
Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
McFarland et al. introduce DEMETER2, a hierarchical model pooling information across cell lines, 
coupled with model- based normalization, to correct for systematic bias seen in large perturbation 
screens. DEMETER2 (D2) is an extension of DEMETER (D1) and estimates absolute gene 
dependency scores by correcting for off-target effects, variable shRNA quality, and screen quality 
among cell lines, thus enabling effective integration of multiple RNAi datasets. They show on three 
different screens that D2 provides an improved absolute gene dependency score in comparison to 
existing methods like gene averaging (GA), and the redundant siRNA activity method (RSA). The 
main novelty lies in explicitly modeling the screen quality, thereby correcting for systematic 
dependencies associated with screen quality that bias the downstream analyses.  
 
The model has several parameters, which are estimated using a hybrid approach based on 
variational inference. Two potential issues that require further explanations are overfitting the data 
and identifiability of the model. The authors only mention that the multiplicative scaling 
parameters are constrained to an average of 1 for the model to be identifiable, but do not provide 
any reasons. The authors should further elaborate on this choice, why it makes the model 
identifiable and why overfitting is not an issue. The authors should address these and other issues 
like when the method breaks down in a simulation study with varying parameters.  
 
Additionally the authors should compare D2 to existing methods like siMEM despite having argued 
against it, as the explanation is not very convincing. Alternatively the biases can also be addressed 
by applying several existing methods in combination, e.g. first getting rid of off-target effects and 
then correcting for screen/cell lines bias. Several methods for both steps exist and have been 
mentioned by the authors. They should compare D2 to such approaches that subsequently apply 
methods for the two subtasks, i.e. off-target correction and integration across screens, both in 
simulations and when applied to the real data.  
 
The authors describe in detail how the binary shRNA-to-gene mapping G is computed. They should 
also describe how to compute the shRNA-to-seed mapping B. The authors do not mention that and 
the method used for G does not seem to be transferable to B.  
 
Figure S8c is missing a color key for the colors depicting the density of points.  
 
On page 25 the sentence fragment “the D1 model in several ways, as described below (and 
illustrated schematically in Fig.” was accidentally copy and pasted in the next sentence and 
appears twice.  
 
In general, the paper is well written, sound, and relevant to the perturbation community. 
However, we cannot recommend the paper for publication before the authors address the above 
concerns, especially on simulations and comparisons to other approaches.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
McFarland et al describe a new algorithm, DEMETER2, for the analysis of RNAi (and CRISPR) 
screens. Significant resources have been invested in the shRNA-based pooled library screening of 
cancer cell lines to identify "synthetic lethal" targets for therapeutic intervention. Even with the 
substantial advantage that CRISPR screening brings to bear on this problem, efforts to improve 
the analysis of the very large number of shRNA screens available are well justified.  
 
The authors present a comprehensive upgrade to DEMETER that includes parameters for overall 



screen quality (itself estimated by evaluating the screen's ability to separate reference sets of 
essential and nonessential/nonexpressed genes), variable gene-level and seed-level (i.e. off-
target) effects, and provides an estimate of absolute fitness defect for each gene. All of these are 
critical improvements that contribute to the impact of this algorithm.  
 
Overall this study represents a important contribution to the field. It identifies concepts that are 
key weaknesses in the existing literature/methods, addresses them in a statistically robust 
manner, and potentially rescues a lot of data from oblivion.  
 
Minor edit:  
 
Fig 2b: the use of Spearman correlations may render this point moot, but the robustness of the 
Achilles correlation should be evaluated with regard to the removal of the two outliers (screens 
w/AGO2 expression < 0).  
 
 
 
Reviewer #3:  
Remarks to the Author:  
Summary: The authors have developed Demeter2, a significantly improved implementation of 
their previous method Demeter, to correct for technical and batch artifacts in RNAi screens of 
cancer cell lines. Despite some inherent limitations, cell line-based RNAi screens provide an 
extremely valuable resource to the community for understanding genetic interactions and their 
relevance to cancer. Thus strategies to aggregate and denoise these data are of great interest and 
value to the broader biomedical research community. Reducing signal due to off target effects and 
other technical noise that contaminates such datasets is a challenging problem. The authors 
convincingly demonstrate that Demeter2 improves the quality of RNAi screen data beyond what 
was possible with other existing methods. While this work builds on a previously published tool, 
the modifications result in a large overall improvement and allow novel quantification of gene 
dependencies relative to the previous incarnation. Overall the manuscript is clearly written and 
represents an important advance, and importantly both the source code and data will be made 
available to the research community. This reviewer has only a few suggestions.  
 
