Supporting Information

Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis

Yue Zhang^{a,1}, Wan-Hong Wen^{a,1}, Jin-Yue Pu^a, Man-Cheng Tang^a, Liwen Zhang^b, Chao Peng^c, Yuquan Xu^b and Gong-Li Tang^{a,2}

^aState Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

^bBiotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China

^cNational Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, 201210, China.

¹These authors contributed equally to this work.

²Correspondence: Gong-Li Tang, Email: <u>gltang@sioc.ac.cn</u>.

www.pnas.org/cgi/doi/10.1073/pnas.1800502115

Supplementary Tables

Strain/Plasmid	Characteristics*	Reference		
Strains				
<i>E. coli</i> DH5α	Host for general cloning	Invitrogen		
<i>E. coli</i> Rosetta TM 2 (DE3)	Host for gene expression	Novagen		
<i>E. coli</i> BL21 (DE3)	Host for gene expression	Invitrogen		
S.lividans 1326	Host for protein expression	1		
S. lusitanus NRRL 8034	Wild type, NDM producing strain	NRRL		
S. lusitanus TG3020	$\Delta napU$ gene replacement mutant	This work		
S. lusitanus TG3021	$\Delta napU$ gene complementation mutant with pTG3030	This work		
S. lividansTG3026	NapU protein expression with pTG3034	This work		
Plasmids				
pMD19-T	Ap^{R} , E. coli subcloning vector	Takara		
pLY10	Am^{R} , Heterologous expression vector in	Gift from Dr.		
-	Streptomyces, pHZ1358 derivative with	Wenqing Cher		
	PermE* inserted			
pKC1139	<i>Am^R</i> , <i>E. coli-Streptomyces</i> shuttle vector	1		
	for gene inactivation			
pSET152	<i>Am^R</i> , <i>E. coli-Streptomyces</i> shuttle vector	1		
	for gene complementation			
pET37b	Protein expression in E. coli			
pET28a	Protein expression in E. coli			
pTG3030	pSET152 derivative for gene	This work		
	complementation of <i>napU</i>			
pTG3031	pTG3001 derivative for gene	This work		
	replacement of <i>napU</i>			
pTG3033	pET37b derivative containing napU	This work		
	gene for protein expression in E. coli			
pTG3034	pLY10 derivative containing <i>napU</i> gene	This work		
	for protein expression in S.lividans			
pTG3035	pET37b derivative containing truncated	This work		
	napU gene for expression of signal			
	peptide-removed NapU in E. coli			
pTG3036	pET37b derivative containing mutated	This work		
	napU (C170A) gene for protein			
	expression			
pTG3037	pET37b derivative containing mutated	This work		
	napU (H110A) gene for protein			

Table S1. Strains and plasmids used in this study

	D D	D	
	expression		
	napU (Y489F) gene for protein		
pTG3043	pET37b derivative containing mutated	This work	
	expression		
•	napU (Y486F) gene for protein		
pTG3042	pET37b derivative containing mutated	This work	
	napU (Y441F) gene for protein		
p1G3041	pE13/b derivative containing mutated $V(X441E)$ acress for motion	I his work	
	expression	This are als	
	napU (Y187F) gene for protein		
pTG3040	pET37b derivative containing mutated	This work	
	expression		
	napU (Y184F) gene for protein		
pTG3039	pET37b derivative containing mutated	This work	
	expression		
	napU (C170A/H110A) gene for protein		
pTG3038	pET37b derivative containing mutated	This work	
	expression		

Abbreviations: Ap^{R} , ampicillin resistance; Km^{R} , kanamycin resistance; Am^{R} ,

apramycin resistance. Sp^R , spectinomycin resistance.

1. Kieser, T.; Bibb, M.; Butter, M.; Chater, K. F.; Hopwood, D. A. *Practical Streptomyces Genetics*; The John Innes Foundation, Norwich., 2001.

