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Supporting Information Text

1. Derivation of the model

In this section, we show how Eqs. (1) and (2) in the main text emerge from two different microscopic models. The first is a
simplified class of consumer-resource models described in the main text. We also describe a second implementation that is a
more direct extension of the traditional Wright-Fisher model. Motivated by results from population genetics, we then describe
a special limit of Eq. (1) that is expected to describe the behavior of a much broader class of models, which differ in some of
their microscopic details. To illustrate this limit, we show how it applies to a class of consumer-resource models analyzed by
Refs. (1, 2).

1.1. Consumer-resource model. Our consumer-resource derivation closely follows the one described by Ref. (3), except that we
now allow strains to vary in their total energy budget. In particular, we assume that all strains µ and resources i are present in
a well-mixed volume V , which is diluted at rate D. In the consumer-resource framework, the per capita growth rate of each
strain is mediated by the resource concentrations,

∂tnµ = gµ(~c)nµ −Dnµ +
√
nµD · ηµ(t) , [S1]

where nµ is the absolute number of individuals of strain µ, gµ(~c) is a strain-specific growth function, and ηµ(t) is a Brownian
noise term (4) whose mean and covariance are given by

〈ηµ(t)〉 = 0 , [S2]
〈ηµ(t)ην(t′)〉 = δµ,νδ(t− t′) . [S3]

The resource concentrations (in units of V −1) obey a second set of equations,

∂tci = Si −Dci −
∑
µ

dµ,i(~c)nµ
V

+
√
ciD

V
· ηi(t) , [S4]

where Si is the input flux of resource i, dµ,i(~c) is the per capita depletion rate of resource i by strain µ, and ηi(t) is an analogous
set of noise terms that describe fluctuations in the resource concentrations. This general class of models has been studied
previously by Refs. (5, 6), and others. Following Ref. (3), we consider a restricted subset of models where the growth and
depletion functions take on a particularly simple form:

gµ(~c) =
∑
i

bµ,idµ,i(~c) , [S5]

dµ,i(~c) = rµ,iλi(~c) . [S6]

The first assumption states that the resources are effectively substitutable, i.e. biomass can be produced equally well from
suitably normalized versions of any imported resource. The constant normalization factor b−1

µ,i can be interpreted as the amount
of imported resource i necessary to create one cell of strain µ. The second assumption states that the resource uptake rates can
be factored into a species-and resource-specific (but concentration independent) factor rµ,i, and a species-independent (but
resource and concentration-specific) function λi(~c). For example, λi(~c) could denote the uptake rate of a pathway that imports
resource i, while rµ,i denotes the constitutive expression of that pathway in an individual of strain µ. In this picture, strains
can differ in their overall expression of a given pathway, but have limited ability to tune its biochemical properties. This should
be a good approximation for strains that have recently descended from a common ancestor, though it may be violated for more
rapidly evolving enzymes in distantly related species.

We assume that the resource fluxes and concentrations are both large, such that the dilution and noise terms can be neglected
in Eq. (S4). Following Ref. (3), we also assume a separation of timescales between the dynamics of resource concentrations, such
that the resource concentrations reach a quasi-equilibrium SiV ≈

∑
µ
dµ,i(~c)nµ before the strain abundances start to change

significantly. Under these assumptions, we can eliminate the concentration variables entirely, and obtain a set of coarse-grained
dynamics for the strain abundances:

∂tnµ =

[
−D +

∑
i

SiV bµ,irµ,i∑
ν
rν,inν

]
nµ +

√
nµD · ηµ(t) . [S7]

In this model, the dynamics of the total number of individuals, N̂(t) =
∑

µ
nµ(t), does not close, due to the µ dependence in

the biomass conversion factor bµ,i:

∂N̂

∂t
= −DN̂ +

∑
i

SiV

[∑
µ
bµ,irµ,inµ∑
ν
rν,inν

]
+
√
N̂D · ηµ(t) . [S8]

