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Supplementary Methods

1) Experiments 1,2
1.1)  Participants. The  study  was  approved  by  the  University  of  Oxford  Central  University
Research Ethics Committee (approval R50750/RE001). Participants were adults who provided
consent prior to taking part in the experiment in accordance with local ethics guidelines. We
recruited a large cohort (n = 768) of participants via the online platform provided by Amazon
Mechanical Turk with restrictions to the US (Exp.1) and India (Exp.2). We set a criterion of
>55% accuracy at test for inclusion in the analysis, and continued to recruit participants until we
reached at least n = 40 in each training group; attrition rates were high but comparable with
previous reports  (1), presumably because many participants were unused to conducting online
tasks that involved uninstructed rule discovery. In total, we included 352 male and 231 female
participants (Table S1), with a mean age for included participants of 33.33 (range 19-55); ages
did not differ reliably between groups (Table S2).

1.2) Stimuli. Trees were generated with a custom fractal tree generator, written in Python 2.7
with  the  PIL  package.  The  two  feature  dimensions  were  each  varied  parametrically  in  five
discrete steps,  spanning a two-dimensional  space of leafiness x branchiness.  We manipulated
branchiness  in  terms  of  the  branching  angle,  branching  probability  and  the  total  number  of
recursive calls  of  the generator.  Leafiness was defined as total  number of leaves per branch,
relative to branch length. Furthermore, positioning of individual leaves, leaf size, rotation and
individual  branch  colour  tones  were  varied  probabilistically.  For  human  studies,  we  created
independent  training and test  datasets  with  8 unique trees  for  each level  of  branchiness  and
leafiness (5 x 5 levels). Thus, the same trees were shown for both tasks, to rule out low-level
differences  in  saliency  as  influence  on  accuracy.  Furthermore,  the  use  of  different  trees  for
training and test ensured that participants could not rote learn the mappings between individual
trees and responses. Each tree was shown once per task during training, and each test tree was
unique and novel. The data set was normed to equate difficulty along the two dimensions in a
pilot study not reported here.

1.3) Task and Procedure. Exp.1 and 2 were written in JavaScript and run in forced-fullscreen
mode. We tested software compatibility with a variety of operating systems and web browsers
before launching the task. All experiments consisted of a training phase (400 trials) and a test
phase (200 trials).  Self-paced breaks were allowed after  200 and 400 trials.  We equated the
number of presentations of each stimulus (leafy x branchy level). For Exp. 2, a similarity rating
task  was  added  before  and  after  the  main  task  (details  below).  At  the  beginning  of  the
experiments, the participants received written instructions. They were asked to imagine that they
owned two gardens, one in the north and one in the south. The goal was to learn via trial and error
which type of trees grow best in each garden. Our instructions thus avoided alerting participants
to the task-relevant dimensions (leafiness and branchiness).

In the training block, each trial began with the presentation of a centrally presented garden image
(task context)  for  500ms.  Subsequently this  garden image was blurred to  direct  the  attention
towards the overlaid tree stimulus that was presented for up to 2000ms. Responses were allowed
for 4500ms post stimulus onset. As a reminder, the response assignments (e.g. keys for “plant”
and  “reject”)  were  displayed  above  the  tree  stimulus  through  the  trial  (counterbalanced).
Feedback was displayed for 1500ms. Feedback on “plant” trials during training depended on the
distance to the relevant boundary (±50 points for levels 1 and 5, ±25 points for levels 2 and 4 and
0  points  for  level  3).  Reward  was  zero  on  reject  trials.  On  plant  trials,  feedback  was  also
accompanied by an animation (during which the garden was unblurred) that showed the tree grow
or shrink proportionally to the magnitude of the received reward. These timings were identical in
test blocks, with the exception that no feedback was provided.
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In Exp.1a and Exp.2a, the correct decision depended on leafiness for one garden and branchiness
for the other (“cardinal” boundary). We fully counterbalanced the rule, so that equal number of
participants  received  positive  rewards  for  planting  trees  that  were  leafy/non-leafy  and
branchy/non-branchy. In other words, across participants, the assignment of rewards was flipped
for  either  one  or  two dimensions  (e.g.  more  branchy trees  might  yield  positive  rewards  for
participant  1,  but  less  branchy trees  for  participant  2).  In  Exp.1b  and Exp.  2b,  the  decision
boundary was rotated by 45 degrees, to align with the diagonal axes of the branch-x-leaf stimulus
space.  Thus,  instead  of  learning  the  mapping  from single  feature  dimensions  onto  rewards,
participants had to learn the mapping of cardinal feature combinations onto rewards (“diagonal”
boundary). Once again, the rules were counterbalanced across participants.

