graph, using a brute-force algorithm.  

4. For each maximal clique, use the pairwise alignments to do a progressive 

multiple alignment of all the transcripts in the clique. Then derive the consensus 

sequence. This will contain the full set of exons from all isoforms assigned to a 

copy. Alignments are included in Sup. Data. 

 

In the case of RBMY transcripts 45-61 (Fig. 5), a manual inspection of the alignments 

revealed incorrect pairwise alignments, due to short repeats. We tweaked these 

manually and redid steps 2-4. 

 

Open reading frame (ORF) prediction: Each predicted transcript were aligned to the 

reference sequences used to design the primers (alignments included in Sup. Data). 

Those that fully aligned to the references and could be translated into proteins without 

premature stop codons are categorized as coding; those with premature stop codons 

are categorized as non-coding. In the case that no stop codon is found, they are 

categorized as coding. This is because stop codons may be downstream of the primers, 

or clipped out as part of the primer. 

 

Creating a database of known splice variants: We first constructed a database of known 

potential splice variants, against which we would later compare IsoCon transcripts. We 

downloaded all the 105 transcripts of the nine ampliconic gene families from the NCBI 

RefSeq database 14. We combined these with the 61 unique CDS sequences from the 

Ensembl database to obtain 166 known transcripts. We used BLAT (server version, 15) 

to align these transcripts to the hg19 reference genome. We filtered out all non chrY 

alignments. For each transcript, we then considered the highest scoring alignment and 

any other alignments that had more than 99% identity and 99% coverage (due to the 

highly repetitive nature of these families). For every alignment, an hg19 deletion of at 

least 10nt is marked as an intron and its coordinates as splice junction (we varied the 

10nt parameter to 5nt and 3nt in this analysis and obtained the same results). In this 

manner, the 166 known transcripts had 668 distinct candidate splice variants (i.e. a 

combination of splice junctions). This number is an overestimate but gives us 

confidence in the novelty of any splice variants we discover that do not match one of the 

known candidate splice variants. The alignments contained a total of 471 distinct splice 

junction coordinates which we stored in a database of known potential splice junctions 

(Supplementary Dataset 1).  

 

Splice variant analysis: To analyze splice variants in IsoCon's transcripts, we aligned 

them to hg19 and stored the splicing coordinates for the highest scoring alignment and 

https://paperpile.com/c/Hc84AA/e7BOa
https://paperpile.com/c/Hc84AA/uBPJ


any other alignment to chrY with >99% identity and >99% coverage. We aimed to 

classify IsoCon’s predictions into three categories: splice match (SM), novel in catalog 

(NIC) and  “ambiguous” (part of terminology used in 16). SM transcripts are transcripts 

that have identical splice coordinates to a reference transcript in all its junctions. The 

NIC transcripts are transcripts that “contain new combinations of already annotated 

splice junctions or novel splice junctions formed from already annotated donors and 

acceptors ” 16 However, these classifications rely on accurate alignments which, given 

the repetitive nature of our gene families and that the reference does not contain all 

gene copies, are not always obtainable. We therefore classify transcripts without clear 

SM or NIC alignments as ambiguous, as they might either contain novel splice 

junction(s) or be novel distinct gene copies (i.e., not having a representation of the 

reference genome). In the case of transcripts with more than one alignment, we did not 

see mixed categories, i.e. all the alignments were either SC, NIC, or ambiguous. We 

also note that for NIC transcripts, we cannot with full confidence distinguish if it is a true 

novel splice variant of an existing gene copy or if the transcript is a novel distinct gene 

copy itself.  For IsoCon’s 121 predictions that were shared between samples, we found 

that 83 transcripts were classified as SM, 21 transcripts as NIC, 17 as ambiguous (NIC 

and ambiguous are presented in Supplementary Table 1).  