However, if we assume that the strains share similar biomass conversion factors bµ,i ≈ bi (similar to our previous assumption
that λ(~c) is independent of µ), then the equation for N̂(t) closes. We find that N̂(t) rapidly approaches a steady-state value
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N ≡
∑

i
SibiV/D on a timescale of order 1/D, with fluctuations of order

√
N . Such fluctuations become irrelevant in the large

N limit, which suggests that we rewrite the dynamics in terms of the strain frequencies, fµ = nµ/
∑

ν
nν and measure time in

units of D−1. Following the derivation in Ref. (7), the dynamics of the frequencies fµ can be shown to satisfy

∂fµ
∂t

=

[
−1 +

∑
i

βiαµ,ie
Xµ∑

ν
αν,ieXν fν

]
fµ

+
∑
ν

[δµ,ν − fµ]
√
fν
N
ην(t) ,

[S9]

where we have defined the normalized parameters

βi = Sibi∑
j
Sjbj

, [S10]

αµ,i = rµ,i∑
j
rµ,j

, [S11]

Xµ = log
∑
i

rµ,i . [S12]

The stochastic noise term ξµ(t) in Eq. (1) in the main text can therefore be identified with the linear combination

ξµ(t) =
∑
ν

[δµ,ν − fµ]
√
fνην(t) , [S13]

whose correlation structure ensures that
∑

µ
fµ(t) = 1 at all times.

1.2. Deterministic Lyapunov function. The deterministic part of Eq. (S9) possesses a Lyapunov function,

Λ(~f) = −
∑
µ

fµ +
∑
i

βi log

(∑
µ

αµ,ie
Xµfµ/βi

)
, [S14]

= −
∑
µ

fµ +
∑
i

βiXi , [S15]

which is convex and bounded from above, and for which

dΛ
dt

=
∑
µ

1
fµ

(
dfµ
dt

)2
≥ 0 . [S16]

Among other things, this implies that the deterministic dynamics have a unique equilibrium that is approached at long times.
We exploit this fact in the simulations in Appendix 5.

1.3. Subdivided environment model. The familiar form of Eq. (S9) suggests that these dynamics can also be obtained from
a generalization of the standard Wright-Fisher model (8), in which the population is periodically subdivided into separate
environments. In this model, the strains in environment i produce a number of gametes proportional to their Wrightian
fitness, Wµ,i. After a period of growth, Nβi gametes are chosen from each environment and mixed together to obtain the next
generation. The expected fraction of individuals in the next generation is

〈fµ(t+ ∆t)〉 =
∑
i

βi

[
Wµ,ifµ∑
ν
Wν,ifν

]
. [S17]

When 〈fµ(t+ ∆t)− fµ(t)〉 is small, this update rule has the same continuum limit as Eq. (S9), with

Xµ = log

(∑
i

Wµ,i

)
, [S18]

αµ,i = Wµ,i∑
j
Wµ,j

. [S19]
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1.4. The near-ESS limit. Building on well-known results from population genetics, we expect that the model in Eq. (1) will
attain its greatest generality in the limit that the intrinsic fitness differences Xµ and the resource-specific mean fitnesses Xi

are both small compared to one (though still nonzero). This ensures a separation of timescales, in which the population- or
ecosystem-level dynamics take place over times that are much longer than a single generation. Previous work has shown that
the population-level dynamics in this case become insensitive to many assumptions about the underlying birth-death process
(8).

The requirement that Xµ is small is familiar from the standard diffusion limit of the Wright-Fisher model (8). From the
definition of the resource-specific mean fitness in Eq. (2), we see that a sufficient condition for Xi to be small is that the
resource strategies αµ,i are close to βi. Since we have previously identified αµ,i = βi as a marginal evolutionarily stable state
(ESS), we have termed this regime the near-ESS limit. Alternatively, it can be viewed as a generalization of the standard
diffusion limit of population genetics.