Major comments:  
 
It is exciting to see that Demeter2 improves over other available methods. After convincingly 
establishing the improvement in performance, the authors spend some time showing how different 
genomic features and mechanisms correspond to gene dependencies. The majority of 
improvement seems to come with more confident identification of CYCLOPs effects. The 
opportunity exists here to go into more depth in characterizing the gene dependencies that are 
recovered by the Demeter2 approach. Is it a set of genes that confer a smaller effect size of 
dependency, or that the same genes being detected in new cell lines? Are these genes mostly 
known essential genes, or are novel genes implicated? Is there any functional coherence across 
these smaller effect-size dependencies? While this manuscript is clearly more technical in spirit, 
any biological insights that might come from the ability to detect smaller effect sizes could broaden 
the interest in the manuscript.  
 
Minor comments:  
 
Given that using D2 to combine datasets allowed assessment of the improvement in performance 
relative to the amount of data gained, it would be interesting to investigate the point where 
performance due to added data saturates for genes with different magnitudes of dependency.  
 
Figure S8d was confusing at first since it wasn’t clear that D2 figures previously were always 
accounting for uncertainty. It might be more clear if the description were framed as D2’s 



performance being modestly but significantly reduced when precision is not used to weight 
dependency estimates.  
 
Figure 5b – add variance explained to the axis by each PC, or in the caption, for the different PCA 
plots  
 
Since the resource will be made publicly available, it would be helpful to include a level description 
of its composition, for example, an overview of the cell type composition of the cell lines. 



Reviewer #1 (Remarks to the Author): 
 
McFarland et al. introduce DEMETER2, a hierarchical model pooling information across cell lines, 
coupled with model- based normalization, to correct for systematic bias seen in large perturbation 
screens. DEMETER2 (D2) is an extension of DEMETER (D1) and estimates absolute gene 
dependency scores by correcting for off-target effects, variable shRNA quality, and screen quality 
among cell lines, thus enabling effective integration of multiple RNAi datasets. They show on 
three different screens that D2 provides an improved absolute gene dependency score in 
comparison to existing methods like gene averaging (GA), and the redundant siRNA activity 
method (RSA). The main novelty lies in explicitly modeling the screen quality, thereby correcting 
for systematic dependencies associated with screen quality that bias the downstream analyses. 
 
The model has several parameters, which are estimated using a hybrid approach based on 
variational inference. Two potential issues that require further explanations are overfitting the data 
and identifiability of the model. The authors only mention that the multiplicative scaling 
parameters are constrained to an average of 1 for the model to be identifiable, but do not provide 
any reasons. The authors should further elaborate on this choice, why it makes the model 
identifiable and why overfitting is not an issue. The authors should address these and other 
issues like when the method breaks down in a simulation study with varying parameters. 
We thank the reviewer for highlighting these areas where additional explanation and validation of 
model-fitting details were needed. 
 
Identifiability: We have revised the manuscript (Methods section DEMETER2: Model 
description; pg. 28) to better explain this point. In summary, the model is invariant to global 
scaling of the gene effects by alpha, if the multiplicative terms are all scaled by 1/alpha. Thus, 
additional constraints (one for each set of multiplicative scaling terms) are needed to ensure the 
identifiability of the model. We chose to constrain the multiplicative scaling terms to have an 
average of 1 so that they capture relative differences in normalization/screen-signal across cell 
lines, making the gene effects estimated by the model more directly comparable across cell lines.  
 