The  test  phase  consisted  of  200 trials  in  which  the  two contexts  (gardens)  were  interleaved
randomly over trials (100 instances of each). In Exp.1, we trained participants in 4 conditions,
each involving 200 north and 200 south gardens in different order. In the interleaved condition,
gardens were randomly interleaved over trials.  In the B2, B20, and B200 conditions, gardens
remained constant over 2, 20 or 200 trials (the first garden was selected at random). In Exp.2, we
included only the B200 and interleaved training conditions.

1.4)  Arena task (Exp.  2).   In  Exp.2a  and 2b  we additionally  asked participants  to  rate  the
similarity  among pools  of  25  trees  before  and after  the  main  experiment  (2).  We presented
participants with a grey circular arena covering most of the screen area. This was populated by 25
trees  (one  per  level  of  leafiness/branchiness)  that  were  positioned  in  a  random  but  non-
overlapping configuration.  Participants were asked to move the trees around by mouse drag-and-
drop, arranging the trees so that more similar exemplars were close together and more dissimilar
exemplars  were  further  apart. The  choice  of  a  two-dimensional  arena  may  have  biased  the
participants towards reporting a two-dimensional dissimilarity structure, or,  in other words, to
report only variation along the two dimensions they found most salient  (3). As the trees varied
systematically along two dimensions (branchiness and leafiness), and a perfect description of the
ground-truth  dissimilarity  structure  could  be  provided  in  2D,  we  refrained  from using  more
sophisticated  sub-sampling  methods  that  allow  participants  to  express  higher  dimensional
dissimilarity structures  (4).  The opacity of the selected tree was changed during the dragging
process for usability purposes. This procedure was self-paced. Once all trees had been arranged
and the participant was satisfied with the outcome, the next trial could be initiated by clicking on
a designated button. Each trial involved a unique tree set. Participants performed 5 trials in total,
taking an average of ~10 minutes.   The main task was identical  to Exp.1a and 1b,  with the
exception that we omitted the B20 and B2 conditions.

1.5) Statistical  Tests. Accuracies were compared with ANOVAs and t-tests.  Other measures
were  compared  with  nonparametric  tests  (Kruskal  Wallis,  Rank  Sum  and  Sign  Rank),  as
violations of Gaussianity were observed. We calculated Cohen’s d and z/sqrt(N) as measures of
effect size for parametric and nonparametric post-hoc tests respectively.

1.6) Accuracy and Psychometrics. To display learning curves, we plotted training accuracy in
bins of 50 trials, and test accuracy averaged over the entire 200 trials. For psychometric curves,
for each participant we calculated p(plant) during the test phase for each of the 5 levels of the
relevant and irrelevant dimensions and fit a logistic function to the data. 

1.7) Behavioural RSA.  For RSA (5, 6), we calculated p(plant) as a function of every level of
leafiness x branchiness, and then computed an RDM expressing the dissimilarity (in accuracy)
between each pair of leaf x branch level. We compared these to model-predicted RDMs that were
generated to match a theoretically perfect observer (model 1) or an observer who learned the best
possible single linear boundary through the 2D space and applied it to both tasks (model 2). To
deal with partial correlation among these predictor matrices, they were orthogonalised using a
recursive Gram-Schmidt approach. We computed Kendall’s Tau correlations between predicted
and observed RDMs and compared these using a nonparametric approach.
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1.8) Psychophysical Model. We built a full psychophysical model of the task. In a first step, we
assumed that each stimulus was initially represented by a decision variable that was proportional
to its distance to a boundary in leaf x branch space. The boundary had signed angle φ with respect
to the correct boundary. This value was converted to a choice probability via a logistic function
with slope s, bias b and lapse parameter ε (Fig. S3). We first ran a parameter recovery study to
verify  that  the  parameters  were  identifiable.  We  compared  two  variants  of  this  model.  An
unconstrained model,  which had two boundaries  and two sigmoids,  one for  each task (eight
parameters) and a constrained model with only one boundary and one sigmoidal transducer (four
parameters) The two models were fit to the human data via maximum likelihood estimation. We
compared  the  best-fitting  parameters  across  groups  using  nonparametric  statistics.  Model
comparisons  were  conducted  with  random  effects  Bayesian  model  selection,  for  which  we
approximated the log model evidences with the subject-specific negative BIC scores. The model
comparison itself was conducted using the VBA (7) to obtain exceedance probabilities (EPs, the
probability  that  one  model  is  more  frequent  than  the  alternatives)  and  estimated  model
frequencies (the relative percentage of subjects explained with each model). We report protected
exceedance probabilities, which correct the original Eps for the possibility that differences are
due to chance (8) and compared them with nonparametric statistics.

