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Supplementary Table 1  

Term Description Constraints Prior Hyperparameter 

i   Index for shRNAs     

j   Index for cell lines    

k   Index for screening batches    

l   Index for genes    

s   Index for seed sequences    

Dijk   shRNA depletion measurements    

ajk   Additive offset per cell line/batch  
 N (0,σ a

2 )  λa = 0.001  

θik   Additive offset per shRNA/batch  
 N (0,σθ

2 )  λθ  

γ jk   Multiplicative scaling of depletion 
effects per cell line/batch 

γ jk = 1   Uniform  

qj   Multiplicative scaling of gene 
knockdown effects per cell line 
(‘screen signal’) 

qj = 1   Uniform  

α i   shRNA gene knockdown efficacy α i ∈[0,1]   Uniform  

Gil   Fixed binary matrix mapping 
shRNAs to genes 

   

gl   Across-cell-line average gene effects  
 
N (0,σ g

2 )  λg = 1   

glj   Cell-line specific relative gene 
effects 

 
 
N (0,σ g

2 )  λg = 1   

βi   shRNA off-target efficacy βi ∈[0,1]   Uniform  

Bis   Fixed binary matrix mapping    



 

 

shRNAs to seed sequences 

bs   Across-cell-line average seed effects  
 N (0,σ b

2 )  λb = 1   

bsj   Cell-line specific relative seed effects  
 N (0,σ b

2 )  λb = 2   

ci   Across-cell-line average of additional 
shRNA off-target effects 

 
 N (0,σ c

2 )  λc = 10   

 
εijk   Independent Gaussian noise terms    

σ ij
2   Noise variance for each cell 

line/batch 
 Uniform  

List of model terms and parameters 

  



 

 

 

Supplementary Figure 1: D2 improves positive/negative control separation 

compared to previous methods 

Distribution of positive/negative control gene separation (SSMD) across cell lines 

estimated using D2 (blue), GA (gold), MAGeCK (purple), and RSA (maroon). A curated 

list of common-essential genes was used as positive controls1, and unexpressed genes 

in each cell line were used as negative controls. For both the Achilles (left) and DRIVE 

(right) datasets, D2 provided substantially improved SSMD compared to other methods. 

  



 

 

 

Supplementary Figure 2: Comparison of DRIVE and Achilles datasets 

a) Separation of LFC depletion scores for shRNAs targeting positive and negative 

control genes1 was better for the same cell lines in the Achilles data compared to DRIVE 

(median SSMD improvement was 17% in Achilles compared to DRIVE; p < 2.2x10-16, 

Wilcoxon signed rank test; n = 226 cell lines). b) The same was true when comparing 

separation of positive/negative control gene scores (averaging depletion scores across 

shRNAs targeting each gene: GA method) (median SSMD improvement was 6.4% in 

Achilles compared to DRIVE; p = 2.1x10-8). c) When using shRNAs present in both the 

Achilles and DRIVE datasets (common shRNAs; n = 326 targeting positive control genes 

and n = 1278 targeting negative control genes), positive/negative control separation 

(SSMD) was slightly higher with DRIVE data compared to Achilles (median Achilles - 

DRIVE SSMD difference = -0.06; p = 4.8x10-9). In contrast, SSMD values were 

substantially higher in Achilles compared to DRIVE when using the dataset-specific 

shRNAs only (median difference = 0.13; p < 2.2x10-16). Histogram shows the distribution 

of SSMD differences across cell lines when using common shRNAs (red) or dataset-

specific shRNAs (blue). d) Distribution of the across-cell-line average gene dependency 

scores (computed using gene-averaging) for common essential and non-essential genes 



 

 

in the DRIVE and Achilles datasets. Dependency scores for non-essential genes were 

more tightly distributed about zero in the DRIVE data, reflecting a reduction in off-target 

effects compared to Achilles data arising from the greater number of shRNAs per gene. 

DRIVE data showed more variable dependency scores for common-essential genes, 

however, likely due to the lower average on-target efficacy of shRNAs in the DRIVE 

library. e) The DRIVE dataset gave substantially better estimates of dependency profiles 

across cell lines, as shown by the increased strength of correlation between a 

benchmark set of dependency-genomic feature relationships, computed (as in Fig. 4e) 

using the GA model (median increase in correlation magnitude was 32% for DRIVE data 

compared to Achilles; p = 2.8x10-15, Wilcoxon signed rank test; n = 218 dependency-

feature pairs). 