 

Analysis of transcripts with lower significance: For each transcript, IsoCon outputs a 

significance value which is the maximum of all its pairwise significance values with other 

transcripts. We investigated the possibility that transcripts with lower significance have 

an enrichment of false positives. To do this, we investigated our accuracy metrics as a 

function of significance values, focusing on transcripts with a value greater than 10e-20 

(Supplementary Figure 15). We observe that the percentage of transcripts with a p-

value greater than 10e-20 that have full Illumina support is 67%. This is lower than the 

80% for all the transcripts with lower p-values, but still fairly high. For reference, recall 

that for ICE and proovread these numbers are 2% and 15%, respectively. When looking 

at percentage of nucleotides supported by Illumina, it is 99.0% for transcripts with a p-

value greater than 10e-20, which is almost as high as for transcripts with lower p-values 

(99.2%). For reference, recall that ICE and proovread transcripts have support of 93% 

and 96%, respectively. We also observe that out of the 21 distinct transcripts recovered 

from the Ensemble database, four were recovered by IsoCon predictions with a 

significance greater than 10e-8. transcripts. This indicates that retaining predictions with 

higher p-values is likely necessary to obtain higher sensitivity. 

 

Additionally, p-values of all IsoCons predictions are shown in Supplementary Figure 

14B. 

https://paperpile.com/c/Hc84AA/fLr8O
https://paperpile.com/c/Hc84AA/fLr8O


Running time and memory analysis: We compared runtime and memory of IsoCon, ICE, 

and proovread on our human samples (Supplementary Table 2). We used a machine 

with an x86_64 system running Linux v3.2.0-4-amd64 and equipped with 32 2-threaded 

cores and 512 GB RAM. IsoCon is roughly 2x faster than ICE when running on a single 

core, and ~5x faster when running over 64 processes. A direct comparison to proovread 

is challenging because it requires a minimum read length criteria that makes it unable to 

process the BPY and XKRY families. With this caveat in mind, proovread run times 

were 12% slower than IsoCon on 1 core and >3x slower on 64 cores. 

 

  



Supplementary Note 6: Analysis of FMR1 data    

We downloaded the 49 isoforms of the FMR1 gene detected in 17 from 

https://zenodo.org/record/833502#.Wsav_NPwZTb . We also included the three 

isoforms that were predicted in a previous study 18 but not found in 17.  These three 

isoforms were constructed from hg19 based on the splicing coordinates given in 18. We 

refer to these 52 as validation isoforms. We used BLAT (server version, 15) to align 

these transcripts to the hg19 reference genome and stored, for each isoform, the unique 

set of splicing coordinates on hg19.  

 

The original CCS read data was downloaded in fastq format from 

(https://zenodo.org/record/185011#.WtEWadPwZTY). We ran IsoCon on each of the six 

samples individually with the same parameters as for the ampliconic gene families 

(default settings, see Supplementary Note D). We then aligned all IsoCon’s predictions 

using the server version of BLAT. We then replicated the filtering criteria of 17 -- we 

retained only the predicted transcripts with an alignment coverage >= 99%, identity >= 

95%, and location within the area targeted by the primer design (start between 

chrX:147,014,079–147,014,470 and end between chrX:147030158-147030505). 

 

We classified each of the 52 validation isoforms as detected if there was a predicted 

transcript that had identical donor and acceptor splice coordinates across all exons in 

the transcript. All 52 validation isoforms have distinct splice-junction coordinates, which 

means that each IsoCon prediction can be assigned to at most one validation isoform.  

 

We ran IsoCon for the FMR1 datasets on a MacBook Pro with three 3.1 GHz Intel Core 

i7 cores and 16 GB 1867 MHz DDR3. The three premutation carrier samples containing 

CCS reads from 3 SMRT cells respectively were all processed by IsoCon in 

approximately 3 hours with a maximum memory consumption of less than a gigabyte. 

The controls, each of which contained CCS reads from 1 SMRT cell, were each 

processed in between 30-40 minutes. 

  

https://paperpile.com/c/Hc84AA/fIfi
https://zenodo.org/record/833502#.Wsav_NPwZTb
https://paperpile.com/c/Hc84AA/ADmP
https://paperpile.com/c/Hc84AA/fIfi
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Supplementary Tables 

Supplementary Table 1.  Novel splice variants. The table shows all transcripts that do 

not have an exact splice match to a reference database transcript. They are classified 

as either “novel-in-catalog” (NIC) if they “contain new combinations of already annotated 

splice junctions or novel splice junctions formed from already annotated donors and 

acceptors” 59, or "ambiguous” if they have at least one splice junction not matching any 

reference transcript. The column splice-variant-id shows which splice variant group the 

transcript belongs to after grouping the transcripts based on their splice coordinates, i.e. 

two transcripts with the same id only differ within exons.  