1.9) Task Lapse Analysis (Exp 1,2). To test whether the observed intrusion along the irrelevant 
task dimension was rather driven by confusion of rules (with perfectly learned boundaries) than 
biases in the boundary estimation, we performed two additional analyses. First, we generated 
synthetic data from the 2-boundary model using the best-fitting parameters estimated at single 
subject level, and repeated the intrusion analysis on this data by fitting sigmoidal curves to the 
choice probabilities as a function of the reward a participant had received if the rules were flipped
(e.g. he/she had categorised a task A trial using the task B rule).  Next, we developed a variant of 
the psychophysical model for which the boundaries were fixed to their optimal values, but 
introduced a “task lapse” parameter that modelled the probability to apply the wrong rule to a 
given context. We performed Bayesian model comparison between this model and the 
unconstrained 2-boundary model, to investigate whether the data might be best described by task 
lapses or boundary estimation errors. Results are illustrated in Fig S4.

1.10) Influence of Priors. In Exp.2, for each participant and condition we calculated average
pairwise  Euclidean distances  between trees  for  each pair  of  dissimilarity  ratings,  yielding an
RDM of the same size as that described above (25 x 25). This yielded three trial-specific RDMs
per subjects. We averaged normalised RDMs within subjects across trials to obtain a reliable per-
subject estimate of the reported dissimilarities. For visualisation, we then compressed this RDM
to  two  dimension  using  multidimensional  scaling.  To  compute  the  “grid”  prior,  for  each
participant we constructed a model RDM which exhibited perfect grid-like encoding of the two
feature dimensions and correlated it with the empirical single-subject RDMs obtained from the
arena  task  the  participants  engaged  in  prior  to  the  main  experiment.  (Kendall  tau a rank
correlation). We then repeated the analyses of test accuracy and the RDM analyses described
above separately for participants with high and low griddiness prior, as indicated by a median
split. We also conducted ANCOVA analysis on the Kendall’s Tau correlations with grid prior as
a covariate of interest.

2) Experiments 3

All models were implemented in python 3.5 with tensorflow 1.0 and trained in GPU mode on an 
Nvidia Tesla K80 GPU. A detailed description of all models and analysis procedures follows 
below.
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2.1) Exp 3: CNN Simulations of Trees task without priors
In this experiment, we replicated the trees study with a convolutional neural network (CNN),
which  learned  solely  from  pixels  and  a  reward  signal.  The  goal  was  to  compare  human
performance and choice biases with the effects of blocked vs interleaved learning on its hidden
layer representations and test performance, using the same task. The single-trial inputs were RGB
images of gardens with trees. A key-feature of CNNs are convolutional layers, which consist of a
set of filters, or kernels, that are convolved with the input to create an output of filter-specific
features. As a CNN is a fully-parametrised model, these filters are not hand-crafted but learned
solely by optimising the loss function (see below) via the backpropagation procedure. 

2.1.1) Stimuli.  We generated 50000 training and 10000 test tree images using exactly the same
settings as for the behavioural experiments. The tree images were downscaled to 96x96x3 and
saved as .png RGB images.

2.1.2) Network Architecture. The network architecture is illustrated in Fig. S6a.

2.1.3) Training. Training was conducted online with one sample per “trial”. Each training trial
consisted of an RGB image, composed of a task-specific image of a garden and a superimposed
tree, which served as input. Convolutions with filters and downsampling operations processed the
image until it was finally passed through a sigmoidal transducer function to generate a choice
probability. We used the trial-specific reward, multiplied by -1 times the choice probability, as
custom loss function. Thus, by learning convolutional filters and network weights to minimise the
trial-wise loss (negative reward), the network maximised its trial-specific reward. The agent was
trained via stochastic gradient descent (SGD) with the Adam optimiser and a learning rate of 1e-
4. The learning rate was determined by a via hyperparameter optimisation at a previous piloting
stage.

2.1.4)  Task  Design  and  Procedure. We  compared  the  effects  of  blocked  and  interleaved
training. In the blocked curriculum, the agent was first trained on 10000 trials from one task, and
then on 10000 trials from the second task. In the interleaved group, the agent was trained on
20000 randomly shuffled trials from both tasks. In both cases, we evaluated the performance on
10000 previously unseen test trials per task. The training data was sampled from the set of 50000
trees, keeping the number of trees per combination of leafiness and branchiness consistent across
tasks and runs. The test phases occurred after half of the training trials were fed through the
network, and at the end of the training phase.  During these evaluation phases, we recorded the
activations in the convolutional, fully-connected and output layers on each trial.
We counterbalanced task order and reward assignments in the same way as for the behavioural
experiments. In total, 40 independent runs with random weight initialisations per combination of
boundary  (cardinal  or  diagonal)  and  curriculum (blocked  or  interleaved)   were  collected.  In
contrast to human learners, deep learning agents require a considerable higher number of training
examples, to avoid rote-learning and thus over-fitting to the idiosyncrasies of the training set.

2.1.5) Performance Analysis. To evaluate performance, we binned the training phase into bins
of 100 trials, and computed the percentage of correct choices for each bin. This was carried out
on independent runs, before we computed the group means for each training curriculum. For the
test  phase,  we  calculated  the  percentage  of  correct  decision  across  all  trials,  for  both  tasks
individually and across tasks, before averaging across runs.  In both cases, we excluded category
boundary trials, where no correct decision was possible.

