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Western blot example #2

(used for fig.1 illustration) 

n=5         n=4          n=5       n=4        n=3         n=4

Fig. S1 Example of Immunoblots (entire gels) of Gag(i)mEOS2 wild type and mutants expressed
in transfected Jurkat T cells and full quantifications (a) Two Examples of Western blots (entire gels)
of Gag(i)mEOS2 wild type and mutants. Western blot analysis of HIV-1 WT Gag(i)mEOS2 protein and
mutants expression in Jurkat T cells (“cellular extract“, 50µg/well) and in purified VLPs (“VLP”) revealed
by mouse anti-CAp24 antibodies. (b) Quantification of the percentage of VLP production of Gag and
derivatives as described in Materials and Methods section (n= number of independent experiments). Gag
and its derivatives used in this study are WT, NL4.3, WM and MACA-SP1. Values are mean±C.I. MW:
molecular weight.
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Fig. S2 Budding and VLP morphogenesis for Gag(i)mEOS2 and assembly mutants analysed by
transmission electronic microscopy (TEM).(a) TEM images show typical VLP budding from HEK293T
cells transfected with vector alone (mock), WT Gag, WM, MACA-SP1 and ∆p6, or NL4.3∆Pol∆Env (all
internally tagged with mEOS2). (b) VLP diameter in cells transfected with Gag variants that could form
VLPs (WT Gag, WM and NL4.3∆Pol∆EnvGag), p values are the results of Student’s t tests.
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Fig. S3 Cell membrane attachment of Gag(i)mEOS2 (WT and assembly mutants).(a) Cell mem-
brane flotation assays using post-nuclear supernatants from transfected HEK293T cells and detection of
Gag proteins found in the cytosolic and membrane fractions by western blotting. (b) Quantitative analysis
of Gag expression at the cell membrane (at least 6 independent experiments) showed that 60-80% of WT
Gag was bound to cell membranes, and that this percentage decreased to 40% for the WM and MACA-SP1
mutants and below 30% for the WM/MACA-SP1 double mutant.∗∗ p < 0.01 and ∗∗∗p < 0.001 (Student
t test, compared with WT Gag).
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Fig. S4 Monitoring HIV-1 Gag(i)mEOS2 assembly by time-evolution of single molecule density
in living T cells: Gag(i)mEOS2-expressing Jurkat T cells were seeded on poly-lysine-coated slides with
microscope buffer containing 100nm TetraSpeck™ microspheres and live PALM/TIRF microscopy was
performed at 37◦ C. Typical examples of density changes over time during assembly of WT Gag and
mutants are depicted from top to bottom. Every image represents all the localizations observed during
4 minutes in and around identified assembly sites. These time pooled localisation are represented at
increasing time of acquisition from left to right (0 to 1440 s).
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Fig. S5 Normalized distribution diagrams of all identified assembling clusters. Normalized distri-
bution diagrams of the mean diffusion and the trapping energy (left), the mean diffusion and the localisation
density increase (right) for each experimental condition, from CAAX(i)mEOS2 (no assembly) to WT Gag
and NL4.3∆Pol∆Env Gag (highest assembly efficiency).

6/??



S1 Video. Movie showing single-particle trajectories of HIV-1 WT Gag(i)mEOS2 (left) and their
accumulation (right) during WT Gag assembly at the Jurkat T-cell plasma membrane. In the upper
right part of the analysed surface, the formation of a particle can be observed (accumulation of trajectories
in the right part of the movie) as well as the directed trajectories obtained during particle assembly (left
part of the movie). Note the strong increase of the trajectory directionality during VLP assembly. In
this movie, trajectories were reconstituted from the assignment graphs between images. The trajectories
depicted in the movie are only for illustration. They were never used to reconstruct diffusivity and potential
energy maps.

S2 Video. Movie showing the temporal changes of potential energy (left) and diffusivity (right)
maps during HIV-1 WT Gag assembly and particle formation and release (in a selected area of the
particle observed in video S1). This movie clearly shows that at the assembly site: i) the tessellation
becomes progressively more narrow (indicating increased localization density) and is automatically
reorganized, ii) the diffusivity decreases, and iii) the difference in energy with the outside increases with
time during particle formation. These parameters go back to the initial values after particle release. Note
the different temporal dynamics of the potential energy map when compared with the diffusion map and
the differences in the spatial extent of the diffusion and energy maps.