Overfitting: We agree with the reviewer that this is an important issue, and we have added a 
supplementary figure (Fig. S13), and additional discussion to the Methods (section “Priors and 
hyperparameter selection”, pg. 32-33), to clarify our procedure for selecting hyperparameters. 
Overfitting of the model to training data is typically assessed by evaluating the accuracy of model 
predictions on held-out test data, which we did. The merits of a strategy of determining 
hyperparameter values based on the model’s prediction accuracy deserves special mention in 
this particular application. The purpose of our model is not to predict depletion values of shRNAs 
in pooled screens per se, but rather to extract biologically meaningful information from such 
screens. While we did measure the model’s prediction error on both train and test data, we found 
that refining hyperparameters by minimizing test error, as is commonly done, produced models 
where the gene effects were overly biased towards the across-cell-line average. This makes 
sense intuitively, as there is likely only modest real variation in dependency across cell lines for a 
large fraction of genes, and hence a model that strongly regularizes individual gene scores 
towards the across-cell-line average can perform best in this global sense. Nevertheless, this can 
create significant bias towards underestimating the across-cell-line variability for genes that are 
strongly differentially dependent across cell lines, which are often the genes cancer researchers 
are most interested in studying. As such, our strategy for selecting model hyperparameters was 
to also utilize other measures of model performance, such as separation of positive and negative 
control genes, and agreement of estimated gene effects with CRISPR-Cas9 data (though we note 
that such performance measures were largely insensitive to the precise selection of model 
hyperparameters). We also note that the improved performance we observe with DEMETER2 
across a wide-range of downstream benchmark analyses suggests it is not strongly impacted by 
overfitting (which would tend to adversely affect these performance measures). 
 



Simulations: We appreciate and adopted the reviewer’s suggestion to use simulated data to 
validate the parameter estimation procedure we employ, as well as to explore the applicability of 
the model across different types of datasets. We now show that D2 is indeed able to recover 
accurate estimates of key model parameters using realistic simulated data (with parameters 
matched to those measured in the Achilles dataset). We added text to the methods (DEMETER2: 
Parameter estimation; pg. 31-32), as well as a supplementary figure (Fig. S12) describing the 
simulations. We note that the errors in the model’s gene effect ‘point’ estimates are largely 
consistent with its uncertainty estimates (taken from the Gaussian-approximated posteriors).  

We also used simulations to evaluate the performance of the model when applied to 
datasets with varying numbers of cell lines and genes targeted (described on pg. 32, Fig. S12f-
h). These analyses show that the model can be applied robustly across a wide range of datasets, 
including with much smaller shRNA libraries, and with relatively few cell lines. As expected, 
however, the improvements provided by D2 were most pronounced when applied to datasets with 
more cell lines, due to the pooling of information across cell lines, and its accounting for screen-
quality differences across cell lines.  
 
Additionally the authors should compare D2 to existing methods like siMEM despite having 
argued against it, as the explanation is not very convincing. Alternatively the biases can also be 
addressed by applying several existing methods in combination, e.g. first getting rid of off-target 
effects and then correcting for screen/cell lines bias. Several methods for both steps exist and 
have been mentioned by the authors. They should compare D2 to such approaches that 
subsequently apply methods for the two subtasks, i.e. off-target correction and integration across 
screens, both in simulations and when applied to the real data. 
siMEM: We agree that our explanation for why we did not compare our results with siMEM was 
unclear. We have now clarified this point in the revised manuscript (Discussion section, pg. 23). 
In siMEM, differences in gene effects across individual cell lines are treated as ‘random effects’, 
and hence are not directly estimated by the model. Instead, siMEM is designed to test for 
differences in gene effects only between groups of cell lines (or differences related to a 
continuous cell line parameter). 
 
Additional models: In order to provide additional comparisons between DEMETER2 and 
existing methods, we ran MAGeCK on all cell lines in the Achilles and DRIVE datasets. MAGeCK 
is a popular method for estimating gene dependencies in pooled screens that is specifically 
designed to model the noise properties of sequencing-based readouts. Nevertheless, we found 
that MAGeCK did not perform better than simple gene-averaging on our evaluation metrics (see 
revised Figs. 1, 4, S7), potentially because it is designed for calling dependencies in individual 
screens, rather than extracting comparable measures of gene dependency across many screens. 
We also explored the use of ScreenBEAM, another hierarchical Bayesian model of pooled 
functional screens, but we found that it was computationally infeasible to apply to such large 
multi-screen datasets owing to its reliance on MCMC sampling (and we have made mention of 
this in the revised manuscript, Discussion section, pg. 23). It’s unlikely that ScreenBEAM (or other 
previously described methods) will address the main challenges described here with large-scale 
RNAi screens, since it does not model RNAi off-target effects specifically, and treats data from 
each cell line independently. 
 