2.1.6) RSA. We constructed Representational Dissimilarity Matrices (RDMs) from the individual
layers, based on their responses to test data stimuli. The procedure was almost identical to our
RSA on the behavioural data. However, instead of having just one value (e.g. choice probability)
per  stimulus,  we  obtained  now response matrices  of  size  50xn with n being  the size  of  the
(flattened) layer activations. The dissimilarity between activity patterns for pairs of stimuli was
calculated using the correlation distance measure (1-correlation), yielding one 50x50 RDM per
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layer.  Once  again,  we  correlated  these  RDMs with  model  RDMs  (Fig.  S7),  capturing  pixel
dissimilarity, factorised task encodings, catastrophic interference (e.g. encoding of task 1 as if it
was task 2) or a shared linear boundary. The binary model RDMs were hand-crafted. For the
pixel dissimilarity RDM, we computed the pairwise Euclidean distances between vectorised RGB
images of gardens with superimposed trees, for all 25x2 combinations of branchiness, leafiness
and context.

3) Experiment 4a and 4b

Exp. 4 Summary. Exp. 4 was aimed at replicating the effect of perceptual priors on continual
task  performance  that  we  had  observed  in  our  human  participants  (Exp2).  The  experiment
consisted of two distinct phases. In Exp4a, we implemented a recently developed variant of a
variational autoencoder, known as a  β-VAE, to learn disentangled representations of the main
features of the tree dataset in the absence of any supervised learning objective (9). We discovered
that with the right parametrisation, the β-VAE could learn two disentangled factors that closely
resembled variation along the axes of “branchiness” and “leafiness”. Importantly, the network
was only trained on trees images (without contextual cues) and was therefore not able to separate
contexts  a  priori.  Next,  in  Exp4b,  we  trained  a  feed-forward  neural  network  on  the  trees
categorisation  task,  as  we  did  previously  in  Exp3.  However,  to  mimic  the  perceptual  priors
exhibited by human participants, we replaced the convolutional layers of the network with the
trained encoder network of the β-VAE. The network still received images of trees superimposed
onto gardens as inputs (and was trained either on a blocked or interleaved curriculum) but would
now have access to a lower-dimensional,  latent  representations that  separated trees along the
learned dimensions leafiness and branchiness. Even though still present, the network suffered less
from catastrophic interference, indicating that the pretraining intervention, e.g. augmenting the
network with similar perceptual priors as our human participants had, facilitated task separation
under blocked training curricula. Details of these two simulations are presented below.

3.1) Exp 4a: Unsupervised Learning of Disentangled Representations
Aim of this experiment was to simulate the unsupervised learning of the stimulus space and
emergence of disentangled visual concepts (of branchinesss and leafiness). We attempted to show
that the most efficient compression of the data would correspond to the structure of the trees
space. 

3.1.2) Stimuli.  The training data set  consisted of 50000 trees stimuli,  with equal numbers of
examples  per  combination  of  branchiness  and  leafiness.  Another  set  of  10000  trees  stimuli,
equally balanced, was generated and served as test set. All tree stimuli were scaled to 96x96x3
pixels. We normalised the data separately for each colour channel by subtracting the mean and
dividing by the standard deviation.

3.1.3) Training Procedure. The network architecture is illustrated in Fig. S6b. The network was
trained with minibatches of 128 training stimuli and training was stopped after 20 epochs on the
entire training data, as we noted that the network would otherwise overfit to the training data. We
evaluated  the  network’s  performance  after  each  epoch  with  a  full  pass  of  the  test  data.
Furthermore, after each training epoch, a latent space traverse (see below) was performed and the
encoder layer outputs for two full 5x5 sets of tree stimuli were stored for later Representational
Similarity Analysis. Training was repeated for different values of beta, ranging from 1 to 100.
We found a beta of 50 to yield the best disentanglement (see below).

3.1.4) Latent Space Traversal. For the latent space traversal, we fed linearly spaced values for
the mean parameters, ranging from -2 to +2 along each of the two latent dimensions into the
trained network and generated the tree via a full pass through the decoder. For each of these value
pairs, we placed the generated image at the corresponding (x,y)-position in latent space, to obtain
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a visualisation of the traverse. In doing so, we could qualitatively assess the degree to which each
of the two latent dimensions captures unique variation along the relevant feature dimensions.

3.1.5)  Grid  Score  RSA.  Furthermore,  we  constructed  25x25  RDMs  out  of  the  activations
recorded from the encoder layer, using the same methodology as previously described. These
RDMs could then be correlated with a conceptual model RDM which exhibited a structure one
would  obtain  if  the  stimuli  were  represented  in  a  perfectly  linear  grid,  according  to  their
dissimilarity in branchiness and leafiness. Calculating these RDM model correlations (Kendall
taua) yielded one “grid score” per beta parameter. This allowed us to identify the value for beta
which resulted in the most grid-like representations in the last encoder layer and therefore find a
close-to-optimal value for this hyperparameter.