 

accession number in sample 1 family 

splice 
variant 
id category 

CCS 
read 
support 
in 
sample 
1 

protein-
coding 

Illumina 
support 

transcript_49_support_9_9_not_tested_9_ DAZ 0 ambiguous 9 no full 

transcript_198_support_7_11_3.0499935358348083e-
12_15_S TSPY 1 ambiguous 11 yes full 

transcript_241_support_2_2_2.465494800796927e-
27_5_SSSSSS RBMY 2 NIC 2 yes full 

transcript_410_support_16_15_7.158588427719199e-
51_23_DDDDD RBMY 3 NIC 15 no full 

transcript_33_support_4_3_1.17730715237844e-20_6_SSS DAZ 4 ambiguous 3 yes full 

transcript_39_support_27_41_2.989824769295383e-
97_45_S DAZ 5 ambiguous 41 yes full 

transcript_411_support_20_16_4.4071493360773237e-
60_25_SI RBMY 6 NIC 16 no full 

transcript_194_support_3_3_not_tested_3_ TSPY 7 ambiguous 3 no full 

transcript_250_support_18_29_1.8734940341406434e-
68_34_S RBMY 8 NIC 29 no full 

transcript_448_support_9_27_1.8747539629510054e-
18_369_DD RBMY 9 ambiguous 27 no 

candidate 
junction 
not 
supported  

transcript_7_support_12_11_2.8055256364539264e-
30_14_S DAZ 10 ambiguous 11 yes full 

transcript_185_support_2_2_0.0002504605210692139_9_S TSPY 11 ambiguous 2 no 

candidate 
junction 
not 
supported  

transcript_29_support_111_178_3.2981431164247527e-
187_222_I DAZ 12 ambiguous 178 yes full 

transcript_6_support_7_7_not_tested_7_ PRY 13 ambiguous 7 no full 

https://paperpile.com/c/SwPJlM/2SrK1


transcript_4_support_80_78_1.6878832644605026e-
253_83_S PRY 14 ambiguous 78 no full 

transcript_35_support_6_8_not_tested_8_ RBMY 15 NIC 8 no full 

transcript_35_support_6_6_not_tested_6_ TSPY 16 ambiguous 6 yes full 

transcript_409_support_6_5_5.611166030863804e-
37_12_SSS RBMY 17 NIC 5 no full 

transcript_474_support_151_213_not_tested_213_ RBMY 18 NIC 213 no full 

transcript_475_support_14_16_2.7853968732079244e-
19_229_S RBMY 18 NIC 16 no full 

transcript_236_support_3_3_2.111151999517751e-08_7_S TSPY 19 ambiguous 3 yes full 

transcript_136_support_4_4_1.5730541529242116e-
13_7_S TSPY 19 ambiguous 4 yes full 

transcript_319_support_10_3_1.0769783944960056e-
08_8_S RBMY 20 NIC 3 yes full 

transcript_240_support_4_5_1.4154227615021973e-
12_8_S RBMY 20 NIC 5 yes full 

transcript_29_support_3_3_2.149596591708188e-09_6_S TSPY 21 ambiguous 3 yes full 

transcript_28_support_3_3_7.906644316104741e-07_6_S TSPY 21 ambiguous 3 yes full 

transcript_110_support_13_13_2.0722759276211275e-
48_21_SS RBMY 22 NIC 13 no full 

