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Supporting Materials and Methods 

Reconstruction of a prokaryotic genotype space.  
All in silico explorations of genotype (1) space in this work took as a reference the E. coli                  
model iJO1366 and consisted of both gene additions and deletions. Gene deletions were             
performed by constraining both upper and lower bounds of the reaction to zero. Gene              
additions were performed from a set of all known prokaryotic reactions. We used the BiGG               
database (1) to compile a dataset of all known reactions found across prokaryotic species.              
Conflicts in reaction directionality were resolved as follows i) if a reactions is found in the                
well benchmark E. coli iJO1366 model, use the properties given by this model, ii) if a                
reaction conflicts in directionality, only accept directions found across all models (e.g. if             
there is one model where a given reaction is irreversible, we set it as irreversible). We used                 
this dataset to create a “universal” metabolic model that included all reactions found in E.               
coli iJO1366 as well as a set of all potential novel reactions. We removed reactions that                
would lead to erroneous energy-generating cycles using the GlobalFit algorithm (2). The            
algorithm was constrained to conserve reactions present in the original E. coli model.             
Removing any futile cycles from this “universal” model ensures that there will not be any               
futile cycles in any subset. The resulting network contains 4999 metabolic reactions and             
585 nutrient uptake or sink reactions, of which 2758 and 255 were not found in the                
original E. coli model.  

In silico simulation of growth through metabolic modeling.  
Dynamic Flux Balance Analysis simulations were performed using the COMETS package           
(“Computation of Microbial Ecosystems in Time and Space”, (3)) and the gurobi optimizer             
software. For computationally intensive simulations, we used the High Performance          
Facility at Yale University. For standard (non dynamic) FBA simulations, we used the             
COBRApy python package (4). Both Dynamic and Standard FBA optimizations were done            
using the parsimonious algorithm, in which a first optimization is done to maximize             
biomass yield, and a second one fixes this yield and minimizes total fluxes throughout the               
network (5). Unless otherwise stated, the default Vmax was set in dynamic FBA simulations              
to 10 mmol×gr-1×hr-1 for all uptake reactions. Inorganic ions and gases where kept at high               
concentrations and where kept undepleted throughout the simulation (i.e lower bound :            
-1000 mmol×gr-1×hr-1, amount of metabolite: 1000 mmol). This was done to constrain our             
analysis to situations where growth is limited only by uptake of carbon sources. The              
unbounded nutrients are: ca2_e, cbl1_e, cl_e, co2_e, cobalt2_e, cu2_e, fe2_e, fe3_e, h_e, h2o_e,             
k_e, mg2_e, mn2_e, mobd_e, na1_e, nh4_e, ni2_e, pi_e, sel_e, slnt_e, so4_e, tungs_e, zn2_e. For              
the citrate simulation to avoid oxygen, nitrogen or proton limitation uptake was            
unconstrained by setting the vmax to 1000 mmol×gr-1×hr-1. Analysis of results was            
performed using GNU R language (6). 

Fitness, environmental effects and deformability measurements.  
To measure fitness, we use here (in both experiments and simulations) the Malthusian             
fitness measure that allows for a quantitative comparison across environments (7). Fitness            
of mutant M relative to ancestor A is therefore given as FM = log([X'M/XM]/[X'A/XA]), where X                
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and X’ represent initial and final densities. For a pair of mutations, deformability can be               
then measured as δij = Fij(i) + Fi(A)- (Fij(j)+ Fj(A)), where Fx(y) represents the fitness of genotype                 
x in competition with genotype y . To compute environmental effects of mutations, the             
difference in secretion profile of mutants (as shown in Fig. 1C and Fig. S1) is computed for a                  
given released molecule as sign(D) * (log(D)+1) where D is the amount released by the               
mutant minus that secreted by Ancestral E. coli. This log-modulus transformation (8) is             
applied to help visualization of the generally small differences in released amount, which             
can be either positive or negative. To measure environmental effect of a mutation (as used               
in Fig. S2 and Fig. S5), we use the Euclidean distance in the profile of released metabolic                 
byproducts between a mutant and the E. coli ancestor using standard Flux Balance Analysis              
(4). 