Applying multi-stage methods: 
We agree with the reviewer’s point that the screen-quality related biases could be addressed 
using separate ‘post-hoc’ correction methods applied to gene dependency estimates obtained 
using existing methods. We thus considered such strategies in more detail in the revised 
manuscript (see pg. 11 in the main text, and Fig. S5), as summarized below.  

In the original manuscript, we showed that rescaling each cell line’s gene dependencies 
to align the positive and negative control genes’ effects can eliminate the bias, although it 
introduces another problem by greatly magnifying the noise present in lower-quality screens. 
Based on the reviewer’s comment, we explored additional approaches for ‘post-hoc’ correction of 
the screen-quality bias, and found that the first principle component of the gene dependency 



matrix estimated using D1 can be used to capture the variation in screen signal across cell lines 
remarkably well (revised Fig. S5b). Hence, one approach would be to remove this PC from the 
D1 data. Indeed, we found that this approach performed well at eliminating the screen quality bias 
(revised Fig. S5c). Importantly though, this post-hoc correction again did not improve other 
downstream benchmark analyses, but rather made them somewhat worse compared with using 
the original D1 gene dependencies (revised Fig. S5d). We believe this can be explained both by 
the other improvements of the D2 model over D1, as well as the advantage provided by 
estimating these normalization terms as part of the D2 model. For example, D2 is able to utilize 
the screen-quality differences across cell lines to improve its estimates of gene dependencies by 
using the particular pattern of shRNA depletion across cell lines associated with their variable 
screen signal to help distinguish essential genes from off-target effects or other sources of noise. 
 
The authors describe in detail how the binary shRNA-to-gene mapping G is computed. They 
should also describe how to compute the shRNA-to-seed mapping B. The authors do not mention 
that and the method used for G does not seem to be transferable to B. 
As we now explain more clearly in the methods (section “Model description”, pg. 27), the 
elements B_is (where i indexes shRNAs and s indexes unique 7mer seed sequences) are equal 
to one if sequence s is present in either of two seed regions in shRNA i, and 0 otherwise. 
 
Figure S8c is missing a color key for the colors depicting the density of points. 
We have added the color legend to this figure.  
 
On page 25 the sentence fragment “the D1 model in several ways, as described below (and 
illustrated schematically in Fig.” was accidentally copy and pasted in the next sentence and 
appears twice. 
We have corrected this error, and thank the reviewer for catching this. 
 
In general, the paper is well written, sound, and relevant to the perturbation community. However, 
we cannot recommend the paper for publication before the authors address the above concerns, 
especially on simulations and comparisons to other approaches. 
 
 

Reviewer #2 (Remarks to the Author): 
 
McFarland et al describe a new algorithm, DEMETER2, for the analysis of RNAi (and CRISPR) 
screens. Significant resources have been invested in the shRNA-based pooled library screening 
of cancer cell lines to identify "synthetic lethal" targets for therapeutic intervention. Even with the 
substantial advantage that CRISPR screening brings to bear on this problem, efforts to improve 
the analysis of the very large number of shRNA screens available are well justified. 
 
The authors present a comprehensive upgrade to DEMETER that includes parameters for overall 
screen quality (itself estimated by evaluating the screen's ability to separate reference sets of 
essential and nonessential/nonexpressed genes), variable gene-level and seed-level (i.e. off-
target) effects, and provides an estimate of absolute fitness defect for each gene. All of these are 
critical improvements that contribute to the impact of this algorithm. 
 
Overall this study represents a important contribution to the field. It identifies concepts that are 
key weaknesses in the existing literature/methods, addresses them in a statistically robust 
manner, and potentially rescues a lot of data from oblivion. 
 
