

Supplementary Information for

TRPM7 and Ca_v3.2 channels mediate Ca²⁺ influx required for egg activation at fertilization

Miranda L. Bernhardt, Paula Stein, Ingrid Carvacho, Christopher Krapp, Goli Ardestani, Aujan Mehregan, David M. Umbach, Marisa S. Bartolomei, Rafael A. Fissore, and Carmen J. Williams

Carmen J. Williams, Email: <u>williamsc5@niehs.nih.gov</u>

This PDF file includes:

SI Materials and Methods Tables S1 to S18 Fig. S1 Fig. S2

Supplementary Information

SI Materials and Methods

Mice

Trpm^{76?} mice ((1); stock #018784), *Cacna1h*^{-/-} mice ((2); stock #013770), *Gdf9-cre* mice ((3); stock #011062), C57BL/6J females, and B6SJLF1/J males were obtained from The Jackson Laboratory. *Trpm*^{76?} females were crossed to *Gdf9-cre* males to generate oocyte-specific *Trpm*7 conditional knockout (cKO) mice. *Trpm*7^{6?} mice were also crossed to *Cacna1h*^{-/-} mice to generate *Trpm*7^{6?}, *Cacna1h*^{-/-} mice. The resulting female *Trpm*7^{6?}, *Cacna1h*^{-/-} mice were then crossed to *Gdf9-cre* males to generate females null for *Cacna1h* and with an oocyte-specific deletion of *Trpm*7 (dKO). Some *Trpm*7^{6?}, *Cacna1h*^{-/-} and dKO mice had respiratory distress and reduced viability, likely due to defects in tracheal development previously described for *Cacna1h*^{-/-} mice (4). To determine fertility, seven *Trpm*7^{6?}, seven *Trpm*7^{6?}, *Gdf9-cre*, seven *Trpm*7^{6?}, *Cacna1h*^{-/-}, and seven *Trpm*7^{6?}, *Cacna1h*^{-/-} for a period of 6 months. Numbers of litters, time between litters, number and sex of pups were determined. The first litter from each female was used for weight measurements. Pups were weighed weekly starting at one week of age and for 7 more weeks. At 3 weeks of age, pups were weaned and separated by sex. All animal work was performed in accordance with National Institutes of Health and National Institute of Environmental Health Sciences guidelines under approved animal care and use protocols.

Gamete and embryo collection and culture

Six- to ten-week-old female mice were primed by intraperitoneal injection of 5 IU of equine chorionic gonadotropin (eCG) and sacrificed by CO₂ inhalation 44–48 h later for collection of fully-grown, GV-intact oocytes. For MII egg collection, mice were injected with 5 IU human chorionic gonadotropin (hCG) 46–48 h after eCG and sacrificed 13–15 h later. For generation of one-cell embryos, after eCG and hCG administration, females were mated with B6SJLF1/J males and sacrificed 20 h after hCG. Oocytes

and eggs were collected as previously described (5). One-cell embryos were collected in the same way as MII eggs. Oocytes were cultured in Minimal Essential Medium Alpha (Life Technologies) containing 5% fetal calf serum and 10 μ M milrinone, and eggs were cultured in KSOM medium (EMD Millipore, cat# MR-106-D), both in a humidified atmosphere of 5% CO₂ in air at 37°C. One-cell embryos were cultured in KSOM in a humidified atmosphere of 5% CO₂, 5% O₂, 90% N₂ at 37°C.

RNA isolation and real-time RT-PCR

Total RNA was isolated from 20 eggs from individual *Trpm7*^{t/t} and *Trpm7*^{t/t};*Gdf9-cre* females (5 *Trpm7*^{t/t}, 3 *Trpm7*^{t/t};*Gdf9-cre*) using the PicoPureTM RNA Isolation Kit (Thermo Fisher) according to the manufacturer's instructions. Reverse transcription was performed with the SuperScript First-Strand Synthesis System for RT-PCR (Thermo Fisher) using random hexamers. Real-time PCR was done using one egg equivalent per reaction and the *Power* SYBRTM Green PCR Master Mix (Thermo Fisher). β-actin served as an internal control for normalization. Primer sequences were: Trpm7.16F: 5'-AGAGTGACCTGGTAGATGATACT-3'; Trpm7.17F: 5'- AGGATGAAACGATGGCTATGAA-3'; Trpm7.17R: 5'-AGCCGTCCCATCCACATATC-3'; Trpm7.38F: 5'-GCCCTGCCAATCTAGGAGAA-3'; Trpm7.39R: 5'-TGCTTCTGATTCTTTGGTGGA-3'; actin.F: 5'-

CGGTTCCGATGCCCTGAGGCTCTT-3'; actin.R: 5'-CGTCACACTTCATGATGGAATTGA-3'. Products were amplified using Applied Biosystems StepOnePlus Real-Time PCR System (Thermo Fisher). Quantification was done after normalizing to β -actin using the comparative C_T method (6).

Electrophysiology

Whole-cell currents were measured at 22-24°C using an Axoptach200B amplifier digitized at 10 kHz (Digidata 1440A) and filtered at 5 kHz. Electrophysiology recordings were performed on the same day of egg isolation up to 8 hours post-collection. Eggs were maintained in human tubal fluid medium (HTF, EMD Millipore) at 37°C and 5% CO₂. Pipettes of 1-3 M Ω resistance were made from glass capillaries (593600, A-M systems). The intracellular solution contained (in mM): 142 Cs-methanesulfonate, 10

HEPES, 3 NaATP, 0.3 NaGTP, 5 EGTA, 3 CaCl₂ (free 100 nM), pH: 7.3-7.4. Concentration of Ca²⁺ was calculated using WincMax Chelator. The external solution for giga seal formation contained (in mM): 125 NaCl, 6 KCl, 20 CaCl₂, 20 HEPES-NaOH, pH: 7.3-7.4. TRPM7 basal responses to NS8593 were measured in an external solution containing (in mM): 140 NaCl, 10 HEPES, 10 glucose, 4 KCl, 1 MgCl₂, and 2 CaCl₂. All voltages were corrected for calculated junction potentials present between the internal and external solution before seal formation. TRPM7 currents were activated by voltage ramps from 100 mV to -100 mV (600 ms, every 2 s) in the presence or absence of NS8593. The holding potential was zero.