Simulation of the fitness landscape of aerobic growth on citrate by E.coli . 
Starting with E.coli model iJO1366 we constructed metabolic models of the four mutants             
necessary to predict the fitness landscape involved in the evolution of aerobic citrate             
utilization in the Ara3 population of the LTEE. Unlike the LTEE ancestral strain REL606              
(and E. coli generally), which possess the necessary genes for citrate utilization but do not               
express them in aerobic conditions, iJO1366 is able utilize both citrate and succinate if              
these reactions are unbounded (as FBA optimizes precisely regulation). Thus, the ancestral            
phenotype was recreated by knocking out three reactions CITt7pp (citT ), SUCCt2_2pp           
(dctA) and SUCCt2_3pp (dcuA or dcuB). The reactions encoded by the first two genes (citT               
and dctA) are known to be involved in the evolution of aerobic growth on citrate in the                 
LTEE whereas dcuA and dcuB are involved in dicarboxylate uptake in anaerobic conditions             
and are inactive in aerobiosis (9). This triple knockout represents the pre-citrate E. coli              
ancestor strain. The addition of CITt7pp simulates the promoter capture and consequent            
aerobic expression of CitT. Similarly, the addition of SUCCt2_2pp is equivalent to the first              
mutation (aerobic expression of dctA). We used dynamic FBA to predict the fitness             
landscape of these two mutations, calibrating the simulations to reflect the the            
experimental conditions. This involved i) setting the in silico media to reflect DM25             
minimal glucose media (0.139mM glucose, 1.7mM citrate). Aerobic condition was          
simulated by keeping oxygen (o2_e) undepleted. ii) using published parameters pertaining           
to the physiology of E. coli (3) and iii) estimating the initial biomasses of each mutant prior                 
to competition. Initial biomass for citrate simulations was determined using initial plate            
counts from pairwise competitions experiments (see also Fig. S4). We assume that average             
cell dry mass is 3.9 * 10 -13 g which is the empirically measured cell dry mass of REL606 the                   
ancestral strain used in the LTEE (10). 

E. coli  Long-Term Evolution Experiment. 
Briefly, twelve populations of E. coli B were founded in 1988 from clone REL606. The               
populations were initially identical, save for half having a mutation that permitted growth             
on arabinose. (See below.) These have since been evolved in DM25 minimal glucose             
medium under conditions of daily, 100-fold serial transfer, and incubation at 37°C with 120              
rpm orbital shaking. Samples of each population are frozen every 500 generations 38. DM25              
is Davis-Mingioli broth supplemented with 25 mg/L glucose. (Per liter: 7g potassium            
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phosphate dibasic trihydrate, 2g potassium phosphate monobasic anhydrous, 1g 
ammonium sulfate, 0.5g sodium citrate, 1mL 10% magnesium sulfate, and 1mL 0.2% 
thiamine.) 
Isolation and Preparation of Test Strains. 
ZDB89 is a Cit++ clone isolated from the Ara-3 population sample frozen for generation              
35,000 during the LTEE. Cit– revertants arise spontaneously from Cit+ and Cit++ clones due              
to recombination-mediated collapse of the tandem cit amplification to the ancestral           
genotype at that locus. We isolated a Cit– revertant, ZDB757, by first passaging ZDB89 in a                
glucose-only medium for five days. This passaging does not constitute a selection, but             
nonetheless enriches for Cit– revertants by eliminating the selective penalty for losing the             
ability to grow on citrate. Passage cultures were spread on LB plates, and Cit– mutants               
screened for by patching colonies to LB and Minimal Citrate (MC) plates to identify clones               
that no longer grew on citrate. The Cit– phenotype was confirmed by streaking on              
Christensen’s Citrate Agar. Recombineering with the pKO3 suicide plasmid (11) was used            
to delete the dctA gene from ZDB89 and ZDB757, producing the Cit+ dctA– and Cit– dctA–                
constructs, ZDB912 and ZDB904, respectively. To permit differentiation of competitors          
during fitness assays, we isolated Ara+ revertants of each of the aforementioned clones and              
constructs. Briefly, Ara– strains lack the ability to use arabinose, and form red colonies on               
Tetrazolium Arabinose (TA) plates, while Ara+ revertants are mutants with restored ability            
to grow on arabinose, and form white colonies on TA. The ancestral strain of the Ara-3                
population and its descendants are Ara–. We isolated Ara+ revertants by plating clone or              
construct cultures on Minimal Arabinose (MA) plates. Revertants were competed against           
their Ara– parents to verify marker state neutrality. Clones, constructs, and revertants are             
listed in Supplementary Table 1. Derivation of constructs and revertants are shown in Fig.              
S9. 