S3 Video. Movie showing the temporal changes of potential energy maps (left) and the diffusivity
(right) of an already assembled, but unreleased ∆p6 mutant. From this movie, it can be clearly seen
that the energy and diffusivity maps do not change over time for this mutant. One can still identify already
formed particles by the narrowing of the tessellation.
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Table S1. As illustrated in the main text, cluster diameters follow log-normal distributions. Therefore,
two-independant sample Student t tests has been performed on the log values of the clusters diameters.
This table contents the resulting p-values of this test. Difference in the mean values is considered to be
significant for p < 5.10−2

Gag variant WT Gag NL4.3∆Pol∆Env Gag WM ∆p6 VLP
WT Gag 1 —- —- —- —-

NL4.3∆Pol∆Env Gag 0.95 1 —- —- —-
WM 5.10−14 5.10−13 1 —- —-
∆p6 5.10−6 3.10−6 0.16 1 —-
VLP 1.10−17 2.10−17 1.10−9 1.10−4 1
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Table S2. As reported by Ivanchenko et al.? , HIV-1 particle formation can be divided in three steps:

• a density increasing phase that could correspond to Gag-Gag assembly,

• a plateau phase

• a particle-releasing phase.

In our curves showing the density increase over time (Fig.4d), these three phases could be observed.
Because the third phase could be caused by different reasons, we decided to measure only the time length
of the two first phases for the three Gag variants leading to particle assembly and release. Values are mean
± C.I.

Gag variant Total number of VLPs Duration of phase 1 Duration of phase 2
Assembly Plateau

WM 36 360±64 s 376±55 s
WT Gag 76 396±48 s 355±34 s

NL4.3∆Pol∆Env Gag 91 302±31 s 351±45 s
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Table S3 This table contents the resulting p-values of a two independent samples Student’s t test
performed on the energy values measured in this work.

Gag variant WT Gag NL4.3∆Pol∆Env Gag WM
WT Gag 1 —- —-

NL4.3∆Pol∆Env Gag 0.92 1 —-
WM 3.10−6 4.10−5 1
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Table S4 This table contents the resulting p-values of Kolmogorov-Smirnov test performed on the
distribution of the difference in maximum density time and maximum energy time.

Gag variant WT Gag NL4.3∆Pol∆Env Gag WM
WT Gag 1 —- —-

NL4.3∆Pol∆Env Gag 8.8.10−3 1 —-
WM 1.9.10−3 4.8.10−3 1
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Detailed Materials and Methods

Buffers
The same microscopy buffer (MB) was used for fixed and live cell observations (150mM NaCl, 20mM
HEPES pH7.4, 1mM CaCl2, 5mM KCl, 1mM MgCl2 pH 7-7.4). TNE buffer: 10mM Tris-HCl, 100mM
NaCl, 1mM EDTA, pH 7.4. RIPA buffer: 150mM NaCl, 20mM Tris-HCl [pH 8], 1% NP-40, 0.1% SDS,
0.2mM EDTA, pH 8. Dulbecco’s PBS was from Gibco.

Membrane flotation assay
For each condition, 6.106 HEK293T cells were transfected with the corresponding plasmids and harvested
24h post-transfection, lysed, and handled as described before?. Briefly, cells were washed with ice-cold
PBS and resuspended in Tris-HCl containing 4mM EDTA and 1X Complete protease inhibitor cocktail
(Roche). Cell suspensions were lysed using a Dounce homogenizer, and then centrifuged at 600g for 3min
to obtain Post-Nuclear Supernatants (PNS). A cushion of 820µL of 75% (wt/vol) sucrose in TNE buffer
(25mM Tris-HCl, 4mM EDTA, 150mM NaCl) was loaded at the bottom of an ultracentrifuge tube and
mixed with 180 µL of PNS adjusted to 150mM NaCl. Two millilitres and 300 µL of 50% (wt/ml) sucrose
cushion followed by 0.9 mL of 10% (wt/ml) sucrose cushion were then layered to obtain the gradient that
was then centrifuged in a Beckmann SW60Ti rotor at 35,000 rpm, 4°C, overnight. Eight fractions were
collected from the top to the bottom and analysed by western blotting. The percentage of membrane-bound
Gag was calculated as in 2, by measuring the percentage of membrane-bound Gag protein in the PNS.