Primers	Sequence	Enzyme	Application
napU-Red-for	CAGGAGGTCGCCGTCCGTTCCGGCGGTCA		
	CTGCCTCGAGATTCCGGGGGATCCGTCGAC		
	С		Gene
napU-Red-rev	GACGCGCAGGATCGAGTCCCGGTGGACG		replacement
	TAGGCGGTCGCTGTAGGCTGGAGCTGCTT		
	С		
napU-p-for	CATATGTCTGAACTGAACCGCCG	NdeI	Protein
napU-p-rev	AAGCTTGGCGGGCCGGATCGACAGC	HindIII	expression
napU-cut-for	CATATGGCCGGGAAGAACACCGCGAAG	NdeI	
napU-C-for	AAGCTTTCCGCTTGTGAAAGGAGACC	HindIII	Complement-
napU-C-rev	TCTAGAGCTTTCTGTGACGCTTGGAC	XbaI	ation
napU-H110A-for	GTCGCCGTCCGTTCCGGCGGTGCCTGCCT		Site-directed
	CGAGAAC		mutation
napU-H110A-rev	GGCACCGCCGGAACGGACGGCGACCTCC		
	TGGC		
napU-C170A-for	GTGACGATACCCTCGGCGGGCGCCTCGG		Site-directed
	AAGTGGGC		mutation
napU-C170A-rev	GGCGCCCGCCGAGGGTATCGTCACGCCCC		
	AGCC		
napU-Y184F-for	GCGGGCACATACTCGGCGGCGGCTTCAA		Site-directed
	CTTCTACTCC		mutation
napU-Y184F-rev	GAAGCCGCCGCCGAGTATGTGCCCGCCG		
	AGGC		
napU-Y187F-for	CTCGGCGGCGGCTACAACTTCTTCTCCCG		Site-directed
	CATCCACGG		mutation
napU-Y187F-rev	GAAGAAGTTGTAGCCGCCGCCGAGTATG		
	TGCC		
napU-Y442F-for	GGGACTCGATCCTGCGCGTCTTCTTCACG		Site-directed
	CCCGGCGTG		mutation
napU-Y442F-rev	GAAGACGCGCAGGATCGAGTCCCGGTGG		
	ACGTAG		
napU-Y486F-for	GACGCCGCCAACTCGGGGGGCGTTCATCA		Site-directed
	ACTACCCGG		mutation
napU-Y486F-rev	GAACGCCCCCGAGTTGGCGGCGTCGGGC		
	GCC		
napU-Y489F-for	AACTCGGGGGGCGTACATCAACTTCCCGGA		Site-directed
	CGTCGACC		mutation
napU-Y489F-rev	GAAGTTGATGTACGCCCCCGAGTTGGCGG		
	CGTC		

	Table S2.	PCR	primers	used	in	this	study
--	-----------	-----	---------	------	----	------	-------

	O ■	2Q	32	2-0 1	2)
			Η		0 ['] N 17 H ₄	
		$H_3 $ $H_3 $ $H_3 $ $H_3 $ $H_3 $ $H_3 $	NCH ₃	12 13 130 130 H 13c	12 13 130 130 130 130 130	A N
H ₃ CO		H ₃ CO 11 19 94 5	$V_{7}^{4'} \rightarrow {}_{6} = {}_{11'}^{11'} + {}_{3}CO'$	11 10 99 19 7 I	$H_3CO \xrightarrow{11} 10 \xrightarrow{11} 93 \xrightarrow{11} 9$	V ⁴ → 6
	о (ОН ОН	0 (9	Н	O (° OH	0 4	<mark>О</mark>)Н
	NDM (1)	NDM-401 (5)	NDM-387 (6)	NDM-415 (7)
	O)			
	О№	Q L N				
				N		12 m
H₃CO		H ₃ CO	🗩 н₃со́		l₃CO ŢŢŢŢ	
		ö V	Н	Ö (OH	• (о н
	NDM-CN (2)	— cosy → H	МВС	=cosy → HMBC	—cosy →	HMBC
Compound	NDM	1-401 (5)	NDM	-387 (6)	NDM	-415 (7)
No. of C	$\delta_{\rm C}$	δ_{H}	δ_{C}	δ_{H}	$\delta_{\rm C}$	δ_{H}
1	50.50,CH ₂	3.05(ddd,1H),	50.14,CH ₂	3.05(ddd,1H),	51.42,CH ₂	3.01(m,2H),
		2.97(m,1H)		2.96 (m,1H)		
2	61.32,CH ₂	3.69(m,1H),	61.34,CH ₂	3.69 (m,1H),	63.30,CH ₂	3.79 (td,1H),
		3.98(dd,1H)		3.99 (m,1H)		4.09 (dt,1H)
3a	93.99,CH	4.72(s,1H)	93. 67,CH	4.68(s,1H)	94. 64,CH	4.68(s,1H)
4	35.97,CH	2.87(m,1H)	35.65,CH	2.60(m,1H)	35.65,CH	2.98(m,1H)
4'	30.04,CH ₂	1.73(dd,1H),	32.09,CH ₂	1.73(dd,1H),	35.28,CH ₂	1.79(dd,1H),
		2.32(td,1H)		2.16(td,1H)		2.65(td,1H)
4a	60.37,CH	3.12(br,1H)	53.68,CH	3.38(br,1H)	59.41,CH	3.48(m,1H)
5'	39.86,CH ₃	2.39(s,3H)			36.79,CH ₃	2.53(s,3H)
6	60.52,CH	3.22(br,1H)	53.81,CH	3.59(br,1H)	66.75,CH	3.38(d,1H)
7	52.23,CH ₂	2.76(d,1H),	54.15,CH ₂	2.58(m,1H),	174.99,C	
		2.90(m,1H)		2.99(m,1H)		
9	59.02,CH	3.92(br,1H)	58.81,CH	3.91(br,1H)	53.99,CH	5.23(t,1H)
9'	60.87,CH ₂	3.52(d,1H),	60.72,CH ₂	3.53(d,1H),	61.69,CH ₂	3.52(dd,1H),
		3.95(dd,1H)		3.93(dd,1H)		4.53(dd,1H)
9a	142.61,C		142.18,C		142.09,C	
10	182.06,C		181.82,C		182.32,C	
11	156.02,C		155.75,C		157.49,C	
11'	61.21,CH ₃	4.01(s,3H)	69.97,CH ₃	4.01(s,3H)	61.69,CH ₃	4.07(s,3H)
12	128.48,C		128.28,C		129.62,C	
12'	9.07,CH ₃	1.95(s,3H)	8.84,CH ₃	1.96(s,3H)	9.03,CH ₃	1.98(s,3H)
13	187.00,C		186.77,C		187.52,C	
13a	143.85,C		143.66,C		143.12,C	
13b	48.53,CH	3.67(s,1H)	48.14,CH	3.71(s,1H)	47.73,CH	3.94(s,1H)
13c	54.27,CH	2.68(s,1H)	55.41,CH	2.56(s,1H)	54.32,CH	3.67(d,1H)