Minor edit: 
 



Fig 2b: the use of Spearman correlations may render this point moot, but the robustness of the 
Achilles correlation should be evaluated with regard to the removal of the two outliers (screens 
w/AGO2 expression < 0). 
We have verified that the Spearman correlation for the Achilles data shown in Fig. 2b is virtually 
unchanged after removal of the two outlier points. While we certainly agree with the reviewer that 
this is an important point, we think the use of Spearman correlations in this instance should be 
sufficient to control for misleading results due to these outliers. We would be happy to modify the 
text to make this point more explicit if the reviewer believes this would be helpful. 
 
 

Reviewer #3 (Remarks to the Author): 
 
Summary: The authors have developed Demeter2, a significantly improved implementation of 
their previous method Demeter, to correct for technical and batch artifacts in RNAi screens of 
cancer cell lines. Despite some inherent limitations, cell line-based RNAi screens provide an 
extremely valuable resource to the community for understanding genetic interactions and their 
relevance to cancer. Thus strategies to aggregate and denoise these data are of great interest 
and value to the broader biomedical research community. Reducing signal due to off target 
effects and other technical noise that contaminates such datasets is a challenging problem. The 
authors convincingly demonstrate that Demeter2 improves the quality of RNAi screen data 
beyond what was possible with other existing methods. While this work builds on a previously 
published tool, the modifications result in a large overall improvement and allow novel 
quantification of gene dependencies relative to the previous incarnation. 
Overall the manuscript is clearly written and represents an important advance, and importantly 
both the source code and data will be made available to the research community. This reviewer 
has only a few suggestions.  
 
Major comments:  
 
It is exciting to see that Demeter2 improves over other available methods. After convincingly 
establishing the improvement in performance, the authors spend some time showing how 
different genomic features and mechanisms correspond to gene dependencies. The majority of 
improvement seems to come with more confident identification of CYCLOPs effects. The 
opportunity exists here to go into more depth in characterizing the gene dependencies that are 
recovered by the Demeter2 approach. Is it a set of genes that confer a smaller effect size of 
dependency, or that the same genes being detected in new cell lines? Are these genes mostly 
known essential genes, or are novel genes implicated? Is there any functional coherence across 
these smaller effect-size dependencies? While this manuscript is clearly more technical in spirit, 
any biological insights that might come from the ability to detect smaller effect sizes could 
broaden the interest in the manuscript.  
We agree with the reviewer that further exploration of the biological results revealed by 
DEMETER2 would broaden interest in the manuscript. In the revised manuscript we have thus 
added several additional analyses to Figure 5 to better illustrate the nature of the biological 
relationships revealed by DEMETER2. In particular, in Fig. 5f we show a systematic analysis of 
correlations between gene dependency and gene ‘dosage’ (based on copy number and mRNA 
levels) as assessed by D2 in the combined data versus employing D1 on the Achilles or DRIVE 
datasets. This analysis reveals that the combined D2 dataset provides consistent moderate 
increases in dose-dependency correlations across a broad range of putative CYCLOPS genes, 
and in some cases (e.g. RPS29) the improvement provided by D2 is quite dramatic. Additionally, 
in the revised Fig. 5g we show that most of the feature-dependency relationships uniquely 
identified by the combined D2 dataset (that were not present in either D1 dataset) are either for 
common-essential genes (i.e. a majority of the CYCLOPS relationships), or they are relatively 
weaker associations that are revealed by the increased power of the combined dataset (most of 
the newly identified ‘paralog loss’ dependencies). We believe these analyses illustrate the 



dominant factors (improved estimation of dependency profiles for essential genes, and increased 
power to resolve weaker effects) driving the improvements shown in Fig. 5d,e with the combined 
D2 dataset.  
 
 
 

Minor comments:  
 
Given that using D2 to combine datasets allowed assessment of the improvement in performance 
relative to the amount of data gained, it would be interesting to investigate the point where 
performance due to added data saturates for genes with different magnitudes of dependency.  
We believe that this point may be largely addressed by our response to reviewer 1, where we 
have added extensive analysis of the DEMETER2 model performance in simulations. Particularly 
note the newly added Figs. S12f-h, where we show improvement in model performance as a 
function of the number of cell lines included in the simulated dataset. While applying a similar 
type of analysis to the real data could be of interest as well, we believe there are several factors 
that complicate such an effort. Firstly, the gains provided by adding additional cell lines will be 
largely dependent on the details of the datasets being combined (e.g., Are the screens from non-
overlapping sets of cell lines? Do they use the same or different libraries? Which types of cell 
lines compose each part of the dataset, etc.). Additionally, the results of such analyses will be 
highly dependent on the performance metrics, and statistical criteria, one applies (e.g. power to 
detect rare dependencies is expected to increase with very large sample sizes, but confident 
detection of dependency-biomarker relationships may require many fewer cell lines). Hence, we 
focus on the more straightforward technical assessment of model performance vs. dataset size 
using simulations.     
 