Transmission electron microscopy
Cells were fixed in 4% paraformaldehyde and 1% glutaraldehyde in 0.1M phosphate buffer (pH 7.2) for
48h, washed with PBS, post-fixed in 1% osmium tetroxide for 1h and dehydrated in a graded series of
ethanol solutions. Cell pellets were embedded in EPON™ resin (Sigma) that was allowed to polymerize
at 60°C for 48h. Ultrathin sections were cut, stained with 5% uranyl acetate and 5% lead citrate and
deposited on collodion-coated grids for examination using a JEOL 1230 transmission electron microscope.

Detailled method of the Bayesian statistical analysis of single Gag analysis
As mentioned in the main text, the pipeline was organized in five steps:

• Single Molecule Localization

• Non-tracking with Graph Assignment

• Selection of the Regions of interest

• Time-Evolving Bayesian Inference Analysis

• Time-Evolving Feature Extraction from Inferred Maps

Single Molecule Localization
Single molecule localization was performed in MATLAB after implementation of the slightly modified
MTT algorithm? to include it in a pipeline. These modifications did not affect the detection algorithm.
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Non-tracking with Graph Assignment
To limit errors due to tracking algorithms?, we did not track single molecules, but used optimal assignments
between consecutive images to extract Gag displacements?. Indeed, experimentally, trajectories of Gag
proteins were short (on average, 5 frames). Short trajectories can reduce the efficiency of the tracking
algorithm and increase the rate of mislinking that can have deleterious effect on parameter estimation.
Therefore, only displacements rather than trajectories were used to perform the analysis. The experimental
maximal instantaneous density was ρ ∼ 1µm−2. Thus, between the most dense consecutive images,
the mixing factor was

√
D.dt√
1/ρ
∼ 0.1ξ was the ratio of the distance covered by a particle over the average

distance between particles. This suggested limited mixing between consecutive frames and justified
the use of the optimal assignment as an estimator of particles displacement. The maximal variation of
detectable particles between consecutive frames was 20%. This can lead to highly non-bipartite graphs of
connections between particles. Hence, we relied on the Kuhn-Munkres scheme [KM] to find the optimal
assignments, based on the minimization of the total distance between consecutive images. To speed up
the algorithm and further limit long-distance mislinking, biomolecules separated by more than d=360 nm
between consecutive frames were not linked in the graph. For displaying purposes (like in video ??, for
example), trajectories were regenerated from the assignments between images by directly following links
between image datasets.

Selection of the Regions of interest (ROI)
To provide robustness in the analysis, parameters to automate treatment were directly extracted from the
properties of the recording and not based on prior knowledge of the virion formation dynamics. ROI
selection was based on localization densities. ROIs were selected as squared areas of 2 µm in length
centred on the maximum density. The number of ROI per cell was limited to 30. In each ROI, the effective
centre of a VLP, reff, was defined as the point of highest densities (ρ tot

max) (cumulated on the 80,000 frames).
The effective radius, Re f f , of a VLP was defined as the average distance between reff and the points of
density equal to (ρ tot

max/4). In the analysis, points within Re f f were considered to be in the VLP. Depending
on the density of maturing VLPs, more than one VLP could be present in a single ROI. All VLPs inside
such a region were analysed.

Time Evolving Bayesian Inference Analysis
The molecule motion was analysed using Bayesian inferences. The dynamics of individual Gag proteins
were approximated by using the Overdamped Langevin Equation (OLE):

dr
dt

=−Dt(r)
∇V e f f

t (r)
kbT

+
√

2Dt(r)oHKξ (t) (S.1)

where Dt(r) was the space varying diffusivity, V e f f
t (r) the effective interaction potential, ξ (t) a zero-

averaged Gaussian noise and the stochastic integral (linked to the symbol oHK) was interpreted according
to Hänggi-Klimontovich. Written using an Itô interpretation, the OLE reads as

dr
dt

=−Dt(r)
(∇V e f f

t (r)
kbT

− ∇Dt(r)
Dt(r)