transcript_109_support_4_6_2.593261298336897e-
30_21_SS RBMY 22 NIC 6 no full 

transcript_413_support_8_11_5.398149132019713e-
30_14_S RBMY 23 NIC 11 no full 

transcript_412_support_2_3_8.987210687229348e-
08_14_S RBMY 23 NIC 3 no full 

transcript_246_support_23_12_2.0292740496871315e-
23_27_S RBMY 24 NIC 12 no full 

transcript_129_support_11_10_1.5336157152280373e-
14_30_S RBMY 24 NIC 10 no full 

transcript_107_support_7_9_4.1466952828840725e-
37_39_SS RBMY 25 NIC 9 no full 

transcript_108_support_22_28_1.8160411545666335e-
74_35_S RBMY 25 NIC 28 no full 

transcript_97_support_8_6_1.2825651250976259e-
14_10_S TSPY 26 NIC 6 no full 

transcript_91_support_3_3_9.201510164493637e-08_10_S TSPY 26 NIC 3 no full 

transcript_208_support_4_4_2.003323587591366e-10_8_S TSPY 26 NIC 4 no full 

transcript_2_support_40_52_not_tested_52_ XKRY* 27 ambiguous 52 yes full 

 

 

  



 

Supplementary Table 2.  Runtime and peak memory usage of IsoCon, ICE, and 

proovread to process the whole biological dataset. Note that proovread did not perform 

any correction of reads from the BPY and XKRY families, due to their short size.  

 IsoCon ICE proovread 

1 thread 64 threads 1 thread 64 threads 1 thread 64 threads 

Wall clock time (hh:mm) 08:02 00:41 15:52 03:32 9:02* 2:07* 

Peak memory (GB) 0.72 0.73 1.75 1.77 4.57* 5.85* 

 

  



 

Supplementary Table 3.  Absence or presence of our FMR1 validation set of 52 

isoforms from 19,20, as detected by IsoCon in each sample. We use the group and 

isoform nomenclature to match 19,20). The numbers indicate the total number of CCS 

reads supporting the isoform, and a dash indicates that the isoform was not found in the 

sample. As IsoCon can predict several transcripts with the same isoform structure (i.e. 

differing only in mutations), the supporting reads are collected from all the matching 

transcripts.  

 

Group Isoform/ PB# Carrier-1 Carrier-2 Carrier-3 Normal-1 Normal-2 Normal-3 

A Isoform 1 182 46 60 - 12 7 

A Isoform 2 55 6 22 - - - 

A Isoform 3 67 13 40 3 11 - 

A Isoform 13 190 57 232 8 17 68 

A Isoform 14 39 17 12 3 - 18 

A Isoform 15 74 41 64 - 4 9 

B Isoform 4b 17 6 - - - - 

B Isoform 6 62 125 11 - - - 

B Isoform 16 23 10 59 - - - 

C Isoform 7 4808 3236 4109 439 506 772 

C Isoform 8 817 451 775 91 111 273 

C Isoform 9 1113 736 1018 54 72 166 

C Isoform 17 4894 5033 4785 819 885 1356 

C Isoform 18 560 1721 972 227 131 571 

C Isoform 19 901 1043 1217 60 87 499 

D Isoform 10 54 116 167 11 10 - 

D Isoform 10b 192 28 229 12 9 - 

D Isoform 11 117 - 38 - 4 - 

D Isoform 11b 88 82 170 3 7 - 

D Isoform 12 265 48 86 11 30 4 

D Isoform 20 68 52 454 25 87 240 

E PB.1.22 - - 3571 - - - 

E PB.1.23 - - 33 - - - 

E PB.1.24 9 181 - - - - 

E PB.1.25 13 4936 5 - - 7 

E PB.1.32 - - 1284 - - - 

E PB.1.35 - - - - - - 

E PB.1.44 - 158 - - - 6 

E PB.1.45 - 135 - - - - 

E PB.1.56 - 18 - - - - 

E PB.1.57 - - 122 - - 3 

F PB.1.13 - 21 - - - - 

F PB.1.14 117 - - - - - 

F PB.1.21 - 29 6 - - - 

F PB.1.26 22 - - - - - 

https://paperpile.com/c/SwPJlM/rQjA+we2r
https://paperpile.com/c/SwPJlM/rQjA+we2r


F PB.1.29 - - 30 - - - 

F PB.1.30 - - 56 - - - 

F PB.1.31 - 28 - - - - 

F PB.1.33 - 59 - - - - 

F PB.1.34 6 - 27 - - - 

F PB.1.36 - 59 - - - - 

F PB.1.39 - 95 - - - - 

F PB.1.41 - - - - - 12 

F PB.1.42 - 195 - - - - 

F PB.1.47 - - 4 - - 8 

F PB.1.50 4 49 - - 4 - 

F PB.1.54 - 19 - - - - 

F PB.1.55 - - 135 - - - 

F PB.1.9 - - - 96 55 20 

B (Pretto 2015) Isoform_4 - - 5 - - - 

B (Pretto 2015) Isoform_5 - - - - - - 

B (Pretto 2015) Isoform_5b - 6 - - - - 

Total isoforms detected  in 
sample 27 35 32 15 17 18 

 