3.2) Exp 4b: CNN simulation of trees task with priors. The previous experiment identified a 
parametrisation for the beta-VAE which allowed us to model our participant’s “awareness” of the
stimulus space structure. That is, the model learned a compressed representation which arranged 
the stimuli according to their variation in leafiness and branchiness. As Exp 2 revealed that 
participants with a high gridiness score, e.g. with a strong awareness of the stimulus space, 
performed better in the blocked curriculum, compared to subjects with a lower “prior”, we could 
now ask if providing a neural network with such representations would boost its continual task 
performance.  We replaced the convolutional layers of the agent with the trained encoder of the 
beta-VAE from Exp 4a and froze its weights, which means that a gradient update would not alter 
values of weights in these layers (Fig. S6c). With this approach, we simulated having a fixed 
feature extractor that disentangles branchiness and leafiness, and task learning (and thus weight 
adaptation) occurred on this new “intermediate” representation instead of the raw RGB images.

3.2.1)  Training,  Procedure  and  Analysis.  The  training  parameters  and  task  design  were
identical to the ones described for Exp. 3. Once again, training happened online with one trial per
gradient update, and composite images consisting of a trial-specific garden and tree were used as
inputs to the network. We collected the same number of runs per group and recorded the hidden
layer activity on independent  test  data.  Likewise,  the same analyses were performed, namely
calculation of learning curves, test performance and RSA on the layer-wise activity patterns.
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Supplementary Figures