)
+
√

2Dt(r)ξ (t) (S.2)

where the spurious force ∇Dt(r) appears explicitly. We defined V HK
t (r) = V e f f

t (r)− kBT log(D(r)).
(Dt(r),V

e f f
t (r)) was considered to describe the statistical features that encode the effective dynamical

characteristics of the environment concerning individual Gag dynamics. It describes the effective medium
properties (approximated according to the OLE) experimented by a Gag protein during its recording time.
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Bayesian Inference was used to extract (Dt(r),V
e f f

t (r))from the assignment between images?, ?, ?, ?, ?.
In (??) and (??), the index t shows that diffusion and potential fields can evolve with time, but at a time
scale larger than the particle dynamics.

In a nutshell Bayesian inference features two steps: the derivation of the posterior probability distri-
bution of the model parameters and sampling from the posterior distribution to estimate the parameters.
Bayes formula states:

P({U} | {T}) = P({T} | {U})π ({U})
P({T})

(S.3)

where {T} is the set of experimental observations and {U} is the set of model parameters (to be evaluated).
In standard terminology, P({U} | {T}) is the posterior distribution, P({T} | {U}) is the likelihood,
P({U}) is the prior distribution, and P({T}) is the evidence of the model. Here, the likelihood embodies
the physical model and hypotheses regarding the acquisition of data. Prior distribution can represent either
knowledge on the parameters before any measurements as well as can be used to regularise the inferred
parameters as discussed below (this will be the case in this study).

Based on the OLE the The likelihood reads

P
(
{drk}k∈T |

(
D(r) ,VHK (r)

))
∝ ∏

(l∈M )

∏
k∈Tl

exp

(
−(drµ

k−Dl∇VHK
l t/kBT)

2

4
(

Dl+
σ2
∆t

)
∆t

)
(

4π

(
Dl +

σ2

∆t

)
∆t
)

 (S.4)

where M is the mesh, Sl is a subdomain in the mesh, Dl the value of the diffusivity D(r) in the mesh
subdomain l, V HK

l the value of the potential V HK
t (r) in the mesh subdomain l, T is the total set of

displacements, Tl is the subset of displacements happening in the mesh subdomain Sl , σ is the positioning
noise modelled as a Gaussian process and ∆t is the duration between two frames.

The Bayesian Inference approach provides for each maps the posterior distribution of the full set
of parameters. Here, we use the Maximum A Posterior (MAP) as an estimator of the two maps(

Dt (r) ,V
e f f

t (r)
)

. V e f f (r) was directly deduced as V e f f (r) = V HK (r)+ kBT log(D(r)). The time-
evolution of the maps was directly the evolution of the MAP of each individual maps. Note that the
OLE was the only model used to analyse the experimental set. As different models were not tested, the
evaluation of the evidences for the chosen model will not be discussed.

Field regularizing priors were used:

π
(
D(r) ,V HK (r)

)
∝ exp

(
−α

∫
d2r(∇D(r))2−δ

∫
d2r
(

∇VHK (r)
)2
)

(S.5)

with α = 0.25 µm−4s2 and δ = 0.1(kBT )−2. The choice of significant regularisation was motivated by
the large variability of maps to be inferred. Maturing VLPs have densities varying largely with time.
Yet, the analysis performed on the maps should not largely vary with the number of points during the
time window. These regularising coefficients ensured that for all time windows no maps would exhibit
abnormal features induced by the reduced number of points.
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Time-Evolving Feature Extraction from Inferred Maps
The changing dynamics during VLP assembly led to high variability in particle density. The tessellation
procedure described in? was modified to ensure more homogeneity in the structure of the spatial tessellation.
The initial mesh was defined using unsupervised learning (k-mean). The average number of points per
mesh was initialized to 40 points per mesh subdomains. This mesh was then corrected by reassigning
all points belonging to subdomains with less than 10 detections. This procedure was done iteratively by
removing only one subdomain per iteration. The final mesh was the Voronoi tessellation of the remaining
centre of subdomains. This correction procedure had an effect mostly on areas outside the VLP. It ensured
that measures could be done inside and outside the VLP. The time evolution of the VLP dynamics was
assessed by time windowing. The window duration was set to 240s with a sliding time of 10s. This
duration is a trade-off between ensuring a minimal number of points to perform reliable inference and
ensuring a minimal progress in VLP maturation. The inference was performed independently on each
time window. Independence allowed the map to be inferred independently of previous or future detections.
It also avoided introducing bias by coupling the inference on multiple time windows. Hence, a typical
time evolution of a VLP maturation lead to 136 maps of (Dt(r),V

e f f
t (r)). In order to quantify different

dynamics, several features were extracted from the time evolving maps.