In vitro fertilization and Ca²⁺ *imaging*

In vitro fertilization (IVF) was performed as previously described (7) with the following modifications: Fura-2-loaded, zona pellucida-free eggs were adhered to Cell-Tak-treated glass-bottom dishes in 75 μ l of BSA-free KSOM. Twenty μ l of HTF containing 4 mg/ml BSA (HTF-BSA) was then added, and imaging was started. Three to five minutes later, 5 μ l of sperm were added in HTF containing 4 mg/ml BSA to a final concentration of 10⁵ sperm/ml, and a final concentration of BSA of 1 mg/ml. Both KSOM and HTF contain 0.2 mM MgSO₄. Different parameters, such as duration of the first Ca²⁺ transient, frequency and persistence of oscillations, were calculated as described (7). In some experiments, CaCl₂ to a final concentration of 10 mM was added 90 minutes after sperm addition, followed by MgCl₂ addition (10 mM final concentration) 20 minutes later. To assess the effects of changes in Mg²⁺ concentration on Ca²⁺ oscillations, imaging was started in a 200- μ l drop of BSA-free KSOM/HTF-BSA (3:1). After 35-45 minutes, 20 μ l of 20 mM MgCl₂ were added to reach a final Mg²⁺ concentration of 1.8 mM. After eggs had at least 3 oscillations in this high Mg medium, 1980 μ l of BSA-free KSOM/HTF-BSA (3:1) were added to bring the final concentration of Mg to 0.36 mM, and imaging was performed for another 30-50 minutes. To assess preimplantation development of IVF-generated embryos, zona pellucida-intact eggs were inseminated for 3 h in a 100- μ l drop of BSA-free KSOM/HTF-BSA (3:1) with 5 x 10⁵ sperm/ml in a humidified atmosphere of 5% CO₂, 5% O₂, 90% N₂ at 37°C. Fertilized eggs were washed and cultured to the blastocyst stage in KSOM in a humidified atmosphere of 5% CO₂, 5% O₂, 90% N₂ at 37°C.

Intracytoplasmic sperm injection

Intracytoplasmic sperm injection (ICSI) was performed as described (8) with slight modifications. Briefly, a B6SJLF1/J male mouse was sacrificed, epididymides and a portion of vas deferens were removed, and placed in a Petri dish containing a 900-µl drop of HTF/4 mg/ml BSA covered with mineral oil. After making several cuts in the tissue, the dish was returned to the incubator for 10 min to allow sperm to swim out. The sperm suspension was collected into a 1.5-ml microcentrifuge tube, and centrifuged at 700 x g for 5 min at 4°C. After removing the supernatant, 500 µl ice-cold nuclear isolation medium (NIM; (9)) containing 1% PVA (NIM/PVA) was added, the tube was placed in a sonicator water bath, and sonicated for 15 seconds at 4°C to clip sperm heads from tails. The tube was centrifuged at 700 x g for 5 min at 4°C and further washed twice with 500 µl NIM/PVA. The final pellet was resuspended in NIM/PVA containing 50% glycerol and stored at -20°C until use. On the day of injection, 10 μ l of sperm suspension was washed twice with NIM/PVA to remove the glycerol and resuspended in 25 µl of NIM/PVA. A small group of eggs (pre-loaded with Fura-2 AM) from control and dKO females were subjected to ICSI in parallel, in two different microinjection rigs for about 5 minutes, and then eggs from both groups were placed side by side in a glass-bottom dish containing 3 parts of BSA-free KSOM and 1part of HTF + 4 mg/ml BSA. Imaging was done as previously described for IVF (7) and was started \sim 7-10 minutes after the first egg in each group was injected; therefore, for some eggs the first Ca²⁺ transient was missed.

ER Ca^{2+} stores, store-operated Ca^{2+} entry, and spontaneous Ca^{2+} influx assays

Zona pellucida-intact Fura-2-AM-loaded oocytes or eggs were adhered to glass-bottom dishes in 1.85 ml of Ca²⁺/Mg²⁺/BSA-free CZB. Baseline ratiometric imaging was performed for 3 min, followed by

addition of different reagents diluted in 150 μ l of medium. For assays of ER Ca²⁺ stores, thapsigargin was added to a final concentration of 10 μ M, except for MII eggs from Trpm7^{f/f} and Trpm7^{-/-} females, for which a thapsigargin concentration of 500 nM was used. Thirty minutes later, CaCl₂ was added to a final concentration of 5 mM, and imaging continued for at least 15 minutes. For spontaneous Ca²⁺ influx assays, CaCl₂ to a final concentration of 5 mM was added. In experiments using naltriben or mibefradil, oocytes were adhered to glass-bottom dishes in 1.85 ml of Mg²⁺/BSA-free CZB (containing 2 mM CaCl₂). Naltriben was added at 3 minutes (40 μ M final concentration), and at 33 minutes (80 μ M final concentration). Similarly, mibefradil was added at 3 minutes (10 μ M final concentration), and at 33 minutes (50 μ M final concentration). The area under the curve was measured for 10 minutes after addition of the different reagents, as described previously (7).