Table S3. ¹H (500 MHz) and ¹³C (125 MHz) data of compound **5**, **6**, 7^{a}

^{*a*}The NMR analysis of **5** and **6** is performed in CDCl₃; and **7** in CD₃OD.

Supplementary Figures

Figure S1. Identification of the genotype of *napU*-gene replacement mutant.

The genome DNA was extracted from wild type and mutant strains for PCR amplification as template using *napU*-P-for/rev as primers respectively (Table S2). (A) Replacement of *napU* gene by spectinomycin resistance gene (*aadA*) to generate double crossover mutant *S. lusitanus* TG3020 ($\Delta napU$). (B) A signal of 1.62 Kb can be detected with the genome DNA of wild type strain, while gene replacement mutant strain gives 1.82 Kb.

B

S8

С

D

Ε

S11

Figure S3. NMR spectra of compound **6**. (A) ¹H spectrum (B) ¹³C spectrum (C) COSY spectrum (D) HMQC spectrum (E) HMBC spectrum.

B

С

D

Figure S4. Antibacterial activity of NDM (1) and new analogues (5 and 7) using *E. coli* BL21 (DE3) as assay strain cultured in solid medium.

Figure S5. Bioinformatic analysis of NapU.

The arrow indicates the signal peptide cleavage site and the key amino acid residues for enzymatic activity are highlighted. Prediction of signal peptide cleavage site is between position 34 and 35.

Figure S6. UV-Vis absorption spectrum of recombinant NapU from *E. coli*.

Figure S7. N-terminal sequence of NapU.

Purified 3µg of NapU was electrophoresis in 8% SDS-PAGE gels. The protein band was transferred from gels to polyvinylidene fluoride transfer membranes (PVDF, Millipore) in CAPS buffer (10 mM CAPS, 10 % ethanol, pH 11.0) subsequently. Then, the membrane with protein band was dried for sequence analysis after stained by Coomassie blue and washed several times in wash solution (40 % methanol, 1% acetic acid). The samples were sent to and N-terminal sequenced by Protein Sequencing Laboratory, School of Life Sciences, Peking University.

Figure S8. NMR spectra of compound **7**. (A) ¹H spectrum (B) ¹³C spectrum (C) COSY spectrum (D) HMQC spectrum (E) HMBC spectrum. **A**

В

С

S22

D

S23

Е

S24

Figure S9. The kinetic investigations of NapU.

Figure S10. Proposed catalysis model of NapU.

consensus>70

I F T
) F V
) F V
ΣFV
ΞFV
ΔFV
Fv

v..