 

 

  



Supplementary Table 4. RT-PCR primers designed in the first and last coding exons of 

the nine Y ampliconic gene families. Each primer starts with a 21 bp-long PacBio 

barcode that is unique for each sample.  

 
Amplification target Primer name Primer sequence 

BPY_sample1 

BPY2_Sam1_F4 GGTAGGCGCTCTGTGTGCAGCCGTGCAGGACAGGATCATTA 

BPY2_Sam1_R CCATCTCATATGTAGTACTCTTTACTTCTGTGATCTGGGC 

CDY1_sample1 

CDY1/2_Sam1_F GGTAGGCGCTCTGTGTGCAGCTTCCCAGGAGTTTGAGGTTG 

CDY1/2_Sam1_R1 CCATCTCATATGTAGTACTCTCTCATCAATTTTATTTTCAACATAC 

CDY2_sample1 

CDY1/2_Sam1_F GGTAGGCGCTCTGTGTGCAGCTTCCCAGGAGTTTGAGGTTG 

CDY1/2_Sam1_R2 CCATCTCATATGTAGTACTCTTCAAGGGCACCATCTCTGAT 

DAZ_sample1 

DAZ_Sam1_F2 GGTAGGCGCTCTGTGTGCAGCACCACTCGAAGCCCCACA 

DAZ_Sam1_R CCATCTCATATGTAGTACTCTTCTGGATTAAACAGACAAGATACCA 

HSFY_sample1 

HSFY_Sam1_F GGTAGGCGCTCTGTGTGCAGCACTCAAGATGTTTCCCCCAAA 

HSFY1_Sam1_R CCATCTCATATGTAGTACTCTTTGTCCAGTGGTGATGGTTG 

PRY_sample1 

PRY_Sam1_F1 GGTAGGCGCTCTGTGTGCAGCATGGGAGCCACTGGGCTTG 

PRY_Sam1_R CCATCTCATATGTAGTACTCTCACAGATGTCCCCAAGTGC 

RBMY_sample1 

RBMY_Sam1_F GGTAGGCGCTCTGTGTGCAGCAGCAGATCATCCTGGCAAGC 

RBMY_Sam1_R CCATCTCATATGTAGTACTCTTTAATATCTGCTCGAGTCTCCTTTT 

TSPY_sample1 

TSPY_Sam1_F GGTAGGCGCTCTGTGTGCAGCAGGGCTCGCTGACCTAC 

TSPY_Sam1_R2 CCATCTCATATGTAGTACTCTTCAACTCAACAACTGGGAGTC 

VCY_sample1 

VCY_Sam1_F GGTAGGCGCTCTGTGTGCAGCATGAGTCCAAAGCCGAGAGC 

VCY_Sam1_R CCATCTCATATGTAGTACTCTTCAGGGAGATAGGGGAGTAGA 

XKRY_sample1 

XKRY_Sam1_F GGTAGGCGCTCTGTGTGCAGCTTAATAGCATTGCTGATGACATATTCC 

XKRY_Sam1_R CCATCTCATATGTAGTACTCTGATAAGCATCCATACTTACCCACCA 

BPY_sample2 

BPY2_Sam2_F4 GGTAGTCATGAGTCGACACTACGTGCAGGACAGGATCATTA 

BPY2_Sam2_R CCATCGCGATCTATGCACACGTTACTTCTGTGATCTGGGC 

CDY1_sample2 

CDY1/2_Sam2_F GGTAGTCATGAGTCGACACTATTCCCAGGAGTTTGAGGTTG 

CDY1/2_Sam2_R1 CCATCGCGATCTATGCACACGCTCATCAATTTTATTTTCAACATAC 

CDY2_sample2 

CDY1/2_Sam2_F GGTAGTCATGAGTCGACACTATTCCCAGGAGTTTGAGGTTG 

CDY1/2_Sam2_R2 CCATCGCGATCTATGCACACGTCAAGGGCACCATCTCTGAT 

DAZ_sample2 

DAZ_Sam2_F2 GGTAGTCATGAGTCGACACTAACCACTCGAAGCCCCACA 

DAZ_Sam2_R CCATCGCGATCTATGCACACGTCTGGATTAAACAGACAAGATACCA 

HSFY_sample2 

HSFY_Sam2_F GGTAGTCATGAGTCGACACTAACTCAAGATGTTTCCCCCAAA 

HSFY1_Sam2_R CCATCGCGATCTATGCACACGTTGTCCAGTGGTGATGGTTG 

PRY_sample2 

PRY_Sam2_F1 GGTAGTCATGAGTCGACACTAATGGGAGCCACTGGGCTTG 

PRY_Sam2_R CCATCGCGATCTATGCACACGCACAGATGTCCCCAAGTGC 

RBMY_sample2 