Fig.  S1.  Exp  1. Group-level  choice  probability  matrices. (A)  Exp.  1a  (cardinal):  Test-phase  choice
probability  matrices  for  each  task and group.  One can  nicely see  a  that  patterns  become more  biased
towards  a  combined  boundary,  the  less  the  two tasks  were  temporally  autocorrelated  during  training.
Matrices were flipped and rotated on single subject level to account for counterbalancing of rewards signs
across subjects. (B) Exp. 1b (diagonal): Test-phase choice probability matrices for each task and group.
The patters resemble the ones described for Fig S1a. Whilst participants learned the boundaries very well
under B200 training, interleaved or B2 training would lead to more mixed responses. In contrast to the
cardinal boundary, there seem to be more random errors.
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Fig. S2. Exp 1a,b. Test Performance of first vs second task, B200 training.  Comparison of performance of
first vs second task for cardinal boundaries (Exp 1a, left) and diagonal boundaries (Exp1b, right). In both
cases, participants were slightly worse on the first task (Exp1a: First < Second, Z = 3.09, p < 0.01; Exp1b:
First < Second, Z = 2.65, p < 0.01 ) indicating at least partial forgetting, which was, however, much less
severe than for artificial neural networks. Forgetting was not more severe for Exp1b than for Exp 1a (Z =
0.5, p = 0.62).
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Fig. S3. Exp 1,2. Visualisation of Psychophysical Model. To estimate the factors that contributed to the
observed group-level choice probability matrices, we fitted two variants of a psychophysical model to the
data. Left: The orientation of the category boundary in trees space was dictated by a free parameter. Each
coordinate  pair  was  projected  onto  the  line  perpendicular  to  the  bounadry  (green  arrow)  to  obtain an
estimate of  the distance  to the category boundary.  Middle:  These scalar  values  were passed through a
sigmoidal transducer with the parameters slope, offset and lapse (see methods for details) to generate a
choice probability as function of the reward that was associated with planting the input tree. Right: The
model output was a matrix with choice probabilities (averaged over trials) that was then fit to the single
subject  choices  using  a  maximum  likelihood  procedure.  We  compared  two  variants  with  different
flexibility: The 2-boundary (“unconstrained”) model had eight parameters in total, one boundary and three
sigmoid parameters per task, and could therefore estimate task-specific choice patterns. The 1-boundary
model was more constrained, as it only had four free parameters – one boundary and one sigmoid with
slope, offset and lapse – and allowed us to test the hypothesis that participants collapsed across tasks (i.e.
ignored the contextual cue) and estimated a single rule to solve the task.
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Fig S4.  Task Lapse Analysis.  (A-B) Exp 1a.  Fits of  sigmoids (relevant  and irrelevant  dimension) to
synthetic choices sampled from the unconstrained model with best-fitting parameters. The results replicate
the findings reported in Fig 2c, indicating that the intrusions along the irrelevant dimension are driven by a
wrong estimate of the category boundary.  (C-D) Exp 1b. Same analysis as  for  1a,  now with diagonal
boundary. Once again, the stronger intrusion for interleaved compared to B200 suggests a boundary bias as
underlying cause (E-F) Random Effects Bayesian model comparison of the unconstrained model with the
task lapse model, on cardinal (E) and diagonal (F) boundaries. The Unconstrained model explains the data
significantly better than the task lapse model, supporting our hypothesis that the source of error are driven
by a bias in the boundary estimate rather than rule confusion (with perfectly learned boundaries). 
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Fig. S5. Exp 2: Replication of findings from Exp1  (A) Exp. 2a, Learning curves. At the end of the training
phase, both groups had reached a stable performance plateau. The B200 group learned fast and reached a
higher training performance than the Interleaved group. This advantage continued during the test phase. (B)
Exp. 2a.  Mean test performance for B200 and Interleaved groups. Blocked training led to significantly
higher  test  accuracy  than interleaved  training.  (C)  Exp2a.  RDM Model  correlations.  There  is  stronger
evidence for factorised representations after B200 than after interleaved training. Furthermore, interleaved
training results in higher correlations with a linear  model,  than B200 training. (D) Exp. 2a,  test  phase
decision boundary bias, estimated by unconstrained model. Interleaved training resulted in a significantly
stronger difference between estimated decision boundary and true category boundary, than B200 training.
(E) Exp. 2b, learning curves. While the B200 group learned faster and reached a higher terminal training
performance than the interleaved group, the differences in the test phase were rather minute. (F) Exp. 2b,
test phase mean accuracy. As for Exp. 1b, there was no significant difference in test performance between
B200  and  interleaved  training  on  diagonal  boundaries.  (G)  Exp.  2b,  RDM  model  correlations.  The
factorised model explained the B200 group data – but not the interleaved group data – better than the linear
model. (H) Exp 2b, decision boundary bias, unconstrained model. Participants in the interleaved group had
a significantly higher bias in their estimated decision boundaries than participants in the B200 group. 
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Fig. S6. Neural Network Architectures. (A) Exp 3. Model Architecture.  The agent consisted of three
convolutional  layers  (16x5x5,32x3x3,32x3x3,  padding=SAME,  nonlinearity=ReLU,  stride=2)  and  two
fully-connected  layers  (512x1,512x1, nonlinearity=ReLU, dropout=0.5),  followed by a one-dimensional
output unit (nonlinearity = Sigmoid). Weights were initialised with He-Initialisation, and biases set to 0.01.
(B) Exp 4a. Model Architecture. The encoder consistent of three convolutional layers which were identical
to the first three layers of the network depicted in Fig. S4a. We flattened the output of the encoder and fed
it into the two-dimensional latent layer, which was separated into a node for the mean paramenter and a
node for the logsima parameter of the latent distribution. These parameters were combined with a sample
from a zero mean, isotropic variance gaussian distribution in the subsequent reparametrisation layer. The
decoder consisted of three layers with transposed convolutions, arranged in reverse order of the encoder
layers.  All  layers  in  the  encoder  and  the  first  two decoder  layers  passed  their  outputs  through ReLU
nonlinearities. No nonlinearities were applied to the latent layer and the final output of the decoder was
passed through a hyperbolic tangent, as the input image could have values below zero due to normalisation,
and the optimisation aim of the VAE was to resemble the input in its output as close as possible. The
weights were initialized using He-Initialization and all biases were initially set to 0.001. (C) We selected
the encoder of the model with the highest gridiness score in Exp. 4a and used it to replace the convolutional
layers of the agent from Exp. 3. Note that architecture is exactly the same, but weights now instead of being
randomly initialised encode an efficient representation of the stimulus space before any training on the trees
task  has  taken  place.  Next,  we  freezed  the  weights  of  the   convolutional  layers  to  ensure  that  the
representation remains persistent and serves as feature extractor throughout training. 
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Fig S7. Exp3,4. Example of Model RDMs.  (A) Pixel Space dissimilarity model. Here, we computed the
dissimilarity between vectorised RGB images for all 50 possible combinations of leafiness,branchiness and
task. (B) Factorised Model. Cardinal boundaries. This model RDM assumed that the network had learned
perfect binary representations of both categories for each task (compare Fig 2d). (C) Interference Model
RDM. Cardinal boundaries. If the network had been trained first on the north and subsequently on the south
task, we expected catastrophic interference. This model RDM assumes that the first task is treated as if it
was the second task. (D) Linear Boundary Model. Cardinal boundaries. In the behavioural experiments, we
tested  the hypothesis  that  participants  learn  only one single,  linear  boundary  for  both tasks,  which  is
positioned  in  trees  space  such  that  reward  is  maximised  in  both  gardens.  This  RDM illustrates  how
representational geometries would look like in such a model.
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Fig S8. Exp 3a, Example of Layer RDMs.  (A) Exp 3a, Blocked training. RDM constructed from the
activity patterns in the first convolutional layer during the final test phase. (B) Exp 3a, Blocked training.
RDM constructed from the test-phase activity patterns in the FC2 layer. As expected, the network responds
to the first  task (top left  quadrant)  as  if  it  was the second task (bottom right  quadrant).  (C) Exp.  3b,
interleaved training. RDM obtained from the first convolutional layer during the last test phase. As under
Blocked training, mostly differences in pixel value patterns is encoded. (D) Exp 3b, interleaved training.
RDM obtained from the FC2 layer. In contrast to Blocked training (Fig S6b), the second FC layer exhibits
clear separation of representational geometries for the north and south task. In other words, interleaved
training allowed the network to learn the boundaries for each of the two tasks, which is reflected in FC2-
layer responses to branchiness in the south and leafiness in the north task.
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Supplementary Tables