Parameters
The effective centre of a VLP, re f f was defined as the point of highest density ρ tot

max (cumulated on the
80,000 frames). The effective radius, Re f f , of a VLP was defined as the average distance between re f f and
the points of density equal to ρtot

max
4 . In the analysis, points within Re f f from re f f were considered to be in

the VLP. I( j) was the set of mesh subdomains in the VLP at the time window j. Neighbours to a VLP or a
predefined radius, R, were defined as the set of mesh subdomains in contact with the VLP or the circle of
radius R. M( j) was the set of neighbours at the time window j. A( j) was the set of all subdomains of the
mesh at the time window j.

Time-evolving density The VLP density inside a map (corresponding to a time window) was evaluated
as ρ(t) = N(t)

(πR2
e f f )

where N(t) was the number of localization in the VLP in the time window. The temporal

evolution of the density for a VLP was directly computed as the density measure on the set of maps
associated with that VLP.

Time-evolving diffusivity Three estimators were extracted from the diffusivity maps. The diffusivity
in the VLP at the time window j was defined as Din( j) =< D >I ( j) where < . > was the spatial
average. The diffusivity around the VLP at the time window j was defined as Dout( j) =< D >M ( j) . The
relative variation of diffusivity between outside and inside the VLP at the time window (j) was defined as
( j) = (Dout( j)−Din( j))/(Dout( j)) .

Time-evolving effective trapping energy Three estimators were directly extracted from the potential
maps. The depth of the VLP at the time window j was defined as V e f f (t) =<V e f f >M2Re f f ( j) −minI( j)V e f f .

Finally, for each VLP present in the analysed ROIs (i.e., 600 VLPs per mutant), the time-evolving
density, diffusivity and potential were smoothed with a 10th order Savitsky-Golay filter to extract the
following parameters:

• Localization Density Increase (LDI):

LDI = ρmax−ρmin (S.6)
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• Mean diffusivity in the assembly platform :

D =< Din >t (S.7)

where < . > was the time average.

• Maximum Trapping Energy :

∆E = δV e f f
max −δV e f f

min (S.8)

The assembly time length was defined as the 1/e2 width of the Gaussian fit of the LDI peak. As the
analysis led to w 100,000 maps of (Dt(r),V

e f f
t (r)), the (Dt(r),V

e f f
t (r)) values observed in each VLP

were distribute in classes. Each class was renormalized to the total VLP number. This allowed generating
(V e f f = f (D),D = f (LDI)) diagrams for each mutant.

The analysis in numbers: Big Data with single molecules
As for many scientific fields, single-molecule science is entering the Big Data Age. Although, single
molecule image datasets remain of reasonable size ( 70 Go for this study), the amount of output files and
results are very significant. This analysis lead to 100,000 maps of (Dt(r),V

e f f
t (r)). Then, features of these

maps were analysed, generating in total, including the intermediary files, 190 Go of results. We can see the
change of scale between the number of cells tested and the size of results. Large amounts of information
about biological dynamics are stored in the random walks of biomolecules. Increasing the number of
analysed cells will lead to a massive amount of result files and will make the analysis of the diversity
of processes even more complex. Here, a rather direct analysis, based on effective physical maps of the
cellular environment, showed directly identifiable differences in dynamics of Gag variants. Increasing
the number of cells will increase the dynamics diversity and will require more sophisticated tools to
statistically characterize the effects at the population scale?. The ever-increasing amount of data and the
necessity of multi-platform analysis are currently addressed with the development of a new Inference
Pipeline in Python and a new compressed file format to store all analyses performed on single-molecule
dynamics.
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