Experimental fitness Assays. 
Fitness was assayed in pairwise competitions. Competitors with opposite Ara marker           
states were inoculated from frozen stocks into 10 mL LB broth, and incubated overnight at               
37°C with 120 rpm orbital shaking to permit revival and elimination of traces of glycerol               
cryoprotectant. To precondition the competitors, each competitor revival culture was then           
diluted 100-fold in 0.85% saline, and 100 L of the diluted culture used to inoculate 9.9 mL                 
DM25 with ten-fold replication. These culture were grown for 24 hours at 37°C with 120               
rpm orbital shaking, after which they were transferred via 100-fold dilution into 9.9 mL              
volumes of fresh DM25, and grown for another 24 hours under the same conditions. Ten               
competition cultures were prepared for each competitor pairing by inoculating each 9.9 mL             
DM25 with 50 L of each preconditioned competitor. A single replicate preconditioning            
culture of each competitor for each competition was inoculated so that each competition             
was inoculated from a single preconditioned culture of the competitors. Upon inoculation            
with the competitors, 100 L of a 100-fold dilution of each was spread on TA to permit                 
enumeration of the initial frequency of each competitor. 100 L of a 1000-fold dilution was               
also plated for each competition including at least one Cit+ or Cit++ competitor. Colonies              
were counted following 48 hours of plate incubation at 37°C. Following 24 hours             
incubation under the same conditions used for preconditioning, 100 L of 10,000-fold            
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dilutions of each competition were plated on TA to permit final enumeration of the              
competitors. 100,000-fold dilutions were also plated for competitions including at least one            
Cit+ or Cit ++ competitor. 

Exploration of deformability in the local mutational neighborhood of E. coli . 
To systematically analyze the local mutational neighborhood of E.coli we construct a set of              
metabolic models consisting of every viable single and double mutation, considering both            
additions and deletions from our universal reaction set and using as a reference the E. coli                
iJO1366 model (4389 and 9636050 genotypes, respectively). We removed from this           
analysis and all subsequent analysis essential genes, sink reactions, diffusion reactions, as            
well as those genes leading to artifacts (H2 or CO2 limitation). We used dynamic flux balance                
analysis to simulate competition assays of each mutant with its immediate ancestor. We             
chose to perform our in-silico competitions in anaerobic conditions because in under            
aerobic conditions FBA incorrectly predicts complete oxidation of glucose at saturating           
level. The simulations started with an initial glucose concentration of 0.0001mM and            
assayed co-culture growth during 10hr, a period during which glucose was never            
exhausted, i.e. growth remained exponential. All simulations were done with the mutant            
starting at low frequency (1%, 10 -10 gr. dry cell weight, for 9.9 × 10 -9 gr. for the ancestor) in                   
anaerobic glucose minimal media (unless otherwise stated, see detailed parameters in           
supplement and supplementary tables ST2).  

Simulation of long-range fitness landscape deformation. 
In order to explore the long-range effects of landscape deformation, we started from a              
one-step mutation from ancestor E. coli model and performed random walks in genotype             
space by sampling 1024 mutations (without replacement) among both deletions and           
additions. In addition to previously mentioned artifacts we excluded from this analysis            
reactions that had led to CO2 or H2 limitation in a unique pair, even if they did not have this                    
effect with other reactions . The pairs are: SHSL2 and SHSL2r ,DHORD_NAD and DHORDi,              
ENO and HADPCOADH, LEUTA and LLEUDr, P5CRx and PRO1y, in BIGG database notation             
(1). To prevent irreversible loss of viability, the sampling procedure also ignored all             
reactions that were essential in a minimal model capable of growing on glucose in              
anaerobic conditions. The minimal model was built by sequentially removing reactions           
while possible, following (12)). At regular intervals along the random walk, fitness was             
measured as before in competition with the mutant and the ancestor (wild-type) using             
dynamic flux balance analysis (COMETS (3)). To determine the growth rates of genotype in              
ancestral vs mutant environments we repeated this procedure except at each step, growth             
rate was measured in the environment provided by the mutant and the ancestor using              
standard flux balance analysis (COBRApy (4)). These environments were simulated by           
setting uptake rates for each secreted metabolites to the excretion rate of the respective              
ancestor.  

Computation of null models for growth in the absence of epistasis. 
We built a null model for the expected growth rates of mutants, under the assumption that                
the effect of each mutation on the growth rate is independent. We denote the growth rate                
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of the ancestral genotype M by gM, and that of each single mutant i by gi=wigM, where i can                   
represent any of all N possible mutations (in our case N=4181). Here we introduced the               
parameter w i=gi/gM representing the relative effect of mutation i on the growth rate. If two               
mutations i and j do not interact with one another, their effects on growth rate are                
multiplicative: wij=wiw j. For a mutant that contains Q mutations relative to the ancestor M,              
we can thus calculate its growth rate relative to the ancestor as 

. gQ = (∏
P

i=1
wi) gM  

Long range deformation in an adaptive trajectory. 
To provide a mechanistic example of an adaptive long-range deformation with epistasis, we             
sequentially removed reactions that i) had a detrimental effect, and ii) affected lactate             
secretion. We reached a 6 step mutant genotype that was unable to use lactate. The               
subsequent addition of 4 of these removed reactions to this mutant led first to the secretion                
of lactate (upon addition of LDH, lactate dehydrogenase), and then to the consumption of              
this lactate only after 3 additional mutational steps (ACKr - acetate kinase, PFL -              
pyruvate-formate lyase, ATPs - cytosolic ATP synthase). For each mutation along the            
trajectory (LDH -ATPs-PFL-ACKr,) we measured fitness as before, by simulating the           
competition of each mutant with its immediate ancestor. The effect of lactate cross-feeding             
on fitness was assessed by repeating this analysis, albeit with lactate removed from the              
environment at each step (Fig. S8). 