We can access the near-ESS limit of Eq. (1) in several different ways. We can either work with the full model and take the
near-ESS limit in the end, or else we can work directly with the near-ESS limit of Eq. (1). We have employed for the former
strategy for most of this work. However, in certain cases, it can be more convenient take the near-ESS limit of Eq. (1) as our
microscopic model (just as it is convenient to work directly with the Wright-Fisher diffusion process).

To obtain the near-ESS limit of Eq. (1), we first rewrite the resource uptake strategies in the form
αµ,i = βi (1 + γµ,i) , [S20]

for some rescaled vector γµ,i. The normalization conditions for αµ,i and βi yield a corresponding condition for γµ,i,∑
i

βiγµ,i = 0 . [S21]

If we substitute Eq. (S20) into Eqs. (1) and (2), and expand to lowest order in Xµ, γµ,i, and 1/N , we obtain

∂fµ
∂t

=

[
Xµ −

∑
ν

Xνfν

]
fµ + ξµ√

N

−
∑
i,ν

βiγµ,iγν,ifνfµ

+

(∑
i,ν,σ

βiγν,iγσ,ifνfσ

)
fµ .

[S22]

The first two terms coincide with the diffusion limit of the Wright-Fisher model, as expected, while the ecological interactions
enter at O(γ2) in the third term. These interactions take the form of a symmetric Lotka-Volterra model with a special
interaction matrix formed by the outer product of the resource strategy vectors,

Aµ,ν =
∑
i

βiγµ,iγν,i . [S23]

The rank of this matrix is at most R, regardless of the number of strains. The final term is analogous to the mean fitness term
in the Wright-Fisher model, and ensures that

∑
µ
fµ = 1 at all times. Although this three-body term is formally outside of the

Lotka-Volterra model, it is often small in practice, and can be neglected in many calculations.

1.5. Fitness differences arising from variable death rates. To illustrate the generality of the near-ESS limit, we show how it
can apply to a separate class of consumer-resource models that have been studied in the literature (1, 2), in which the fitness
differences arise from differences in the underlying death rate. In other words, we assume that the dilution rate D in Eq. (S1)
can now vary between strains:

D → D +mµ . [S24]
Although this model is formally different than the one we consider in Eq. (1), it produces the same limiting behavior as
Eq. (S22) when the fitness differences are small on the timescale of a single generation, i.e., when mµ � D. At lowest order,
variation in the death rate will generate effective fitness differences of the form

Xµ → Xµ −
mµ

D
. [S25]

Even when mµ/D is small, we have shown that these fitness differences can produce dramatic effects when integrated over
many generations. Yet at lowest order, the effect of death rate variation is indistinguishable from the variation in growth rate
that we have considered above.

Of course, the limiting behavior in Eq. (S22) will cease to apply if the fitness differences between strains are no longer small.
In this regime, however, the dynamics will often depend on aspects of the birth-death process that are not captured by toy
models like Eq. (S1) [e.g., cell-to-cell variation in growth rate (9), phenotypic delays in mutation penetrance (10), how genetic
drift is implemented, etc.]. These would need to be carefully chosen to match the biological system of interest. To ensure the
greatest generality, we therefore focus on the aspects of the model that can be captured by Eq. (S22). Enumeration of other
universality classes is an interesting topic for future work.
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2. Competition for two resources

In this section, we derive our main results for the two resource case. The major advantage of this limit is that the multidimensional
resource space reduces to the scalar interval (0, 1). Without loss of generality, we will write everything in terms of the first
resource component, defining β = β1 and αµ,1 = αµ, with the remaining components β2 = 1− β and αµ,2 = 1− αµ fixed by
the normalization condition. Following the description in the main text, we will begin by analyzing the competition between
two strains, and then consider the effects of adding a third strain to a pair of previously coexisting strains.