  

  



 

 

 

Supplementary Figure 3: D2 inferred screen signal captures cell-intrinsic 

property associated with screen quality 

a) Screen signal parameters inferred for each cell line were closely related to the 

estimated screen quality (SSMD between positive and negative control gene 

dependencies, computed using the GA model). Green dots show Achilles data 

(Spearman’s rho = 0.79) and gold dots show DRIVE data (rho = 0.69). Trend lines show 

linear regression fits. b) Screen signal parameter estimated by D2 separately applied to 

the Achilles and DRIVE datasets were in close agreement (rho = 0.79).  

  



 

 

 

Supplementary Figure 4: D2 removes bias related to AGO2 expression 

The average correlation (across genes) between gene dependency and AGO2 

expression is plotted for each model as a function of the gene’s average dependency 

across cell lines. All models except D2 produce dependency estimates that are strongly 

anti-correlated with AGO2 expression for common essential genes. Curves show 

smoothed estimates of the conditional mean correlation and 95% confidence intervals 

(see Methods). Results using Achilles and DRIVE data are shown in the left and right 

panels respectively 

  



 

 

 
Supplementary Figure 5: Normalizing gene dependencies per cell line 

amplifies noisy data 

a) Scatterplot of gene dependency for two individual cell lines vs the population average 

gene dependency (as in Fig 2a), using gene-averaging. On top, the gene dependency 

scores are normalized across all cell lines so that the overall median positive and 

negative control gene dependencies are set at -1 and 0 respectively. The bottom panels 

show the results when the dependency scores are normalized for each individual cell 

line to have these median positive and negative control dependency scores. Using this 

per-cell-line normalization, the dependency scores for the example low-quality screen 

(A3KAW; left) are greatly magnified relative to those from a high-quality screen (HT29; 

right). b) The cell line loadings for the first principle component of the D1 gene 

dependency matrix were closely related to the D2-estimated screen-signal for both 

Achilles (left) and DRIVE (right) data, suggesting that screen-quality biases can be 



 

 

corrected by post-hoc removal of the first PC from the D1 gene dependencies. c) 

Average correlation between gene dependency and AGO2 mRNA expression is plotted 

against across-cell line average dependency (as in Supplementary Fig. 4), comparing 

D2, D1, and GA models with post-hoc methods for correcting screen-related biases (GA-

indnorm is normalizing GA scores per cell line as in a, D1-PC is removing the first PC of 

D1 dependencies). Both methods of post-hoc correction largely remove correlations 

between dependency and AGO2 mRNA expression for common-essential genes. The 

D1-PC method is particularly effective at removing correlations between AGO2 

expression and dependency profiles, likely owing to the additional degrees of freedom 

available when estimating separate PC ‘loadings’ for each gene (compared with D2 

which models the effect using a single screen signal parameter for each cell line). d) 

CDF of correlation magnitudes between benchmark dependency/genomic-feature pairs 

(as in Fig. 4e), showing that dependency estimates do not improve by this measure 

when using post-hoc correction for screen-related biases. In fact, agreement between 

benchmark dependencies and genomic features was significantly worse when using the 

individual cell-line normalization (GA-indnorm) compared to the global normalization 

(GA) (Achilles: p = 2.6x10-11; Wilcoxon signed rank test; n = 384 pairs; DRIVE: p = 

6.0x10-14; n = 231 pairs), as well as when removing the first PC of D1 scores compared 

to using the original D1 scores (Achilles: p = 3.3x10-4, DRIVE: p = 1.6x10-3).  



 

 

 
Supplementary Figure 6: D2 eliminates bias in dependency-dependency 

correlation estimates 

Average pairwise correlation between gene dependency profiles is shown as a function 

of the average dependency score of the gene pair. Each trace shows the conditional 

mean correlation across gene pairs as a function of the across-cell-line average 

dependency score when using different models. When using D1 or GA the average 

correlation increases sharply for pairs of common essential genes for both the Achilles 

(left) and DRIVE (right) data, while this relationship is largely removed when using D2. 

 

  



 

 

 
Supplementary Figure 7: D2 improves estimates of differential gene 
dependency with DRIVE data 

Same results are shown as in Fig. 4, but applied to the DRIVE data. a) Average 

correlation between RNAi and CRISPR-Cas9 gene dependency profiles as a function of 

the across-cell-line average dependency score. Different colored curves show the 

smoothed conditional mean correlation, and 95% confidence intervals, obtained using 

different models for estimating RNAi gene dependencies. b) Average magnitude of 

pairwise correlations between gene dependency and mRNA expression profiles for each 

gene, plotted as a function of average gene dependency as in a. c) Similar to b, showing 

stronger correlations between D2 dependency profiles and the genes’ own relative copy 

number, particularly for genes which are more essential on average. d) A benchmark set 

of dependency-genomic feature relationships identified from CRISPR-Cas9 data (see 

Methods) was used to evaluate the extent to which DRIVE RNAi dependency estimates 

using each model recapitulated the same associations. Colored curves show the 

empirical distributions of correlation magnitude across these dependency-feature pairs. 