Figure S8d was confusing at first since it wasn’t clear that D2 figures previously were always 
accounting for uncertainty. It might be more clear if the description were framed as D2’s 
performance being modestly but significantly reduced when precision is not used to weight 
dependency estimates.  
We thank the reviewer for pointing out this source of confusion, and we have revised the 
description in the figure legend (and our reference to it in the main text) accordingly. 
 
Figure 5b – add variance explained to the axis by each PC, or in the caption, for the different PCA 
plots 
We have added the % variance explained to the axis labels in the revised Fig. 5b, as suggested. 
 
Since the resource will be made publicly available, it would be helpful to include a level 
description of its composition, for example, an overview of the cell type composition of the cell 
lines. 
We agree that this is an important piece of information to highlight, and have thus added a pie 
chart showing the composition of the combined DEMETER2 dataset by primary disease type in 
the revised Fig. 5a.  
 
 

Additional corrections/changes: 
In addition to addressing the reviewers’ comments as described above, we noticed a few errors 
and oversights in our original manuscript during the revision process, which we have corrected in 
the revised version, as described below.  

1. In the original dataset there were two cell lines (SUM52_BREAST and 
SUM52PE_BREAST), screened in the Marcotte and DRIVE datasets respectively, that 
we originally treated as separate cell lines. During the revision process we discovered 



that they are actually synonyms for the same cell line. Hence, we have rerun our 
analyses treating these as a single cell line that was screened in both datasets. All 
analyses, text, and publically available datasets have been updated accordingly. Note 
that this changes the total number of unique cell lines screened in the combined 
DEMETER2 dataset from 713, as we originally reported, to 712.  

2. We removed a small number of non-human genes (e.g. GFP, RFP) from the shRNA-to-
gene mapping file used by our models. This constituted a small portion (0.07%) of total 
mappings, and had a negligible influence on our results. This correction was included in 
the updated version of the publically available data.  

3. In the section “Integration of multiple RNAi datasets”, we had mistakenly reported that the 
combined DEMETER2 dataset also provides substantial increases in the number of 
identified ‘interacting protein’ relationships compared to the DEMETER1 datasets. This 
text should have referred to ‘paralog loss’ relationships, rather than ‘interacting protein’ 
relationships. Additionally, we realized that some ‘paralog loss’ relationships were 
mistakenly being counted also as ‘interacting protein’ relationships, which we have fixed 
in the revision.  

4. While we originally reported that combining separate DEMETER1 results across datasets 
suffered from ‘batch effect’ problems (similarly to pooling data and computing per-gene 
averages), we since realized that normalizing each DEMETER1 dataset before averaging 
them together largely mitigates any batch-related differences. Further, our analysis of the 
top principal components in the DEMETER1 data (in response to reviewer 1’s 
suggestion), showed that the high variance accounted for by the top principal component 
is largely due to differences in screen-quality across cell lines. In the revised manuscript 
we have thus clarified this point, showing that the large batch effects present when 
combining datasets are predominantly isolated to methods (other than DEMETER2) that 
estimate ‘absolute gene dependency’ (see revised text on pgs 16-17, and the revised 
Fig. S9). Nevertheless, despite the fact that relative dependency scores (such as 
DEMETER1) can be combined across datasets without the same batch-effect problems, 
the advantages of DEMETER2 compared with DEMETER1 that we show throughout the 
manuscript (e.g. absolute vs relative dependency scores, removal screen-quality related 
biases, and improvement of downstream benchmark analyses) still apply when 
combining datasets. This point is shown in the revised Fig. S9).  

 



Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

McFarland et al. have sufficiently addressed the comments on identifiability and overfitting. They 

have provided a good explanation on the choice of hyperparameters and the need for constraints 

on parameters for identifiability. Further, they have also shown robust performance on simulated 

data.  