2.1. Competition between two strains. To analyze the competition between two strains, we let α1 and α2 denote the strategy
vectors of the two strains, and let ∆X = X2 −X1 denote the fitness difference between them. We arbitrarily designate strain 1
as the “wildtype” and consider the frequency of the “mutant strain”, f ≡ f2. With these definitions, the stochastic term in
Eq. (S13) can be written as

ξ2(t) =

√
(1− f)2f

N
η2(t)−

√
f2(1− f)

N
η1(t) ,

=

√
f(1− f)

N
η(t) , [S26]

where η(t) is a third Brownian noise term with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′). Eq. (1) can then be rewritten in the
familiar population genetic form (8),

∂f

∂t
= se(f)f(1− f) +

√
f(1− f)

N
η(t) , [S27]

where the effective frequency-dependent selection coefficient, se(f), is obtained from the deterministic portion of Eq. (1),

se(f) ≡ 1
f(1− f)

(
∂f2

∂t

)
deterministic

,

=
β
[
α2e

∆x − α1
]

α1 + [α2e∆x − α1] f

+
(1− β)

[
(1− α2)e∆X − (1− α1)

]
1− α1 + [(1− α2)e∆X − (1− α1)] f .

[S28]

Our main results can be derived from limiting versions of this basic model.

Invasion of a new strain. The invasion of a new strain corresponds to the f → 0 limit, in which Eq. (S27) reduces to the linearized
form,

∂f

∂t
= Sinvf +

√
f

N
η(t) , [S29]

with an invasion fitness Sinv defined by

Sinv ≡ lim
f→0

se(f) ,

=
(
e∆X − 1

)
+ e∆X

[
(β − α1)(α2 − α1)

α1(1− α1)

]
. [S30]

Eq. (S29) can be solved using standard methods (11). We will simply quote the relevant results here, while a more pedagogical
exposition can be found in Chapter 1 of Ref. (12).

For initial frequencies small compared to the 1/NSinv, the genetic drift term dominates, and there is a high probability that
the mutant will drift to extinction. However, with probability pest = 2NSinvf(0), the mutant will drift to frequency ∼1/NSinv,
after which point the selection term dominates over genetic drift. This “established” lineage will then grow deterministically as
f(t) = 1

2NSinv
eSinvt, which can be matched onto the full nonlinear (but deterministic) solution as f increases further. The full

solution is somewhat unwieldy, but the first-order nature of the ODE shows that f(t) cannot decrease as t→∞. Thus, once
the mutant establishes, the deterministic dynamics will never drive the mutant close enough to the drift barrier that extinction
becomes likely again. This suggests that the branching process description will be valid as long as f(t) remains sufficiently
small during the duration of the establishment process that f(t)� 1 and se(f) ≈ Sinv. This will be true provided that these
conditions are satisfied at the drift barrier, 1/NSinv, which leads to the conditions

NSinv � 1 , [S31]
NSinvα1

α2e∆X − α1
� 1 , [S32]

NSinv(1− α1)
(1− α2)e∆X − (1− α1) � 1 . [S33]

These conditions can be satisfied simultaneously for sufficiently large N .
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Stable coexistence. If Sinv > 0 and the mutant is lucky enough to establish, then the frequency-dependent selection term will
either drive the mutant to fixation (f = 1) or else stabilize at some intermediate frequency f∗. As described in the main text,
stable coexistence requires that the reciprocal invasion fitness,

SRinv ≡ lim
f→1
−se(f) ,

=
(
e−∆X − 1

)
+ e−∆X

[
(β − α2)(α1 − α2)

α2(1− α2)

]
, [S34]

is also positive. Solving this equation when SRinv = 0 yields the critical fitness threshold

∆Xmax = log
(

1 + (α1 − α2)(β − α2)
α2(1− α2)

)
, [S35]

which reduces to Eq. (9) in the main text in the near-ESS limit. We might naively assume that this threshold would be equivalent
to the fitness that gives strain 2 a higher uptake rate on both individual resources, i.e. α2e

∆X ≥ α1 and (1− α2)e∆X ≥ 1− α1.
Although this is indeed a sufficient condition for strain 2 to fix, the true thresholds in Eqs. (8) and (9) are much weaker
conditions, which depend on the environmental supply vector β. This means that in practice, stable coexistence will be
disrupted long before one of the strains is uniformly better than the other.