DNA methylation analysis

Female mice were sacrificed by CO₂ asphyxiation, then liver samples were excised, snap frozen on dry ice, and stored at -80°C until DNA isolation. DNA methylation was measured at the imprinting control regions (ICR) of multiple imprinted genes using bisulfite pyrosequencing. Bisulfite mutagenesis was performed on 1 µg of isolated genomic DNA from tissues using the Epitect Bisulfite Kit (Qiagen). Bisulfite pyrosequencing was carried out as described previously (10). The primer sequences for *H19* ICR, IG-DMR and *Kcnq1ot1* are in (10) and for *Igf2* DMR1 are in (11). Methylation profiles at repetitive elements throughout the genome were assessed using LUMA (12). This assay utilizes *HpaII* and *MspI* restriction cut sites on 1 µg of genomic DNA followed by polymerase extension on the overhangs using pyrosequencing technology to calculate global methylation levels.

Statistical analysis

Statistical analyses (except for mouse weight determinations, see below) were performed using GraphPad Prism software, version 7.0d. Data were tested for normal distribution using the D'Agostino and Pearson

normality test and were analyzed using Student's t-test, Mann–Whitney test, Fisher's exact test, one-way, two-way, or mixed model ANOVA, Kruskal-Wallis test, chi-square test, and appropriate post-hoc tests for multiple comparisons, as indicated in the figure legends. For all graphs, error bars indicate s.e.m.

Mouse weight data were analyzed with mixed-model ANOVA using SAS software, version 9.3. Because the variance structure differed between the offspring from the *Trpm7* cKO (*Trpm7*⁶⁷; *Gdf9-cre* vs. *Trpm7*⁶⁷) and dKO (*Cacna1h*^{-/-}; *Trpm7*⁶⁷; *Gdf9-cre* vs. *Cacna1h*^{-/-}; *Trpm7*⁶⁷) breeding trials, we fit data from these trials in separate models. The model for the mean weight was the same for both and included terms for genotype (control, knockout), sex (female, male) and week (1 through 8) together with their two- and three-way interactions; it also included a regression adjustment for differing litter sizes. We tested hypotheses about sex- and week-specific genotype comparisons using t-tests. The variance models included random effects for litter and week, and they allowed heterogeneous residual variances across weeks with autoregressive temporal correlations. For both *Trpm7* cKO and dKO trials, the litter variance component differed by genotype (control vs. knockout); for the dKO trial, residual variance components also differed by genotype. For the *Trpm7* cKO trial, residual variance components differed between knockout males and the other three sex-genotype categories. We used the model selection criterion AIC to choose these variance models from several candidates and used chi-squared tests to probe whether separate variance components by genotype (dKO trial) or for *Trpm7* cKO males enhanced fit. A detailed description of the mixed-model analyses of both breeding trials is included below.

Full details of mixed models analyses

Analysis of Trpm7 cKO breeding trial

This section outlines of the results of mixed-model ANOVA fitted to data from the *Trpm7* cKO breeding trial. It has three sections: General, Female, and Male. Data from both sexes were included in this analysis, but most results are reported separately for the two sexes in the appropriate sections.

General

Table S1 illustrates how the variance-covariance matrix of the observations was modeled. The "intercept" parameters estimate a litter-to-litter component of variance; because pups are within litters, it also serves as an estimate of an intra-class "covariance" between data from pups in the same litter (pups from different litters are independent). The "week" parameter is mainly to increase the covariance for measurements from two pups in the same litter in the same week (the idea is that the correlation between pups is likely a bit higher for measurements at the same age than at different ages). The sets of "Var(wk 1) ... Var(wk 8)" parameters estimate a between-pups variance component separately for each week (notice that these generally increase across weeks as expected). The "ARH" parameters model temporal correlations between successive measurements for a pup in one particular way; the correlation decays in a prescribed manner the farther apart the measurements are in time. A number of different models were checked for the variance-covariance structure and this one provided a good balance of parsimony and fit as indicated by model selection indices.

	Table S1: Covariance Parameter Estimates											
Cov Parm	Subject	Group	Estimate	Standard Error	Z Value	Pr Z	Alpha	Lower	Upper			
Intercept	litter	trt Con	0.1212	0.1194	1.01	0.1552	0.05	0.03326	4.3756			
Intercept	litter	trt Exp	0.3771	0.2693	1.40	0.0807	0.05	0.1344	3.2135			
week	litter		0.08992	0.02356	3.82	<.0001	0.05	0.05708	0.1622			
Var(1)	pupid(litter)	MES 0	0.2725	0.05373	5.07	<.0001	0.05	0.1917	0.4182			
Var(2)	pupid(litter)	MES 0	0.6721	0.1394	4.82	<.0001	0.05	0.4649	1.0575			
Var(3)	pupid(litter)	MES 0	1.0293	0.1846	5.58	<.0001	0.05	0.7454	1.5139			
Var(4)	pupid(litter)	MES 0	1.4144	0.2247	6.29	<.0001	0.05	1.0598	1.9833			
Var(5)	pupid(litter)	MES 0	1.4600	0.2130	6.85	<.0001	0.05	1.1183	1.9871			
Var(6)	pupid(litter)	MES 0	1.1701	0.1612	7.26	<.0001	0.05	0.9087	1.5636			
Var(7)	pupid(litter)	MES 0	1.0912	0.1433	7.62	<.0001	0.05	0.8570	1.4370			
Var(8)	pupid(litter)	MES 0	1.0870	0.1493	7.28	<.0001	0.05	0.8449	1.4512			
ARH(1)	pupid(litter)	MES 0	0.7625	0.02789	27.34	<.0001	0.05	0.7078	0.8171			
Var(1)	pupid(litter)	MES 1	0.5872	0.1909	3.08	0.0010	0.05	0.3393	1.2550			
Var(2)	pupid(litter)	MES 1	1.6330	0.5663	2.88	0.0020	0.05	0.9146	3.7098			
Var(3)	pupid(litter)	MES 1	1.9886	0.5893	3.37	0.0004	0.05	1.1987	3.9282			
Var(4)	pupid(litter)	MES 1	2.8173	0.7256	3.88	<.0001	0.05	1.8009	5.0251			
Var(5)	pupid(litter)	MES 1	1.9550	0.4573	4.27	<.0001	0.05	1.2964	3.2840			
Var(6)	pupid(litter)	MES 1	2.0493	0.4511	4.54	<.0001	0.05	1.3890	3.3263			
Var(7)	pupid(litter)	MES 1	2.1403	0.4470	4.79	<.0001	0.05	1.4771	3.3790			
Var(8)	pupid(litter)	MES 1	2.4631	0.5301	4.65	<.0001	0.05	1.6826	3.9499			
ARH(1)	pupid(litter)	MES 1	0.8306	0.03562	23.32	<.0001	0.05	0.7608	0.9005			