C170

						O I I O
	120	130	140	150	160	170
NapU	TYSGVKHLID	LSQMQDVYY	DERRGAFAV	GP <mark>GAIV</mark> APTQN	TLFKGWGVTI	PSAGCSEVGLG
GilR	GTPRRDLVLD	LHNLHAIGP	AADGAGVRV	GS <mark>G</mark> ATVDQVQK	ALFRRWNAAL	P L G A <mark>C</mark> S A V G M G
Dbv29	DNPDVKVIID	MSLLTEIAY	DPSMNAFLI	E P <mark>G</mark> N T L S E V Y E	KLYLGWNVTI	PGGVCGG <mark>VG</mark> VG
TamL	ANSDVRVVMD	MSRLSAVGF	DEERGAFAV	EA <mark>G</mark> ATLGAVYK	T <mark>L</mark> FRVWGVTL	P G G A <mark>C</mark> P D <mark>V G</mark> A G
Akn0x	DDPAVRAVID	MSQMRQVFY	DSGKRAFAV	E P <mark>G</mark> A T L G E T Y R	ALYLDWGVTI	PAGVCPQVGVG
CrmK	ASPDVDVIVD	LSSMSHVGY	DEERGAFEV	E A <mark>G A T V</mark> G Q I Y R	VLYKNYGVTF	PGGFCMGVGAG
consensus>70	vv .D	\$s.\$!.y	daf.!	Gat	.L%w.vt.	P.g.C.VG.G

	¥18	84 Y187				
	180	190	200	210	220	230
NapU	GHILGGG	YNFY SR IH G IA	VDHLDAVEV	VVGADGQPRT	IVATRRODDP	NRALWWAHTGGG
GilR	GLVAGGG	YGPL <mark>SR</mark> QL <mark>G</mark> LV	VDHLHAVEV	VVDESRTVRL	7 T <mark>A</mark> RADD TGD	LGELFWAHTGGG
Dbv29	GHICGGG	YGPL <mark>SRQFG</mark> SV	VDYLYAVEV	VVNKQGKARV	IVATRERDDP	HHDLWWAHTGGG
TamL	GHILGGG	Y G P L <mark>S R M H G</mark> S I	VDYLHAVEV	VVDASGDART	IATREPSDP	NHDLWWAHTGGG
AknOx	GHVLGGG	Y G P L <mark>S R R D G</mark> V V	ADHLYAVEV	VVDASGRARK	VATSAADDP	NRELWWAHTGGG
CrmK	GHISGGG	YGPL <mark>SRLLG</mark> LT	VDYLHAVEV	VVDAEGVVST	7 V A T R E E D D P	NRDLWWAHTGGG
consensus>70	Gh! GGG	YgplSR. G.	VD. L. AVEV	VVd a r	vAt dr	dLWWAHTGGG