RBMY_Sam2_F GGTAGTCATGAGTCGACACTAAGCAGATCATCCTGGCAAGC 

RBMY_Sam2_R CCATCGCGATCTATGCACACGTTAATATCTGCTCGAGTCTCCTTTT 

TSPY_sample2 

TSPY_Sam2_F GGTAGTCATGAGTCGACACTAAGGGCTCGCTGACCTAC 

TSPY_Sam2_R2 CCATCGCGATCTATGCACACGTCAACTCAACAACTGGGAGTC 

VCY_sample2 

VCY_Sam2_F GGTAGTCATGAGTCGACACTAATGAGTCCAAAGCCGAGAGC 

VCY_Sam2_R CCATCGCGATCTATGCACACGTCAGGGAGATAGGGGAGTAGA 

XKRY_sample2 

XKRY_Sam2_F GGTAGTCATGAGTCGACACTATTAATAGCATTGCTGATGACATATTCC 

XKRY_Sam2_R CCATCGCGATCTATGCACACGGATAAGCATCCATACTTACCCACCA 

 

 

 

 

 

 

 

 



 

Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Panel A 

 
Panel B 

 
Supplementary Figure 1. Recall and precision on simulated families of transcripts with 

the same exon structure and unequal abundance rates. Violin plots showing the recall 

(panel A) and precision (panel B) of IsoCon and ICE. 

Each plot shows results for a total of 8 transcripts with abundances randomly assigned 

and ranging from 0.4% to 50%. 



 

 
Supplementary Figure 2. Edit distance between gene copies for simulated datasets of 

8 gene copies. Each matrix shows edit distances between the 8 simulated copies for a 

specific gene family and mutation rate. The x and y axis show the abundance level of 

the copy in the unequal abundance experiment. The number in each block shows the 

edit distance between copies. Numbers on or above the diagonal are masked. Also 

masked are any blocks with edit distance >99.  
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Panel B 

 
 

Supplementary Figure 3. Violin plots showing the recall (panel A) and precision (panel 

B) of IsoCon and ICE on simulated families of transcripts with different exon structure 

and equal abundance rates. Each plot shows results for a total of 30 isoforms with equal 

abundances.  



 

 

Panel A 

 
Panel B 

 
Supplementary Figure 4. Violin plots showing the recall (panel A) and precision (panel 

B) of IsoCon and ICE on simulated families of transcripts with the same exon structure 

and equal abundance rates. Each plot shows results for a total of 8 transcripts. 

 



 

 

Panel A      Panel B 

 
Panel C      Panel D 

 
Supplementary Figure 5. Violin plots showing the recall (panel A-B) and precision 

(panel C-D) of IsoCon and ICE on a single gene copy with eight different isoforms with 

equal abundance rates (left) and unequal abundance rates (right).  