Supporting figures 

Fig. S1. Variation in the secretion 
profile of single mutants (see fig. 
1C main text)., full set of mutants 
with environmental effect.  



 
Fig. S2. Fitness and environmental effects are correlated. We plot the environmental effects 
of each single mutant (calculated as discussed in the methods) as a function of the fitness 
effect of that mutation. Both metrics are strongly correlated (Pearson’s ρ =  0.61, P<10-6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Fig. S3. Relation between 
non-commutativity (δ) and 
intransitivity (I) in a 
hypothetical two mutation 
genotype space. We denote the 
fitness of mutant X in 
competition at low frequency 
with mutant Y by FX(Y). As shown 
in the diagram, 
noncommutativity (𝛿) is the 
sum of the intransitivities in 
both trajectories (IAB and IBA). 
However, to compute 
intransitivity, we need to 
perform a competition of the 
double mutant (AB) versus the 
original ancestor (O).  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



Fig. S4. Prediction of competition assay outcomes in the path to strong aerobic growth on 
citrate in E. coli was compared to the measured colony counts for each competition assay. 
All 120 competition assays were simulated using dynamic FBA (see Methods), and the 
experiments were performed as explained in the main text (Methods) 

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Fig. S5. Same network shown in Fig. 3B showing all reaction labels.  



 
 
Fig. S6. Environmental effect and deformability are correlated in the local genotype space 
of E. coli. Here, the degree (i.e. number of interactions) in the network presented in figure 
3C (main text) is used as a proxy for deformability.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Fig. S7. Additional examples of long range deformation similar to figure 4C (main text) 
using the 16 non-essential mutations M with largest environmental effect (shown as 
subpanel titles) other than ACKr (which is shown in Fig. 4C in the main text). We show 
average fitness differences (ΔF) in competition with A vs. in competition with M. ΔF 
always increases with mutational distance. Error bars represent SEM (N=100).  
 
 
 



Fig. S8. Average difference (absolute value) in growth rate between environments EM and 
EA (in grams of dry cell weight × hr-1) at varying genotype distances (gray line, shading 
represents SEM; N=100). Additional examples are shown, similar to figure 4D (main text), 
using the environments generated by the 16 non-essential mutations with largest 
environmental effect. Average difference in growth across environments always increases 
with mutational distance. Gray shading is SEM (N=100). 
 
 
 
 



 
Fig. S9. Breakdown of the example of long range effects in an adaptive trajectory given in 
Fig. 4.   In the top panel we show the incremental fitness increase of each mutant as 
predicted by competition with it’s immediate ancestor. The dotted red line shows the 
fitness predicted when excreted lactate is removed from the environment.  Whilst lactate 
production only requires a single mutation, this environmental change does not affect the 
fitness of immediate descendants and instead leaves a ‘legacy’ (shaded region) that persists 
and requires multiple interacting mutations to be ‘felt’. In the bottom panel we show the 
FBA predicted output flux of secondary metabolites when glucose is in excess (i.e uptake 
rate = 10 mmol  ×  gr-1  ×  hr-1).  



 
 
Fig. S10. Derivation of Ara-3 strains used in competition experiments. 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table ST1. Ara-3 strains used in competition experiments.  

Clone Phenotype citT Duplication dctA Mutation Ara marker 

ZDB89 Cit++ + + – 

ZDB119 Cit++ + + + 

ZDB757 Cit– – + – 

ZDB904 Cit– – – – 

ZDB912 Cit+ + – – 

ZDB1244 Cit– – + + 

ZDB1245 Cit– – – + 

ZDB1246 Cit+ + – + 

 
 

 
Table ST2. Parameters used in dFBA simulations 

Parameters Default Parameters 
(Fig 1,3 and 4)  

Citrate Simulations (Fig2) 

Default Vmax 

 (mmol  ×  gr. -1  ×  hr-1) 
10 10 

Default uptake Km (uM) 0.01 0.01 

Death rate (%) 0 0.01 

Time Step (hr) 0.1 0.1 

Cycles 100 240 

Space Width (cm) 0.02 0.02 

Simulation layout Single cell  Single cell  
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