D2 dependency estimates showed better agreement with these benchmark genomic 

feature associations compared to existing methods. Bar chart at right shows the fraction 

of dependency feature pairs with correlation greater than 0.4 for each model. 



 

 

 

Supplementary Figure 8: D2 gene dependency uncertainty estimates can 

improve downstream analyses 

D2 provides uncertainty estimates of gene dependency which account for variable 

screen quality and reagent quality. Results are shown for the Achilles data. a) Average 

estimated uncertainty of gene dependency scores for each cell line is closely associated 

with the screen quality of the cell line (Spearman’s rho = -0.85). Screen quality is 

assessed independently of the D2 model, by computing the separation (SSMD) of 

positive and negative control gene dependencies estimated by gene-averaging. b) 

Average uncertainty of gene dependency scores for each cell line was also strongly 

correlated (Spearman’s rho = -0.48) with the level of replicate agreement for shRNA-

level log-fold-change measurements. c) Average estimated uncertainty for each gene is 

largely driven by the number and quality of shRNAs targeting the gene. shRNA quality is 

assessed by summing the shRNA efficacies across shRNAs targeting each gene. Dot 

color depicts the density of points. d) The D2-estimated gene dependency uncertainties 

are used throughout our analyses to weight each dependency score according to its 

precision. When such precision weights are not used, there was a slight but significant 

reduction in correlation between D2 and CRISPR-Cas9 dependency data (p < 2.2x10-16 

for both Achilles and DRIVE data; Wilcoxon signed rank test; n = 15k and 7k genes 



 

 

respectively). Importantly, D2 gave better results than previous methods, even without 

accounting for estimated uncertainty. Results are plotted as in Fig. 4a. 

 

  



 

 

 

Supplementary Figure 9: Combined D2 model improves dependency 

estimates over using individual datasets 

a) The first two principle components (PCs) of the gene dependency matrices computed 

using methods that assess ‘absolute gene dependency’ (RSA, MAGeCK) showed strong 

batch-related effects when combining scores across the Achilles and DRIVE datasets 

(plots similar to Fig. 5b), while little batch-related variability was present in the first 2 

PCs when combining relative dependency measures such as D1 and ATARiS. b) The 

combined D2 model slightly improves estimates of the across-cell-line average 

dependency for each gene compared with using individual D2 datasets, or pooled GA 

estimates. Bar plot shows correlation between CRISPR-Cas9 average gene 

dependencies, and those estimated from different RNAi datasets. c) Average per-gene 

correlation of RNAi and CRISPR dependency profiles is slightly improved when using the 

combined D2 dataset. Each trace shows the smoothed mean correlation and standard 

error as a function of the population average dependency score (estimated using the 

combined D2 model). d) Agreement between benchmark pairs of dependencies and 

genomic features (identified using CRISPR-Cas9 data) is improved with the combined 

D2 dataset. Plot shows the empirical CDF of dependency/feature correlation magnitudes 

for each model. Barplot inset shows the percentage of pairs with correlation magnitude 

greater than 0.4 for each dataset. 



 

 

 

Supplementary Figure 10: Model-inferred normalization reflects differences 

in cell line growth rate 

Measured cell line population doubling time was significantly negatively correlated with 

the overall scaling normalization term inferred by the D2 model (Spearman’s rho = -0.24; 

p = 6.2x10-11; top), but doubling time was not correlated with the estimated screen signal 

parameter (rho = 0.01; p = 0.73; bottom). Results for Achilles data are shown at left, and 

DRIVE data are shown at right. Doubling time estimates were taken from the data 

provided in Tsherniak et al.2. 

  



 

 

 

Supplementary Figure 11: Selection of positive and negative control gene 

sets does not bias evaluation of model performance 

To confirm that the set of positive and negative control genes used by D2 to estimate the 

screen signal parameters does not bias quantification of the model performance (using 

the same gene sets to evaluate positive and negative control separation), we performed 

a cross-validation analysis. Namely, we refit the model (using the Achilles data) 10 times 

using a random subset of 50% of the positive and negative control genes in each case 

for model fitting, while using the remaining 50% of control genes for evaluating 

positive/negative control separation. Average gene dependency estimates shows similar 

positive/negative control separation (SSMD) when evaluated on the ‘training’ set of 

genes, as on the ‘testing set’, showing that using these genes to estimate the screen 

signal parameters does not bias our evaluation of the D2 model results. Boxplots show 

the median, hinges depict the interquartile range, and the whiskers extend to 1.5x 

interquartile range beyond the hinges. 