When the conditions for stable coexistence are met, the equilibrium frequency f∗ is obtained from the condition that
se(f∗) = 0. From Eq. (S28), we see that this can only happen if α2e

∆X − α1 and (1− α2)e∆X − (1− α1) have different signs,
i.e. neither strain is uniformly better than the other. Solving for f∗, we find that

f∗ =
f∗0 +

[
f∗0 + α1(1−α1)

∆α2

] (
e∆X − 1

)[
1 + α2

∆α (e∆X − 1)
] [

1− (1−α2)
∆α (e∆X − 1)

] , [S36]

where f∗0 = (β − α1)/∆α is the equilibrium frequency in the absence of any fitness differences. This reduces to Eq. (10) in the
main text in the limit that ∆X → 0 and ∆α→ 0.

When f = f∗, the resource-specific mean fitnesses Xi take on the values

X1 = − log
[
1−

(
1− e−∆X)(1− α2

∆α

)]
,

X2 = − log
[
1 +

(
1− e−∆X)( α2

∆α

)]
,

[S37]

which are independent of the resource supply vector β. This extends the “environmental shielding” behavior derived in the
neutral limit by Ref. (3): when two strains coexist on two substitutable resources, the strain frequencies evolve so that the
remaining selection pressures take on values that are independent of the environment, and depend only on the identities of the
coexisting strains. We will revisit this behavior again in the multi-resource case below.

In the limit that fitness differences are small [specifically, when ∆X is small compared to 1, α2/∆α, and (1 − α2)/∆α],
Eq. (S37) reduces to the linearized version,

X1 = (1− α2)
∆α ∆X , X2 = − α2

∆α∆X , [S38]

while Eq. (S36) reduces to the linear relation quoted in Eq. (10) in the main text. This defines a second fitness scale,

Xf ≡ f∗(1− f∗)
(
∂f∗

∂∆X

)−1

,

= (β − α1)(α2 − β)
β(1− β) + (β − α1)(α2 − β) , [S39]

over which f∗(∆X) changes significantly. Note that Xf has approximately the same scaling behavior for small and large β − α
as the critical threshold ∆Xmax in Eq. (9).

For frequencies close to f∗, the selection term again grows small compared to the genetic drift term. Linearizing Eq. (S27)
around f ≈ f∗, the fluctuations δf = f − f∗ are described by

∂δf

∂t
= −Xeqf

∗(1− f∗)δf +

√
f∗(1− f∗)

N
η(t) , [S40]

where we have defined the equilibrium restoring fitness

Xeq ≡ −
∂se(f)
∂f

∣∣∣∣
f=f∗

= 1
β(1− β)

(
(α2e

∆X − α1)[(1− α2)e∆X − (1− α1)]
α1[(1− α2)e∆X − (1− α1)]− (1− α1)[α2e∆X − α1]

)2

. [S41]
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In the limit that ∆X � 1, this becomes

Xeq = ∆α2

β(1− β)

[
1 + 2α2 − 1

∆α ∆X
]
. [S42]

This model can again be solved using standard methods (13). The stationary distribution of δf tends toward a normal
distribution with mean zero and standard deviation σf = 1/

√
2NXeq, which decays on a timescale ∼1/Xeqf

∗(1− f∗). The
quasi-deterministic model is therefore self-consistent provided that

σf
f∗(1− f∗) =

√
∆α2

2N(β − α1)2(α2 − β)2 � 1 , [S43]

which can be satisfied for sufficiently large N .
The fluctuations in f lead to similar fluctuations in the resource-specific mean fitnesses, Xi, whose first order contribution is

given by

δX1 = ∆α
β

[
1 + α2

∆α (e∆X − 1)
]
e−X1δf ,

δX2 = − ∆α
1− β

[
1− (1− α2)

∆α
(
e∆X − 1

)]
e−X2δf .