 

Additionally, the authors were asked to compare to other existing methods, which was addressed 

by comparing to MAGeCK. In the rebuttal, the authors argue that “It’s unlikely that ScreenBEAM 

(or other previously described methods) will address the main challenges described here with 

large-scale RNAi screens, since it does not model RNAi off-target effects specifically, and treats 

data from each cell line independently.” This might not be necessarily true if one were to use these 

methods in conjunction with off-target correcting methods, which was the original suggestion. 

Instead the authors only address “post-hoc” correction for screen quality bias by removing the first 

principal component in D1 and argue that this method fails in the downstream analysis. While the 

strength of D2 lies in the fact that it accounts for multiple sources of errors and biases in a single 

model and combines different data sources efficiently, one could always use a combination of 

existing tools to address the same goals/issues. Therefore, without a concrete comparative 

analysis, asserting that other ensemble methods would fail would be unfair.  

 

Does the removal of the first PC of the gene dependency matrix actually relate to the multi-stage 

model? It does not seem apparent, that this is equivalent to using a method to estimate off-target 

effects and another one to subsequently estimate gene dependencies. Also, are the cell line 

average dependency scores for D1-PC the averages over components 2 to n? In Fig.S5c D1-PC 

seems to perform better than D2 and even though the test statistics suggests otherwise Fig. S5d 

seems not to convincingly argue against D1-PC either. Especially for the DRIVE data set, D1-PC 

seems to perform significantly better than D1 (the red curve is below the green curve almost 

everywhere except for a small interval). It almost seems as if a two tailed test statistic was used 

instead of testing, if one was larger than the other.  

 

Minor:  

 

The color key of figure S8c does not indicate any values.  

 

 

 

Reviewer #2:  

Remarks to the Author:  

The authors have addressed my concerns, and especially those of the other reviewers, in 

substantial depth.  

 

 

 

Reviewer #3:  

Remarks to the Author:  

This reviewer has no further comments. 



Reviewer #1 (Remarks to the Author): 
 
McFarland et al. have sufficiently addressed the comments on identifiability and overfitting. They have 
provided a good explanation on the choice of hyperparameters and the need for constraints on parameters 
for identifiability. Further, they have also shown robust performance on simulated data.  
 
Additionally, the authors were asked to compare to other existing methods, which was addressed by 
comparing to MAGeCK. In the rebuttal, the authors argue that “It’s unlikely that ScreenBEAM (or other 
previously described methods) will address the main challenges described here with large-scale RNAi 
screens, since it does not model RNAi off-target effects specifically, and treats data from each cell line 
independently.” This might not be necessarily true if one were to use these methods in conjunction with 
off-target correcting methods, which was the original suggestion. Instead the authors only address “post-
hoc” correction for screen quality bias by removing the first principal component in D1 and argue that this 
method fails in the downstream analysis. While the strength of D2 lies in the fact that it accounts for 
multiple sources of errors and biases in a single model and combines different data sources efficiently, one 
could always use a combination of existing tools to address the same goals/issues. Therefore, without a 
concrete comparative analysis, asserting that other ensemble methods would fail would be unfair.  
We agree with the reviewer that we cannot rule out the possibility that alternative approaches that combine 
multiple existing methods might be used to address the main challenges we describe. We did not intend to 
assert otherwise, and could not find anywhere in the manuscript text where we did so. Indeed, we designed 
the D2 model itself by starting from the previous D1 model and systematically adding additional features to 
address these specific challenges. Although it might seem simpler to consider ‘ensemble’ approaches that 
separately apply a series of corrections to address each specific challenge in turn, we believe there are 
significant advantages to utilizing a unified statistical model to address these issues. We are also not aware 
of how one would actually combine separate existing methods to address all of these problems. For 
example, in the manuscript we consider a pipeline where D1 is first applied to address off-target effects and 
variable shRNA efficacy, and then PCA analysis is separately applied to the D1 scores to identify and 
remove biases related to variable screen quality.  We found that such a hybrid approach actually had a 
negative impact on downstream analyses (compared with the original D1 scores), and one would still need 
to introduce elements into such an ensemble method allowing it to estimate dependencies on an absolute 
scale, integrate multiple screening datasets in a statistically principled way, and ideally provide uncertainty 
estimates for gene dependencies, all of which are accomplished by D2. To help clarify this point, we have 
added several sentences to the revised Discussion section (pg. 18). 
 