Table S1. Numbers of above-chance participants per experiment and group

total(m,f) B200 B20 B2 Interleaved

Exp 1a 48(29,19) 41(18,23) 40(23,17) 47(30,17)

Exp 1b 42(19,23) 40(20,20) 40(22,18) 44(24,20)

Exp 2a 68(43,25) - - 70(51,19)

Exp 2b 55(40,15) - - 48(33,15)
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Table S2. Mean age of participants per experiment and group

B200 B20 B2 Interleaved

Exp 1a 34.38 34.22 35.85 35

Exp 1b 34 37.1 34.5 36.82

Exp 2a 31.15 - - 30.71

Exp 2b 32.89 - - 29.38

Mean age of participants per group and experiment.
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Table S3 Overview of achieved statistical power for all reported post-hoc tests 

This table illustrates the achieved power (1-beta) for each post-hoc test reported in the main text . 
Power was computed using the G*Power software package for Microsoft Windows.
 
EXPERIMENT QUANTITY COMPARISON 1-BETA
EXP 1A Test Accuracy B200 > Int 0.63

(All trials) B200 > B2 0.94
Int > B2 0.56

Test Accuracy B200 > Int 0.53
(Switch Trials) B200 > B2 0.94

Intrusions B200 < Int 0.77
(Irrelevant Dimension)

Task Factorisation B200diff > Intdiff 0.93
(RSA) B200diff > B2diff 0.94

Task Factorisation B200diff > Intdiff 0.95
(Model Selection) B200diff > B2diff 0.91

Angular Bias B200 < Int 0.64
(Unconstrained Model)

Slope, Relevant Dim. B200 > Int 0.62
(Unconstrained Model) B200 > B2 0.93

EXP 1B Intrusions B200 < Int 0.89
(Irrelevant Dim.) B200 < B2 0.86

Task Factorisation B200diff > Intdiff 0.91
(RSA) B200diff > B2diff 0.96

Task Factorisation B200diff > Intdiff 0.88
(Model Selection) B200diff > B2diff 0.79

Angular Bias B200 < Int 0.82
(Unconstrained Model) B200 < B2 0.73

Random Lapses B200 > Int 0.22

EXP 2A Task Factorisation B200 > Int 0.91
(RSA)

Task Factorisation B200 > Int 0.98
(Model Selection)

Angular Bias B200 < Int 0.74
(Unconstrained Model)

Grid Prior B200high > B200low 0.87
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(Accuracy) Inthigh > Intlow 0.33

Grid Prior B200high > B200low 0.94
(Task Factorisation) Inthigh > Intlow 0.40

EXP 2B Task Factorisation B200 > Int 0.36
(RSA)

Task Factorisation B200 > Int 0.54
(Model Selection)

Angular Bias B200 < Int 0.37
(Unconstrained Model)

Grid Prior Pooledhigh > Pooledlow 0.48
(Accuracy)

Grid Prior Pooledhigh > Pooledlow 0.64
(Task Factorisation)

EXP 4B Retained Accuracy VanillaCNN < PriorCNN 0.99
(First Task, Cardinal)

Retained Accuracy VanillaCNN < PriorCNN 0.99
(First Task, Diagonal)

Task Factorisation VanillaCNNfc1 < PriorCNNfc1 0.99
(RSA, Cardinal) VanillaCNNfc2 < PriorCNNfc2 0.99

VanillaCNNout < PriorCNNout 0.99

Task Factorisation VanillaCNNfc1 < PriorCNNfc1 0.28
(RSA, Diagonal) VanillaCNNfc2 < PriorCNNfc2 0.27

VanillaCNNout < PriorCNNout 0.29

Task Interference VanillaCNNfc1 > PriorCNNfc1 0.99
(RSA, Cardinal) VanillaCNNfc2 > PriorCNNfc2 0.99

VanillaCNNout > PriorCNNout 0.99

Task Interference VanillaCNNfc1 > PriorCNNfc1 0.74
(RSA, Diagonal) VanillaCNNfc2 > PriorCNNfc2 0.86