This variance structure is different from the one used for the dKO breeding trial. Because TRT is applied to litters as units, TRT was used as the grouping variable when allowing different size litter-to-litter variance components. For the week-specific between-pups variance components, however, different grouping variables were chosen because the preliminary plots of standard errors vs. week showed that the male exp group (MES=1) had a different pattern across weeks than the male con, female exp, or female con groups (MES=0).

Table S2 illustrates a comparison between the covariance model in Table S1 and a related model that does NOT have separate parameters for the two levels of MES (0 and 1). The bottom three rows of the table show that two of the three model-selection criteria prefer the model in Table S1 and the third is virtually a toss-up. One can use the first row of Table S2 to construct a likelihood ratio test of whether including the

separate parameters improves the model. This test is a Chi-squared test with 9 df, p=0.006 – evidence that separate variance components by MES improve the model. (Note: this test does not take account of the separate litter variance components by TRT.) Because in Table S2, each variance component for MES=0 is smaller than the corresponding variance component for MES=1, it is fair to conclude that for the *Trpm7* cKO trial, variability is larger for MES=1 than for MES=0.

Table S2: Fit Statistics									
Index	Separate variance components by MES	Common variance components across MES							
-2 Res Log Likelihood	2080.0	2103.2							
AIC (smaller is better)	2122.0	2127.2							
AICC (smaller is better)	2123.7	2127.5							
BIC (smaller is better)	2135.4	2134.8							

Table S3 is the usual ANOVA table. Effects that do not explicitly include "sex" are averaged across the two sexes. The Table foreshadows that several effects involving TRT are statistically significant (p<0.05). Many of the highly significant effects (p<.0001) are completely expected (trt*week is an exception). Note that the litter-size adjustment is non-significant because litter sizes are nearly the same.

Table S3: Type 3 Tests of Fixed Effects										
Effect	Num DF	Den DF	F Value	Pr > F						
trt	1	11.5	21.49	0.0006						
sex	1	103	335.60	<.0001						
trt*sex	1	103	6.10	0.0151						
c_root_litsiz	1	5.84	0.79	0.4091						
week	7	67.7	2395.55	<.0001						
trt*week	7	67.7	5.54	<.0001						
sex*week	7	211	128.87	<.0001						
trt*sex*week	7	211	2.25	0.0318						

Females

Table S4 shows the data plotted as Least-Squares Means for Females in the *Trpm7* cKO trial (Fig. 3*H*). (Note: the fractional degrees of freedom [DF] may seem odd; they are used to improve p-value estimation when fitting mixed models to unbalanced data – meaning the number of pups differs among litters and between sexes across litters.)

Tab	Table S4: Model-based estimates of Weekly Means by TRT for Females in Trpm7 cKO trial										
trt	sex	week	Estimate	Standard	DF	t Value	Pr> t	Lower	Upper		
				Error							
Con	F	1	4.6112	0.2201	9.78	20.95	<.0001	4.1194	5.1031		
Con	F	2	7.2134	0.2559	16.9	28.19	<.0001	6.6733	7.7535		
Con	F	3	9.9943	0.2839	24.1	35.20	<.0001	9.4084	10.5801		
Con	F	4	14.1239	0.3113	34.4	45.38	<.0001	13.4915	14.7562		
Con	F	5	17.2697	0.3143	37.1	54.94	<.0001	16.6329	17.9065		
Con	F	6	18.0988	0.2941	30.3	61.54	<.0001	17.4984	18.6992		
Con	F	7	18.7705	0.2884	28.6	65.08	<.0001	18.1803	19.3607		
Con	F	8	19.0738	0.2884	28.4	66.13	<.0001	18.4834	19.6642		
Ехр	F	1	4.2734	0.2785	7.96	15.35	<.0001	3.6307	4.9160		
Ехр	F	2	6.2222	0.3019	10.8	20.61	<.0001	5.5565	6.8880		
Ехр	F	3	8.6761	0.3205	13.7	27.07	<.0001	7.9873	9.3649		
Ехр	F	4	12.8166	0.3394	17.2	37.76	<.0001	12.1011	13.5321		
Ехр	F	5	16.1765	0.3411	17.6	47.43	<.0001	15.4588	16.8941		
Ехр	F	6	16.7007	0.3272	15.1	51.03	<.0001	16.0035	17.3980		
Ехр	F	7	17.2083	0.3234	14.4	53.22	<.0001	16.5166	17.9001		
Ехр	F	8	17.9623	0.3233	14.4	55.56	<.0001	17.2707	18.6539		

Table S5 shows estimates and tests for the week-by-week differences in estimated means (based on the fitted model) between Con and Exp for females in the *Trpm7* cKO trial. All these differences are statistically significant except week 1.