[S44]

Benjamin H Good, Stephen Martis, Oskar Hallatschek 7 of 27



2.2. Competition between three strains. Having characterized the dynamics for a pair of strains, we next consider a scenario in
which a third strain is introduced into a stable ecosystem where a pair of strains already coexist. Without loss of generality, we
will assume that the third strain is a mutant version of the second strain, with fitness X3 = ∆X + s and strategy vector α3.
From the definition of the model in Eq. (1), this mutant strain will have an invasion fitness

Sinv = α3

(
e∆X+s−X1 − 1

)
+ (1− α3)

(
e∆X+s−X2

)
[S45]

where the resource-specific mean fitnesses X1(t) and X2(t) are dictated by the two strain process in Eq. (S27). If the mutant
was actually identical to its parent strain (i.e., if α3 = α2 and s = 0), it should never be favored to invade, since it can at best
compete neutrally with its parent. This implies that

α2

(
e∆X−X1 − 1

)
+ (1− α2)

(
e∆X−X2 − 1

)
= 0 , [S46]

when averaged over the timescales required for the mutation to invade. Multiplying this expression by es and subtracting it
from Eq. (S45), we can then rewrite the general invasion fitness in the form

Sinv = (es − 1) + (α3 − α2)
(
e−X1(t) − e−X2(t)

)
e∆X+s , [S47]

We consider the implications of this expression in various special cases below.

No fitness differences. In a completely neutral scenario (∆X = s = 0), the resource-specific mean fitnesses are solely determined
by the fluctuations δX1 and δX2 from Eq. (S44), and Eq. (S47) reduces to

Sinv = (α3 − α2)
[
δX2 − δX1

]
= (α2 − α3)(α2 − α1)

β(1− β) δf(t) . [S48]

Since 〈δf(t)〉 = 0, this agrees with the deterministic results of Ref. (3), who found that all further invasion fitnesses vanish in a
neutral population when the ecosystem is fully expoited. However, our stochastic analysis shows that fluctuations can induce
momentary selection pressures of order

δSinv ∼
(α2 − α3)(α2 − α1)

β(1− β)
1√
NXeq

, [S49]

which can be large compared to 1/N . However, these momentary selection pressures average out to zero over a timescale
1/Xeqf

∗(1− f∗). When N is large, this is much shorter than the timescale ∼1/δSinv required for the mutant lineage to escape
the drift barrier. This shows that internal fluctuations cannot induce anomalous establishment events in our model. To leading
order in N , ecological selection pressures vanish in a neutral population when two strains coexist on two substitutable resources.

Pure fitness mutations. In the case where the mutant lineage is created by a pure fitness mutation, α3 = α2, and the invasion
fitness reduces to

Sinv = es − 1 ≈ s , [S50]

which is identical to the standard Wright-Fisher model. This justifies our interpretation of Xµ as a fitness parameter. Eq. (S50)
is a slightly stronger result, since it implies that pure fitness mutations continue to establish at the same rate, regardless of the
structure of the ecosystem. When such a mutation establishes, it is guaranteed to displace its parent strain, resulting in a
two-strain competition between strain 3 and strain 1, which now differ in fitness by an amount ∆X + s. If ∆X + s ≥ ∆Xmax
from Eq. (9), then stable coexistence will be disrupted, and strain 3 will take over the entire population. On the other hand, if
∆X + s < ∆Xmax, the mutant will only displace its parent strain, and will be prevented from sweeping through the entire
population. Instead, the successful mutation will shift the equilibrium frequency by an amount

∆f = f∗(∆X + s)− f∗(∆X) ,

≈ β(1− β) + (β − α1)(β − α2)
∆α2 · s , [S51]

where we have employed the linearized approximation for f∗ from Eq. (10) in the main text.