  



 
Supplementary Figure 6. Histogram showing the number of polymerase passes in the 

CCS reads for both samples. The average number of passes is 16 and the median is 

13. 
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Supplementary Figure 7. Venn diagram of the number of predicted transcripts shared 

between two samples. Panel (A) IsoCon, (B) ICE, (C) original reads, and (D) Illumina 

corrected CCS reads. A transcript is shared if it has a perfect match between samples 

(edit distance of 0). Identical sequences within one sample are collapsed. 
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Supplementary Figure 8. (A) The alignment of two transcripts in the FMR1 dataset 

(exon 9-17; the targeted region in this dataset).  Aligned sequence Isoform7_groupC is 

a previously reported transcript and candidate_novel_splice_site is a transcript derived 

by IsoCon. The candidate_novel_splice_site transcript has a novel splice site occuring 

5bp downstream of the RefSeq curated exon 17. Alignments of other known UCSC 

isoforms are also shown. (B) Four IsoCon detected isoforms with the 1bp deletion at the 

end of exon 11 forming a candidate for a new non-canonical splice site. The isoforms 

differ only in this deletion to the closest previously annotated isoform. We confirmed that 

this variant occurred in at least 2486 CCS reads in each of the premutation samples 

(which is over 10% of the reads), and in at least 370 CCS reads in each of the control 

samples (which is over 3% of the reads). 

  



 

 

 
 

Supplementary Figure 9. Pseudo-code for IsoCon algorithm.  



 

 
Supplementary Figure 10. Quality predictions from PacBio’s base calling algorithm 

Arrow 21 for CCS reads based on a subsample of 5,000 CCS reads. Each panel shows 

Arrow’s prediction that the called base is wrong (y-axis) as a function of the 

homopolymer length in a CCS read (x-axis). The predictions are split by the four 

different bases. Each point within a line is the mean probability of error for a given 

nucleotide and the length of the homopolymer that contains it. Vertical lines for each 

point are the 95% confidence interval of the mean. For each point, the number of 

replicates depends on the number of times the homopolymer is present in the reads. 

Each of the panels correspond to the shown number of passes over the read. 

 

  

https://paperpile.com/c/SwPJlM/zsWMi


 

 

 
 

Supplementary Figure 11. Alignment of two CDY primer pairs (CDY1/2_F and 

CDY1/2_R1;CDY1/2_F and CDY1/2_R2) to transcripts from Ensembl database showing 

the necessity of designing two alternative reverse primers to capture all protein-coding 

transcripts for this ampliconic gene family.  
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Supplementary Figure 12. Recall power of IsoCon in controlled simulation 

experiments. We simulated 20 replicate experiments for each combination of given 

parameters: gene, edit distance, relative abundance, and number of reads. For each 

replicate experiment, a new target transcript is generated with a fixed number of random 

mutations relative to the template transcript, and reads are drawn randomly from the 

two transcripts. The probability of simulating a read from the target transcript is given by 

the relative abundance. Panel A shows the fraction of the 20 replicates where the target 

transcript was recovered by IsoCon. Panel B plots the minimum read depth at which a 

recall of >90% was achieved. Both the x- and y-axis are log-scaled. In some cases, the 

largest simulated sequencing depth was not enough to achieve 90% recall and no 

points are plotted.   



 

 

 

 

 
Supplementary Figure 13. Biological data processing workflow with snakemake. 

bax2bam, ccs, and classify are tools included in the PacBio smrtlink v4.0 tool suite. The 

rule split_by_primers splits the reads into batches for each given primer.   
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Panel B  

 

Supplementary Figure 14. P-value histograms for all predicted transcripts generated for each 

gene family in the simulated experiments with mutation rate 0.0001 and no exon differences (A) 

and the experimental ampliconic dataset (B). For (B), the y-axis is log-scaled. Predictions with 

p-value lower than 10e-20 are placed in the leftmost blue bin and predictions that have more 

than 10 variant positions with respect to all other predictions are not statistically evaluated by 

IsoCon and shown in the red bin. 
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Supplementary Figure 15.  Various accuracy features as a function of significance 

values given by IsoCon. Panel A and B shows the CCS read support and the 

percentage of transcripts with full Illumina support, respectively, as a function of p-value. 

P-values are grouped into 11 discrete ranges. Panel C shows the number of distinct 

Ensembl matches captured as a function of the p-value cutoff ⍺, i.e. how many distinct 

Ensembl transcripts are recovered (y-axis) by transcripts with a p-value lower than x (x-

axis). 

  