Table	Table 5: Estimates of Week-by-Week Con – Exp differences											
Effect	Week	Estimate	Standard Error	DF	t Value	Pr > t						
Con - Exp	1	0.3379	0.3626	14.86	0.93	0.3663						
Con - Exp	2	0.9911	0.4024	21.72	2.46	0.0222						
Con - Exp	3	1.3182	0.4341	28.65	3.04	0.0051						
Con - Exp	4	1.3073	0.4660	37.89	2.81	0.0079						
Con - Exp	5	1.0932	0.4693	39.88	2.33	0.0250						
Con - Exp	6	1.3981	0.4458	33.65	3.14	0.0035						
Con - Exp	7	1.5622	0.4392	32.01	3.56	0.0012						
Con - Exp	8	1.1115	0.4392	31.94	2.53	0.0165						

Table S6 summarizes tests of interest for females in the *Trpm7* cKO trial. The test in the row labeled "Overall" asks whether any of the eight Con – Exp differences across the eight weeks are non-zero. The row labeled "Interaction" asks whether the Con-Exp differences change in magnitude across the eight weeks. (These tests with multiple numerator DF have no corresponding estimates and standard errors.) The test labeled "Main" asks whether, averaged across the eight weeks, the Con – Exp average difference is non-zero. The test in the last row asks whether the average Con – Exp difference over the first three weeks (pre-weaning) is different from the average Con – Exp difference over the last five weeks (post-weaning). All of these tests except the pre-post weaning test were statistically significant.

	Table S6: Tests of interest for Females in <i>Trpm7</i> cKO trial											
Effect	Estimate	Standard Error	Num DF	Den DF	F Value	Pr > F						
Overall	_	_	8	55.76	2.70	0.0140						
Interaction	_	_	7	102.2	2.35	0.0286						
Main	1.1399	0.3609	1	15.27	9.99	0.0064						
Interaction:	-0.4120	0.2498	1	325	2.72	0.1000						
Pre- vs. post-wea	aning											

Males

Table	Table S7: Model-based estimates of Weekly Means by TRT for Males in <i>Trpm7</i> cKO trial										
trt	sex	week	Estimate	Standard	DF	t Value	Pr> t	Lower	Upper		
				Error							
Con	Μ	1	4.8445	0.2161	9.12	22.42	<.0001	4.3566	5.3324		
Con	Μ	2	7.3223	0.2472	15	29.62	<.0001	6.7954	7.8492		
Con	Μ	3	10.5629	0.2720	21	38.83	<.0001	9.9972	11.1285		
Con	Μ	4	17.0486	0.2964	29.5	57.51	<.0001	16.4428	17.6543		
Con	Μ	5	21.7973	0.2992	31.6	72.86	<.0001	21.1876	22.4069		
Con	Μ	6	23.6390	0.2811	25.8	84.09	<.0001	23.0609	24.2170		
Con	Μ	7	25.3871	0.2761	24.4	91.96	<.0001	24.8178	25.9564		
Con	Μ	8	26.5161	0.2761	24.3	96.05	<.0001	25.9466	27.0855		
Ехр	Μ	1	4.2862	0.2979	10.1	14.39	<.0001	3.6236	4.9489		
Ехр	Μ	2	6.3856	0.3534	16.3	18.07	<.0001	5.6374	7.1338		
Ехр	Μ	3	8.8844	0.3705	20.8	23.98	<.0001	8.1135	9.6554		
Ехр	Μ	4	14.5544	0.4067	27.5	35.79	<.0001	13.7206	15.3883		
Ехр	Μ	5	19.5588	0.3693	21.1	52.96	<.0001	18.7910	20.3265		
Ехр	Μ	6	20.8090	0.3732	23	55.76	<.0001	20.0369	21.5811		
Exp	Μ	7	22.7889	0.3771	24.1	60.43	<.0001	22.0107	23.5671		
Ехр	Μ	8	24.0857	0.3912	27.1	61.57	<.0001	23.2831	24.8883		

Table S7 shows the data plotted as Least-Squares Means for Males in the Trpm7 cKO Trial (Fig. 3H).

Table S8 contains estimates and tests for the week-by-week differences in estimated means (based on the fitted model) between Con and Exp for males in the *Trpm7* cKO Trial. All of these differences are statistically significant except week 1.

Table	Table S8: Estimates of Week-by-Week Con – Exp differences											
Effect	Week	Estimate	Standard Error	DF	t Value	Pr > t						
Con - Exp	1	0.5583	0.3756	16.8	1.49	0.1557						
Con - Exp	2	0.9367	0.4376	26.59	2.14	0.0416						
Con - Exp	3	1.6784	0.4654	35.3	3.61	0.0010						
Con - Exp	4	2.4941	0.5085	47.51	4.90	<.0001						
Con - Exp	5	2.2385	0.4808	41.64	4.66	<.0001						
Con - Exp	6	2.8300	0.4729	40.37	5.98	<.0001						
Con - Exp	7	2.5983	0.4731	40.64	5.49	<.0001						
Con - Exp	8	2.4304	0.4845	43.91	5.02	<.0001						

Table S9 summarizes tests of interest for males in the *Trpm7* cKO trial. The test in the row labeled "Overall" asks whether any of the eight Con – Exp differences across the eight weeks are non-zero. The row labeled "Interaction" asks whether the Con-Exp differences change in magnitude across the eight weeks. (These tests with multiple numerator DF have no corresponding estimates and standard errors.) The test labeled "Main" asks whether, averaged across the eight weeks, the Con – Exp average difference is non-zero. The test in the last row asks whether the average Con – Exp difference over the first three weeks (pre-weaning) is different from the average Con – Exp difference over the last five weeks (post-weaning). All these tests were highly statistically significant.