VanillaCNNout > PriorCNNout 0.92
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	1.3) Task and Procedure. Exp.1 and 2 were written in JavaScript and run in forced-fullscreen mode. We tested software compatibility with a variety of operating systems and web browsers before launching the task. All experiments consisted of a training phase (400 trials) and a test phase (200 trials). Self-paced breaks were allowed after 200 and 400 trials. We equated the number of presentations of each stimulus (leafy x branchy level). For Exp. 2, a similarity rating task was added before and after the main task (details below). At the beginning of the experiments, the participants received written instructions. They were asked to imagine that they owned two gardens, one in the north and one in the south. The goal was to learn via trial and error which type of trees grow best in each garden. Our instructions thus avoided alerting participants to the task-relevant dimensions (leafiness and branchiness).
	In the training block, each trial began with the presentation of a centrally presented garden image (task context) for 500ms. Subsequently this garden image was blurred to direct the attention towards the overlaid tree stimulus that was presented for up to 2000ms. Responses were allowed for 4500ms post stimulus onset. As a reminder, the response assignments (e.g. keys for “plant” and “reject”) were displayed above the tree stimulus through the trial (counterbalanced). Feedback was displayed for 1500ms. Feedback on “plant” trials during training depended on the distance to the relevant boundary (±50 points for levels 1 and 5, ±25 points for levels 2 and 4 and 0 points for level 3). Reward was zero on reject trials. On plant trials, feedback was also accompanied by an animation (during which the garden was unblurred) that showed the tree grow or shrink proportionally to the magnitude of the received reward. These timings were identical in test blocks, with the exception that no feedback was provided.
	1.4) Arena task (Exp. 2). In Exp.2a and 2b we additionally asked participants to rate the similarity among pools of 25 trees before and after the main experiment �(2)�. We presented participants with a grey circular arena covering most of the screen area. This was populated by 25 trees (one per level of leafiness/branchiness) that were positioned in a random but non-overlapping configuration. Participants were asked to move the trees around by mouse drag-and-drop, arranging the trees so that more similar exemplars were close together and more dissimilar exemplars were further apart. The choice of a two-dimensional arena may have biased the participants towards reporting a two-dimensional dissimilarity structure, or, in other words, to report only variation along the two dimensions they found most salient �(3)�. As the trees varied systematically along two dimensions (branchiness and leafiness), and a perfect description of the ground-truth dissimilarity structure could be provided in 2D, we refrained from using more sophisticated sub-sampling methods that allow participants to express higher dimensional dissimilarity structures �(4)�. The opacity of the selected tree was changed during the dragging process for usability purposes. This procedure was self-paced. Once all trees had been arranged and the participant was satisfied with the outcome, the next trial could be initiated by clicking on a designated button. Each trial involved a unique tree set. Participants performed 5 trials in total, taking an average of ~10 minutes. The main task was identical to Exp.1a and 1b, with the exception that we omitted the B20 and B2 conditions.
	1.5) Statistical Tests. Accuracies were compared with ANOVAs and t-tests. Other measures were compared with nonparametric tests (Kruskal Wallis, Rank Sum and Sign Rank), as violations of Gaussianity were observed. We calculated Cohen’s d and z/sqrt(N) as measures of effect size for parametric and nonparametric post-hoc tests respectively.
	1.6) Accuracy and Psychometrics. To display learning curves, we plotted training accuracy in bins of 50 trials, and test accuracy averaged over the entire 200 trials. For psychometric curves, for each participant we calculated p(plant) during the test phase for each of the 5 levels of the relevant and irrelevant dimensions and fit a logistic function to the data.
	1.7) Behavioural RSA. For RSA �(5, 6)�, we calculated p(plant) as a function of every level of leafiness x branchiness, and then computed an RDM expressing the dissimilarity (in accuracy) between each pair of leaf x branch level. We compared these to model-predicted RDMs that were generated to match a theoretically perfect observer (model 1) or an observer who learned the best possible single linear boundary through the 2D space and applied it to both tasks (model 2). To deal with partial correlation among these predictor matrices, they were orthogonalised using a recursive Gram-Schmidt approach. We computed Kendall’s Tau correlations between predicted and observed RDMs and compared these using a nonparametric approach.
	1.10) Influence of Priors. In Exp.2, for each participant and condition we calculated average pairwise Euclidean distances between trees for each pair of dissimilarity ratings, yielding an RDM of the same size as that described above (25 x 25). This yielded three trial-specific RDMs per subjects. We averaged normalised RDMs within subjects across trials to obtain a reliable per-subject estimate of the reported dissimilarities. For visualisation, we then compressed this RDM to two dimension using multidimensional scaling. To compute the “grid” prior, for each participant we constructed a model RDM which exhibited perfect grid-like encoding of the two feature dimensions and correlated it with the empirical single-subject RDMs obtained from the arena task the participants engaged in prior to the main experiment. (Kendall taua rank correlation). We then repeated the analyses of test accuracy and the RDM analyses described above separately for participants with high and low griddiness prior, as indicated by a median split. We also conducted ANCOVA analysis on the Kendall’s Tau correlations with grid prior as a covariate of interest.
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