Does the removal of the first PC of the gene dependency matrix actually relate to the multi-stage model? It 
does not seem apparent, that this is equivalent to using a method to estimate off-target effects and another 
one to subsequently estimate gene dependencies.  
We show (Fig. S5) that the first PC of the D1-estimated gene dependency matrix accurately captures the 
variation in screen signal across cell lines (in both the Achilles and DRIVE datasets). Thus, combining D1 
for estimating gene dependencies with removal of this PC component to correct for screen quality bias 
represents a potential ‘multi-stage’ modeling strategy.  
 
Also, are the cell line average dependency scores for D1-PC the averages over components 2 to n?  
We do not, in fact, compute the across-cell-line average dependency scores for the D1-PC method (D1 does 
not estimate the across-cell-line average dependency score, but rather sets it to 0 explicitly). The per-cell 
line dependency scores for the D1-PC method are computed not by averaging over components 2 to n, but 
rather by linearly projecting out the first PC from the matrix of dependency scores:  
X (-1)  = X - Xw (1)wT

(1), where X is the matrix of dependency scores, w (1) is its first principal component, and X (-

1)  represents the matrix after projecting out the first PC. 
 
In Fig.S5c D1-PC seems to perform better than D2 and even though the test statistics suggests otherwise 
Fig. S5d seems not to convincingly argue against D1-PC either. Especially for the DRIVE data set, D1-PC 
seems to perform significantly better than D1 (the red curve is below the green curve almost everywhere 



except for a small interval). It almost seems as if a two tailed test statistic was used instead of testing, if one 
was larger than the other. 
We agree with the reviewer that Fig. S5c suggests that the D1-PC method more completely removes any 
relationship between gene dependencies and AGO2 expression compared with D2. We believe that this is 
due to D2 using a more ‘constrained’ model for removing this screen-quality bias compared with the D1-
PC approach. In essence, the D1-PC model is able to estimate a separate term for each gene specifying how 
much its dependency profile is affected by the variation in screen quality across cell lines. In contrast, D2 
models the effect of variable screen signal on each gene’s dependency profile as a multiplicative interaction 
(such that the degree of screen quality bias reflected in a gene’s dependency profile is determined by how 
essential the gene is on average). This assumption may fail to capture some more complex relationships or 
gene-specific behaviors, but it also helps the D2 model estimate absolute dependency, and we found it 
provides improved results in downstream analyses. Nevertheless, in the revised manuscript (Fig. S5 
caption) we have explicitly mentioned this difference, and the potential explanation for it. 
 
Regarding Fig. S5d, while we agree with the reviewer that the difference appears visually small 
(particularly for the DRIVE dataset), we have verified that our statistical analyses were correct. For the 
DRIVE data, while the mean correlation magnitude is not significantly different between D1-PC and D1 (p 
= 0.51, paired t-test, n = 231 feature-dependency pairs), the median is significantly smaller for D1-PC (p = 
1.6E-3, Wilcoxon signed rank test). Thus, the difference is due to a small but consistent shift in the mode of 
the distribution, which is indeed difficult to resolve in the previous figure. We have expanded the limits of 
the y-axes in this figure to better visualize the differences in these distributions. 
 
Minor: 
 
The color key of figure S8c does not indicate any values. 
We had initially left out values for the color key in this figure because the units of the density estimates are 
difficult to interpret, and we were worried they might confuse readers. We agree with the reviewer, 
however, that this could be problematic, and thus have introduced labels to indicate ‘low’ and ‘high’ 
density on the color spectrum (in Fig. S8c, as well as other figures where we use a color map to represent 
the data point density: e.g. Fig. 3a-b).  
 
 

Reviewer #2 (Remarks to the Author): 
 
The authors have addressed my concerns, and especially those of the other reviewers, in substantial depth. 
 
 

Reviewer #3 (Remarks to the Author): 
 
This reviewer has no further comments. 
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