Table S9: Tests of interest for Males in <i>Trpm7</i> cKO trial											
Effect	Estimate	Standard Error	Num DF	Den DF	F Value	Pr > F					
Overall	_	_	8	66.1	6.50	<.0001					
Interaction	_	_	7	109.1	6.00	<.0001					
Main	1.9706	0.3890	1	19.88	25.70	<.0001					
Interaction:	-1.4604	0.2719	1	363	28.84	<.0001					
Pre- vs. post-weaning	S										

Analysis of dKO breeding trial

This document outlines of the results of mixed-model ANOVA fitted to data from the dKO breeding trial. It has three sections: General, Female, and Male. Data from both sexes are included in this analysis, but most results are reported separately for the two sexes in the appropriate sections.

General

Table S10 illustrates how the variance-covariance matrix of the observations was modeled. The "intercept" parameters estimate a litter-to-litter component of variance; because pups are within litters, it also serves as an estimate of an intra-class "covariance" between data from pups in the same litter (pups from different litters are independent). The "week" parameter is mainly to increase the covariance for measurements from two pups in the same litter in the same week (the idea is that the correlation between pups is likely a bit higher for measurements at the same age than at different ages). The sets of "Var(wk 1) ... Var(wk 8)" parameters estimate a between-pups variance component separately for each week (notice that these generally increase across weeks as expected). The "ARH" parameters model temporal correlations between successive measurements for a pup in one particular way; the correlation decays in a prescribed manner the farther apart the measurements are in time. A number of different models were checked for the variance-covariance structure and this one provided a good balance of parsimony and fit as indicated by model selection indices.

Table S10: Covariance Parameter Estimates											
Cov Parm	Subject	Trt	Estimate	Standard Error	Z Value	Pr Z	Alpha	Lower	Upper		
Intercept	litter	Con	0.1574	0.1181	1.33	0.0914	0.05	0.05396	1.5853		
Intercept	litter	Ехр	0.7506	0.5179	1.45	0.0736	0.05	0.2744	5.7494		
week	litter		0.1351	0.03072	4.40	<.0001	0.05	0.09054	0.2233		
Var(wk 1)	pupid(litter)	Con	0.03608	0.008659	4.17	<.0001	0.05	0.02370	0.06154		
Var(wk 2)	pupid(litter)	Con	0.07646	0.01968	3.89	<.0001	0.05	0.04889	0.1363		
Var(wk 3)	pupid(litter)	Con	0.2935	0.07550	3.89	<.0001	0.05	0.1877	0.5231		
Var(wk 4)	pupid(litter)	Con	0.5161	0.1162	4.44	<.0001	0.05	0.3471	0.8482		
Var(wk 5)	pupid(litter)	Con	0.6678	0.1380	4.84	<.0001	0.05	0.4625	1.0488		
Var(wk 6)	pupid(litter)	Con	0.7002	0.1344	5.21	<.0001	0.05	0.4966	1.0613		
Var(wk 7)	pupid(litter)	Con	0.8195	0.1524	5.38	<.0001	0.05	0.5870	1.2247		
Var(wk 8)	pupid(litter)	Con	1.0058	0.2010	5.00	<.0001	0.05	0.7044	1.5535		
ARH(1)	pupid(litter)	Con	0.5626	0.05294	10.63	<.0001	0.05	0.4589	0.6664		
Var(wk 1)	pupid(litter)	Ехр	0.1536	0.05210	2.95	0.0016	0.05	0.08698	0.3415		
Var(wk 2)	pupid(litter)	Ехр	0.4796	0.1706	2.81	0.0025	0.05	0.2652	1.1180		
Var(wk 3)	pupid(litter)	Ехр	1.3384	0.4289	3.12	0.0009	0.05	0.7786	2.8235		
Var(wk 4)	pupid(litter)	Ехр	2.3686	0.7366	3.22	0.0007	0.05	1.3971	4.8686		
Var(wk 5)	pupid(litter)	Ехр	1.2540	0.3227	3.89	<.0001	0.05	0.8018	2.2355		
Var(wk 6)	pupid(litter)	Ехр	1.3098	0.3121	4.20	<.0001	0.05	0.8627	2.2246		
Var(wk 7)	pupid(litter)	Ехр	1.2466	0.2870	4.34	<.0001	0.05	0.8315	2.0749		
Var(wk 8)	pupid(litter)	Ехр	1.4756	0.3469	4.25	<.0001	0.05	0.9768	2.4860		
ARH(1)	pupid(litter)	Ехр	0.7322	0.05499	13.32	<.0001	0.05	0.6245	0.8400		

Table S11 illustrates a comparison between the covariance model in Table 1 and a related model that does NOT have separate parameters for the two levels of Trt (Con and Exp). The bottom three rows of the table show that the three model-selection criteria prefer the model in Table S10. One can use the first row of Table S11 to construct a likelihood ratio test of whether including the separate parameters improves the model. This test is a Chi-squared test with 10 df, p=1.2E-07 – strong evidence that separate variance components by TRT improve the model. Because in Table S11, each variance component for Con is smaller than the corresponding variance component for Exp, it is fair to conclude that for the dKO breeding trial, variability is larger for TRT=Exp than for TRT=Con.

Table S11: Fit Statistics									
Index	Separate variance components by TRT	Common variance components across TRT							
-2 Res Log Likelihood	1205.0	1254.8							
AIC (smaller is better)	1247.0	1276.8							
AICC (smaller is better)	1248.7	1277.3							
BIC (smaller is better)	1260.4	1283.9							

Table S12 is the usual ANOVA table. Effects that do not explicitly include "sex" are averaged across the two sexes. The Table foreshadows that any effects involving TRT are non-significant. The highly significant effects (p<.0001) are completely expected. Notice that the litter-size adjustment is statistically significant for the dKO breeding trial where litter sizes cover a broad range.