Pure strategy mutations. If the mutant lineage is created by a pure strategy mutation (s = 0), then the invasion fitness reduces to

Sinv = α3 − α2

α1 − α2

(
e∆X − 1

)
, [S52]

where we have retained only the leading order contribution as N →∞. The ∆X � 1 limit is listed in Eq. (15) in the main
text. The interpretation of this expression, and the various scenarios that can arise after establishment, are described in the
main text as well.
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2.3. Evolution of a single-locus ecology. The results above allow us to analyze the effects of further evolution in our consumer
resource model. As a first pass, we focus on a simplified scenario, in which strategy mutations switch between two fixed strategy
vectors, α1 and α2, and occur at rate Uα. We assume that α1 and α2 span β, so that the strains can stably coexist. We also
assume that α1 and α2 are sufficiently close to β that we can invoke the near-ESS limits of various expressions above. We note
that while this assumption is also employed in the adaptive dynamics literature (14, 15), our model also differs from these
results in a key way, as it includes α that go beyond the infinitesimal evolution assumption in adaptive dynamics.

Our model also differs from the canonical adaptive dynamics scenario in that it includes pure fitness mutations, which
occur at rate UXρX(s). We assume that the tails of ρX(s) are sufficiently light that the distribution can be approximated by a
characteristic beneficial fitness effect (16), which we will also denote by the generic variable s below. Our analysis here will
focus on the strong-selection weak mutation (SSWM) regime that arises in the limit that N →∞ and Uα + UX → 0. The first
assumption guarantees that genetic drift is only relevant when mutations are sufficiently rare, so that the establishment process
can be modeled by the branching process techniques above. The second assumption guarantees that all mutations establish or
go extinct before the next mutation occurs, so that they can be described by the two- and three-strain competition processes
above. Violations of this assumption are considered in more detail in a following section.

No strategy mutations. We first consider the dynamics under pure fitness mutations when Uα/UX = 0. We assume that the
population has just diversified into a pair of coexisting strains with fitness difference ∆X = 0, and equilibrium frequency f∗0 .
Pure fitness mutations will occur in each clade at rate NUXf∗ and NUX(1− f∗), respectively. According to Eq. (S50), these
establish with probability pest = 2s, sweep through their parent clade, and result in a new fitness differential,

∆X =
{

+s with probability f∗,
−s with probability 1− f∗,

[S53]

which depends on the genetic background in which the mutation arose. This fitness differential will lead to a shift in the
equilibrium frequency ∆f = ±s/sc described by Eq. (11) in the main text. If ∆f < −f∗ or ∆f > 1− f∗, then by definition
stable coexistence will be disrupted, since the new frequency would fall outside the interval from 0 to 1. [One can also see this
directly from the fitness bounds ∆Xmin and ∆Xmax in Eqs. (8) and (9) in the main text.] Since the mutant has already swept
through its parent clade, a disruption of coexistence implies that it will take over the entire population. In the near-ESS limit,
we can combine these two conditions to obtain a convenient asymptotic condition for s:

s� scf
∗
0 (1− f∗0 ) ≡ (α1 − β)(β − α2)

β(1− β) . [S54]

In this regime, the lifetime of coexistence is of order τcollapse ∼ 1/NUXs (the time that it takes for one fitness mutation to
occur).

In the opposite regime, when s � scf
∗
0 (1 − f∗0 ), individual fitness mutations lead to small shifts in f∗, and many such

mutations must accumulate before stable coexistence is disrupted. In this case, we can model the changing equilibrium
frequency using an effective diffusion process. In an interval of time δt, the fitness differential changes by δ∆X = s(k2 − k1),
where k2 and k1 denote the number of fitness mutations that accumulate in the f∗ and 1− f∗ backgrounds, respectively. In
the weak mutation limit, these occur as a Poisson process with rates 2NUXsf∗δt and 2NUXs(1− f∗)δt, respectively, so that

〈k2 − k1〉 = 2NUXs(2f∗ − 1)δt , [S55]
Var(k2 − k1) = 2NUXsδt . [S56]