	240	250	260	270	280	290
NapU GilR Dbv29 TamL AknOx CrmK consensus>70	GGNFGIVTF GGNFGVVTF GGNFGVVTF GGNFGVVVF GGNFGVTF GGNFG!!t.	YWLRTPGV. YEFRSPEH. YWMRVPED. YWFRTAEAD YWFRTPGA. YWFRTPGA. YW.R.P	NSSDPAKLLPF LATEPV.GLPF VGRNPERLLPF VPPEPGRLLPF TGTDPSQLLPF VGDAPEEALPF dPLP	GSNQR.VRNVQØ AAGRLHVQKVVP PPATLLTSTVTP PPAEVLNTTVV APTSTLRHIVTØ PPASFHVARVSØ	SWNDLSPQAF PWAMIDETSF DWAGMIDEAAF IPWEGLDEAAF IDWSALTEAF ISWAELTEAP .Wl.e%	RTLVRNFSR VTVMRRFFE SRLLRNHGE ARLVRNHGR TRIIDNHGA VRLVSNFLD
	300	310	320	330	340	350
NapU GilR Dbv29 TamL AknOx CrmK <i>consensus>70</i>	WYELNSAPG WHERHSEPG WYERNSGPU WFEQNSGPU WHQSNSAAG WQLRNCTVU W.e.ns	AREVQVWAS SPESSLFAT SPYTGLWSQ SPWCDLYSV TPYASMHSV SPNIGLYAL .pl	FSASHQAA FFVNHVSS LMIGNEVPGMC LALTRSQS FYLNSRAA LECFHRSA	. GVIGLMAGVSF . GVLQLMVQQDF ESGFMMPIQVDF . GALAMTTQLDF . GQILLDIQIDC . GHLAMHAQIPV . g\$q	KDVPGGEALLD ADVDPEGEILA ATRPDARRLLD ATGPDAEXRLE GGLDGAEALLN VDVPDAEERMS	ALFEATAAG RFVASLTEG AHIEAVIDG TYLAAVSEG DFVAAVNEG WFLAELNEG
	36	ю з	7 Q	380	390	400
NapU GilR Dbv29 TamL AknOx CrmK consensus>70	AGVSPVADS TGVVGIPR. VPPAEVPE. VGVQPHSD. TGVEPAVQ. VAVAPSLT.	RSELPWLDR GGVMSWLTG PIEQRWLAS TRRLPWLHS RSTEPWLRA RRRLPWLAT	DNWYWG TRYMSQADCGD TPGF TRWPGIA.GD TLANKFD SQLLAIPDVGP	P P G R Q K D K T F . VMGAR SASK S A G G R G P A S K T K A G G D M T G R A K I K A A T G G F D R T K S K G A G A I G V R R K V K S A r . k . K . a	DLKKSYTDE YHRAAPTDE YLRKRLTDR YARRSFDDR YLRKPWTAA DLRGPHTRE	LDTIYAYLT LSVLHRHLH IQAVYENMT IGTLYTRLT AATLYRHLS LAAAYRHLS
				¥442	2	
	410	420	430	440	450	460
NapU GilR Dbv29 TamL AknOx CrmK <i>consensus>70</i>	DDHGD.PGA ADHPG.QAS HMDGI.DYG STDYDNPAG ADSQVWG RADYHCPSA	QVNLAALGG YVMFNSYGG AVWLIGYGG VVALIAYGG EVSLYSYGG AMEYIAYGG .VYGG	RINSVRSDAT EINRRGPSDA KVNTVDPAAT KVNAVPADRT KVNSVPETAT RVNTVDPAAT .!N.VT	YVHRDSILRVYF VPQRDSVVKSSM LPQRDAILKVNY VAQRDSILKIVY TAQRDSIIKVWM VP.RGA <u>SLK</u> TFY Rd.i.k.	TPGVWRAEAQ FS.AWQDAEL IT.GWANPGN VT.TWEDPAQ ISA.TWMDPAH MV.AWTDPDE W.d	DAKYVAWVR DELHLGWLR EAKHLTWVR DPVHVRWIR DDANLAWIR DEEHLRWIR #WIR
			Y486 Y489			
	470	480	490	500	510	520
NapU GilR Dbv29 TamL AknOx CrmK <i>consensus>70</i>	KLYRDVYRN GLYEEFFAC KLYADVYAE ELYRDVYAE EIYREIFAT EIYRDIHSP Y.#vy	TGGVPAPDA TGGVPVTGG TGGVPVPND TGGVPVPDD TGGVPTPDE TGGVP.p.	ANSGAY INYPI RTDGCY INYPI VSDGAY INYPI AADGAYVNYPI RTEGTFINYPI VNTGAY INYPI G.%!NYPI	VDLADPEWNTSI ADLLDPARNRS SDLADPGLNTS VDLADEEWNTS VDLADEEWNTS IDLADPEWNTS IDLADPEWNTS .DL.DNtS	DTPWHGLYYGA SEPWHHLYYKG SVPWHDLYYKG SVPWSELYYKG SVPWYTLYYKG SVPWYTLYYKG SVPWHTIYYG G.PWlyy.	NYARLQRVK NYARLRSAK NHPRLRKVK AYPRLQAVK NYPRLQKVK NYPRLQEIK NYRL.VK

					!	5	3	ò								5	4	ò		
NapU	S	А	Y	D	P	R	D	V	F	H	H	A	L	s	Ι	R	Ρ	A		
GilR	R	А	W	DI	P	L	N	Т	F	Н	H	S	М	S	Ι	G	L			
Dbv29	A	А	Y	DI	P	R	N	Η	F	Η	H	A	L	S	Ι	R	Ρ			
TamL	A	R	W	DI	P	R	N	V	F	R	H	A	L	S	V	R	V	Ρ	Ρ	Α
AknOx	A	R	W	D	P	R	D	V	F	R	H	A	L	S	V	R	Ρ	Ρ	G	
CrmK	S	R	W	DI	P	R	N	V	F	R	H	A	F	S	Ι	R	Ρ	R		
consensus>70				DI	P :	r	#		F		н	a	1	s	!	r				

(A) Modeling analysis of the NapU by Phyre2 showed NapU is close to GilR. (B) Multiple sequence alignment of NapU and other homologous enzymes by Clustal Omega and colored byESPript3.0. H110 and C170 are conserved for FAD covalently binding. Y184 and Y489 are conserved for activating hydroxyl group. Other tyrosine residues are close to these conserved residues in catalyzed cavity of model and may be involved in catalysis. (C) The possible key residues are indicated in the model. H110 and C170 are shown in blue. The mentioned Tyrs are shown in orange. (D-E) Comparison of activities performed by NapU mutants and wild type.