Table S12: Type 3 Tests of Fixed Effects											
Effect	Num DF	Den DF	F Value	Pr > F							
trt	1	9.88	0.71	0.4199							
sex	1	36.8	276.69	<.0001							
trt*sex	1	36.8	0.68	0.4156							
c_root_litsiz	1	9	7.94	0.0201							
week	7	81.5	1896.10	<.0001							
trt*week	7	81.6	1.38	0.2239							
sex*week	7	80	85.62	<.0001							
trt*sex*week	7	80	0.85	0.5510							

Females

Table S13 shows the data plotted as Least-Squares Means for Females in the dKO trial (Fig. 5*E*). (Note: the fractional degrees of freedom [DF] may seem odd; they are used to improve p-value estimation when fitting mixed models to unbalanced data – meaning the number of pups differs among litters and between sexes across litters.)

Table S13: Model-based estimates of Weekly Means by TRT for Females in dKO trial									
trt	sex	week	Estimate	Standard	DF	t Value	Pr> t	Lower	Upper
				Error					
Con	F	1	4.5604	0.2119	12.5	21.52	<.0001	4.1006	5.0201
Con	F	2	6.7948	0.2166	13.6	31.37	<.0001	6.3290	7.2605
Con	F	3	9.4172	0.2396	20.1	39.30	<.0001	8.9175	9.9169
Con	F	4	14.1128	0.2607	27.1	54.13	<.0001	13.5780	14.6476
Con	F	5	17.2622	0.2740	31.3	63.01	<.0001	16.7036	17.8207
Con	F	6	17.9078	0.2766	32.9	64.74	<.0001	17.3449	18.4706
Con	F	7	18.6895	0.2864	36.4	65.26	<.0001	18.1088	19.2701
Con	F	8	19.2014	0.3010	40.5	63.79	<.0001	18.5932	19.8096
Ехр	F	1	4.6201	0.4069	8.49	11.35	<.0001	3.6912	5.5490
Ехр	F	2	7.3388	0.4360	10.8	16.83	<.0001	6.3774	8.3002
Ехр	F	3	10.1458	0.5014	17.8	20.23	<.0001	9.0914	11.2001
Ехр	F	4	14.6275	0.5680	24.6	25.75	<.0001	13.4568	15.7982
Ехр	F	5	17.2610	0.4947	17.6	34.89	<.0001	16.2201	18.3018
Ехр	F	6	17.9096	0.4990	18.3	35.89	<.0001	16.8625	18.9567
Ехр	F	7	18.5619	0.4944	17.9	37.55	<.0001	17.5226	19.6012
Ехр	F	8	19.4029	0.5107	19.7	38.00	<.0001	18.3367	20.4691

Table S14 shows estimates and tests for the week-by-week differences in estimated means (based on the fitted model) between Con and Exp for females in the dKO trial. None of these differences are statistically significant.

Table S14: Estimates of Week-by-Week Con – Exp differences										
Effect	Effect Week		Standard Error	DF	t Value	Pr > t				
Con - Exp	1	-0.05976	0.4718	12.27	-0.13	0.9012				
Con - Exp	2	-0.5440	0.4992	14.99	-1.09	0.2930				
Con - Exp	3	-0.7286	0.5671	23.74	-1.28	0.2113				
Con - Exp	4	-0.5147	0.6353	32.59	-0.81	0.4237				
Con - Exp	5	0.001214	0.5772	26.23	0.00	0.9983				
Con - Exp	6	-0.00185	0.5821	27.21	-0.00	0.9975				
Con - Exp	7	0.1276	0.5830	27.56	0.22	0.8284				
Con - Exp	8	-0.2015	0.6039	30.84	-0.33	0.7409				

Table S15 summarizes tests of interest for females in the dKO trial. The test in the row labeled "Overall" asks whether any of the eight Con – Exp differences across the eight weeks are non-zero. The row labeled "Interaction" asks whether the Con-Exp differences change in magnitude across the eight weeks. (These tests with multiple numerator DF have no corresponding estimates and standard errors.) The test labeled "Main" asks whether, averaged across the eight weeks, the Con – Exp average difference is non-zero. The test in the last row asks whether the average Con – Exp difference over the first three weeks (pre-weaning) is different from the average Con – Exp difference over the last five weeks (post-weaning). None of these tests were statistically significant.

Table S15: Tests of interest for Females in dKO trial										
Effect	Estimate	Standard Error	Num DF	Den DF	F Value	Pr > F				
Overall	_	_	8	55.31	0.74	0.6574				
Interaction	_	_	7	124.5	0.82	0.5706				
Main	-0.2402	0.4774	1	12.94	0.25	0.6233				
Interaction:	-0.3263	0.2977	1	209.4	1.21	0.2744				
Pre- vs. post-weaning										

Males

Tab	Table S16: Model-based estimates of Weekly Means by TRT for Males in dKO trial									
trt	sex	week	Estimate	Standard	DF	t Value	Pr> t	Lower	Upper	
				Error						
Con	Μ	1	4.5646	0.2117	12.4	21.56	<.0001	4.1051	5.0241	
Con	Μ	2	6.8689	0.2162	13.5	31.77	<.0001	6.4037	7.3341	
Con	Μ	3	9.4917	0.2386	19.8	39.78	<.0001	8.9937	9.9898	
Con	Μ	4	15.8844	0.2594	26.6	61.24	<.0001	15.3518	16.4170	
Con	Μ	5	20.3665	0.2726	30.7	74.71	<.0001	19.8104	20.9227	
Con	Μ	6	22.2593	0.2753	32.3	80.86	<.0001	21.6988	22.8198	
Con	Μ	7	24.0194	0.2851	35.8	84.26	<.0001	23.4411	24.5977	
Con	М	8	25.2304	0.2997	39.9	84.19	<.0001	24.6247	25.8362	
Ехр	Μ	1	4.6420	0.4056	8.36	11.44	<.0001	3.7136	5.5704	
Ехр	Μ	2	7.5051	0.4325	10.5	17.35	<.0001	6.5474	8.4628	
Ехр	Μ	3	10.3287	0.4933	16.9	20.94	<.0001	9.2874	11.3699	
Ехр	Μ	4	17.2584	0.5559	23.5	31.04	<.0001	16.1097	18.4071	
Ехр	Μ	5	21.2561	0.4872	16.7	43.63	<.0001	20.2270	22.2853	
Ехр	Μ	6	22.5290	0.4911	17.3	45.87	<.0001	21.4942	23.5638	
Ехр	Μ	7	24.0159	0.4868	16.9	49.33	<.0001	22.9882	25.0436	
Ехр	Μ	8	25.2319	0.5019	18.6	50.27	<.0001	24.1796	26.2841	

