Supplementary Information

Spatial compartmentation and food web stability

A. Mougi

Supplementary Figures

To examine the robustness of the results in Fig. 2a and 2b, I used different stability index, network topology, connectance, or species richness. First, the stability is evaluated by resilience (engineering resilience), namely, the rate of recovery to original equilibrium after a small perturbation, which is calculated by the mean magnitude of the real part of the dominant eigenvalue of J across 1000 samples of locally stable communities (Fig. S1). Second, cascade model is used as other network type (Fig. S2). In the cascade model, for each pair of species, $i, j = 1, \ldots, n$ with $i < j$, species *i* never consumes species *j*, whereas species *j* may consume species *i.* Third, different values of *C* (Fig. S3) and *N* (Fig. S4) are considered. Even if I change these factors, we can see that the results in Fig. 2a, b are qualitatively unchanged. However, in larger *N*, larger *M* tends to decrease the stability than in smaller *N*.

In addition to these changes, I relax strong assumptions of symmetry of parameters. First is the proportions of migratory species in sub-food webs ($p_1 = p_3 = p$ in the main text). As shown in Fig. S5, even if the change of p_1 (p_3 is fixed) almost do not affect the result. Second is the community sizes of each original habitat, which are controlled by the proportion of species in sub-food web 1, q_1 ($q_3 = 1 - q_1$). In the main text, $q_1 = q_3 = q$. As shown in Fig. S6, even if the change of q_1 (q_3 is fixed) almost do not affect the result.

Fig. S1. Relationships between spatial coupling strength and resilience with varying proportions of migratory species. (a) Boundary-separated subsystems. (b) Globallyconnected subsystems. Other information is the same as in Fig. 2a, b.

Fig. S2. Relationships between spatial coupling strength and stability with varying proportions of migratory species in a cascade model. (a) Boundary-separated subsystems. (b) Globally-connected subsystems. Other information is the same as in Fig. 2a, b.

Fig. S3. Relationships between spatial coupling strength and stability with varying proportions of migratory species. (a, b) Boundary-separated subsystems. (c, d) Globallyconnected subsystems. In (a) and (c), $C = 0.75$. In (b) and (d), $C = 0.25$. Other information is the same as in Fig. 2a, b.

Fig. S4. Relationships between spatial coupling strength and stability with varying proportions of migratory species. (a, b) Boundary-separated subsystems. (c, d) Globallyconnected subsystems. In (a) and (c), $N = 100$. In (b) and (d), $N = 20$. Other information is the same as in Fig. 2a, b. Note that the stability almost does not change even in $M =$ 10^{10} .

Fig. S5. Relationships between spatial coupling strength and stability with varying proportions of migratory species in a patch 1 (p_1). (a) Boundary-separated subsystems. (b) Globally-connected subsystems. $p_2 = 0.5$. Other information is the same as in Fig. 2a, b.

Fig. S6. Relationships between spatial coupling strength and stability with varying *q*1. (a) Boundary-separated subsystems. (b) Globally-connected subsystems. Other information is the same as in Fig. 2a, b.