 

 



 

 

 

Supplementary Figure 12: Simulations of DEMETER2 parameter estimation 

under different conditions 

Simulated data was generated similar to that observed for the Achilles experiment (501 

cell lines, with 94k shRNAs targeting 17k genes), using the parameter values estimated 

by the D2 model applied to that dataset as ground truth (including estimated LFC ‘noise-

variance’ per cell line). The D2 parameter estimation procedure was then able to recover 

accurate estimates of key model parameters such as the multiplicative ‘screen-signal’ (a) 

and overall screen normalization terms (b), as well as the gene dependency scores (c). 

d) Comparison of model-estimated and ground truth ‘relative’ gene dependency scores, 



 

 

computed by mean-subtracting the data per gene, illustrating that the model is able to 

estimate the across-cell-line differences in dependency scores accurately. e) Quantile-

quantile plot comparing the standardized errors of D2 gene dependency point estimates 

(posteriorMean – true)/posteriorSD with those expected from a normal distribution. While 

the observed error distribution was heavier-tailed, indicating the model tends to 

occasionally underestimate its uncertainty, there was good agreement for the bulk of the 

distributions. For panels f-h) we generated simulated datasets with varying numbers of 

cell lines and genes targeted, by sub-sampling from the D2 model fit to the Achilles 

dataset (using only the ‘98k’ batch for simplicity). We compared separation of positive 

and negative control gene distributions (f; SSMD), R2 of true and estimated gene 

dependencies (g) and R2 of ‘relative’ gene dependency estimates (h; mean-subtracting 

per-gene and computing overall R2), for both the D2 (blue) and GA (orange) models 

(error bars indicate the region mean +/- SD). D2, but not GA, performance increased 

steadily with increasing number of cell lines (top panel; simulations with all 17k genes), 

reflecting the utility of jointly modeling data for all cell lines. Bottom panels show similar 

comparisons varying the number of genes included in the simulation (using 200 cell 

lines). The D2 model also performed well even with smaller library sizes, though an 

important consideration is that there are enough positive and negative control genes 

included in the library for the normalization procedure to work robustly (10’s of genes in 

each set is generally sufficient). 

  



 

 

 

 

Supplementary Figure 13: DEMETER2 hyperparameter selection 

a) Separation of positive and negative control gene dependencies (SSMD) was relatively 

insensitive to the precise values chosen for hyperparameters controlling regularization of 

parameters shared across cell lines (λg , λs , λc , λθ ). Values for these 

hyperparameters (Supplementary Table 1) were coarsely chosen to maximize 

separation (SSMD) of positive-negative control gene dependencies. b-e) In order to 

select hyperparameters controlling the across-cell-line variability in estimated gene and 

seed effects (λg and λs ) we looked at several performance measures. As expected, 

prediction accuracy on the training data (b) decreased monotonically with increasing 

regularization of relative gene or seed effects. c) Accuracy on held-out test data 

(randomly selected 10% of shRNA/cell line pairs) improved steadily with increasing 

regularization of relative gene effects (λg ), and was largely insensitive to seed effect 

regularization (λs ). While standard practice for predictive modeling would be to select 



 

 

values for these hyperparameters minimizing test error, we found that this resulted in 

strongly regularized gene dependencies, where there was a large reduction in the 

proportion of gene dependency variance across cell lines (within gene) vs. across genes 

(d). Thus, we chose values for these hyperparameters by looking at several performance 

measures, including prediction accuracy on test data, but also considering the potential 

for biased under-estimation of within-gene variation, as well as agreement with CRISPR-

Cas9 dependency data (e; showing average across-cell-line correlation for known 

common-essential genes), and correlation between gene dependencies and the genes’ 

own expression levels and copy number. Importantly, while varying λg did impact the 

proportion of gene dependency variance attributed to across-cell-line differences (vs. 

across-gene differences), the relative pattern of dependencies across cell lines was 

largely unchanged (i.e. increasingλg effectively compresses the dependency estimates 

for each gene towards the across-cell-line average with little effect on their rank order). 

Hence, the overall model results (all analyses presented in the manuscript) were largely 

insensitive to precise hyperparameter selection.  
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