Table S16 shows the data plotted as Least-Squares Means for Males in the dKO Trial (Fig. 5*E*).

Table S17 contains estimates and tests for the week-by-week differences in estimated means (based on the fitted model) between Con and Exp for males in the dKO trial. Only one (Week 4) of these differences is statistically significant.

Table S17: Estimates of Week-by-Week Con – Exp differences										
Effect Week		Estimate	Standard Error	DF	t Value	Pr > t				
Con - Exp	1	-0.07740	0.4703	12.1	-0.16	0.8720				
Con - Exp	2	-0.6362	0.4956	14.58	-1.28	0.2192				
Con - Exp	3	-0.8369	0.5589	22.72	-1.50	0.1480				
Con - Exp	4	-1.3740	0.6234	31.27	-2.20	0.0350				
Con - Exp	5	-0.8896	0.5693	25.08	-1.56	0.1307				
Con - Exp	6	-0.2697	0.5740	25.96	-0.47	0.6424				
Con - Exp	7	0.003540	0.5751	26.32	0.01	0.9951				
Con - Exp	8	-0.00146	0.5951	29.41	-0.00	0.9981				

Table S18 summarizes tests of interest for males in the dKO trial. The test in the row labeled "Overall" asks whether any of the eight Con – Exp differences across the eight weeks are non-zero. (Note: this result may appear to contradict Table 8 where the week-4 difference was significant; the multiple degree-of-freedom test has some protection against multiple testing issues so there is no real contradiction.) The row labeled "Interaction" asks whether the Con-Exp differences change in magnitude across the eight weeks. (These tests with multiple numerator DF have no corresponding estimates and standard errors.) The test labeled "Main" asks whether, averaged across the eight weeks, the Con – Exp average difference is non-zero. The test in the last row asks whether the average Con – Exp difference over the first three weeks (pre-weaning) is different from the average Con – Exp difference over the last five weeks (post-weaning). None of these tests were statistically significant.

Table S18: Tests of interest for Males in the dKO Trial										
Effect	Den DF	F Value	Pr > F							
Overall	_	_	8	53.26	1.42	0.2080				
Interaction	_	_	7	123.3	1.58	0.1465				
Main	-0.5102	0.4726	1	12.45	1.17	0.3008				
Interaction:	-0.01062	0.2902	1	211.8	0.002	0.9708				
Pre- vs. post-weaning										

References for SI Material and Methods

- 1. Jin J, *et al.* (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. *Science* 322(5902):756-760.
- Chen CC, *et al.* (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. *Science* 302(5649):1416-1418.
- Lan ZJ, Xu X, & Cooney AJ (2004) Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. *Biol Reprod* 71(5):1469-1474.
- 4. Lin SS, *et al.* (2014) Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. *Proc Natl Acad Sci U S A* 111(19):E1990-1998.
- Bernhardt ML, Padilla-Banks E, Stein P, Zhang Y, & Williams CJ (2017) Store-operated Ca(2+) entry is not required for fertilization-induced Ca(2+) signaling in mouse eggs. *Cell Calcium* 65:63-72.
- 6. Livak KJ & Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25(4):402-408.
- Bernhardt ML, *et al.* (2015) CaV3.2 T-type channels mediate Ca(2)(+) entry during oocyte maturation and following fertilization. *J Cell Sci* 128(23):4442-4452.
- 8. Stein P & Schultz RM (2010) ICSI in the mouse. *Methods Enzymol* 476:251-262.
- 9. Kimura Y & Yanagimachi R (1995) Intracytoplasmic sperm injection in the mouse. *Biol Reprod* 52(4):709-720.
- 10. de Waal E, *et al.* (2014) In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies. *Biol Reprod* 90(2):22.
- 11. Susiarjo M, *et al.* (2015) Bisphenol a exposure disrupts metabolic health across multiple generations in the mouse. *Endocrinology* 156(6):2049-2058.
- Pilsner JR, *et al.* (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. *Mol Ecol* 19(2):307-314.

Figure S1. Ratios of Ca²⁺ oscillation frequencies in response to altered Mg²⁺ concentrations. (A) Ratio of oscillation frequency in control and *Trpm7* cKO eggs at 1.8 mM Mg²⁺ relative to 0.2 mM Mg²⁺. (B) Ratio of oscillation frequency in control and *Trpm7* cKO eggs at 0.36 mM Mg²⁺ relative to 1.8 mM Mg²⁺. *p<0.05, Mann-Whitney test.

Figure S2. DNA methylation analysis. DNA methylation at repetitive elements (LUMA) and average DNA methylation at the indicated imprinted loci in liver tissue of offspring derived from (A) Control and *Trpm7* cKO and (B) Ca_v3.2 KO and dKO oocytes. N=4 for each dam genotype (1 female and 1 male per litter from 2 different litters were assayed).