The fitness difference ∆X can therefore be described by an effective diffusion process,

∂∆X
∂t

= 2NUXs2[2f∗(∆X)− 1] +
√

2NUXs3η(t) , [S57]

where the equilibrium frequency f∗ itself depends on ∆X through Eq. (10) in the main text. Changing variables from ∆X to
f∗, we obtain Eq. (12) in the main text. For our detailed calculations, it will be somewhat more convenient to work with the
rescaled variables Y = 2f∗ − 1 and k = 2NUXst, which yields a related equation

∂Y

∂k
= 2s
sc
Y +

√
4s2

s2
c
· η(τ) . [S58]

This is similar to the equation for the drift-induced fluctuations in Eq. (S40), except that the bias is now a destabilizing force,
rather than a stabilizing one. This reflects the fact that larger clades are more likely to acquire beneficial mutations in the
weak mutation limit, which leads to further increases in frequency. We can quantify the strength of this snowballing effect by
analyzing the ultimate fixation probability of strain 1 (i.e., the probability that Y → 1) as a function of the current value of
Y = 2f∗ − 1. Eq. (S58) implies a corresponding backward equation for the fixation probability

2s
sc
Y
∂Pfix

∂Y
+ 2s2

s2
c

∂Pfix

∂Y
= 0 , [S59]
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whose solution is given by

Pfix(f∗) ≈ 1√
2π

∫ 2f∗−1√
s/sc

−∞
e−

u2
2 du . [S60]

This function undergoes a sharp transition near 2f∗ − 1 ∼
√
s/sc. When |2f∗ − 1| �

√
s/sc, fixation and extinction of the

clade are equally likely, while for 2f∗ − 1�
√
s/sc, fixation is virtually guaranteed. This transition has a simple interpretation

in terms of the relative strengths of the bias and noise terms in Eq. (12):
√
s/sc represents a critical frequency difference above

which the bias dominates over the noise term. Since
√
s/sc is itself a small parameter in the s� sc regime, this implies that

the random portion of the clade competition process is confined to frequencies near 50%. Reversals from frequencies near
f∗ ≈ 0 or f∗ ≈ 1 are asymptotically unlikely.

To investigate the dynamics of this process, we analyze the mean squared frequency difference 〈Y 2〉. Using Eq. (S58), we
can derive a closed moment equation for 〈Y 2〉

∂〈Y 2〉
∂k

= 4s
sc
〈Y 2〉+ 4s2

s2
c
, [S61]

whose solution is given by

〈Y (k)2〉 = Y (0)2e
4sk
sc + s

sc

(
e

4sk
sc − 1

)
. [S62]

Solving for k and converting back to units of time, we find that

t = sc
8NUXs2 log

(
〈Y (t)2〉+ s/sc
Y (0)2 + s/sc

)
. [S63]

The behavior of this function has a simple heuristic interpretation based on the fundamental timescales of Eq. (12). These
heuristics follow from standard arguments (17–19), so we will simply quote the relevant results here, while referring the
interested reader to Chapter 1 of Ref. (12) for a more detailed exposition.

Starting from |2f∗0 − 1| �
√
s/sc, the clade frequencies will wander diffusively for a time τdrift ∼ sc

NUXs
2 until the frequency

difference reaches
√
s/sc, after which point the major clade deterministically acquires mutations for τcollapse ∼ sc

NUXs
2 log(sc/s)

more generations until it reaches fixation. On the other hand, if the clades start with a frequency difference |2f0 − 1| �
√
s/sc,

then the major clade will deterministically fix within ∼ sc
NUXs

2 log
(

1
|2f∗−1|

)
generations

Including strategy mutations. We can use the results above to analyze the case where Uα/UX > 0. For very low values of Uα/UX ,
strategy mutations will rarely occur before the ecosystem collapses according to the process described above. In this case, the
main effect of strategy mutations is to re-diversify a population that consists of a single ecotype. The invasion fitness of such a
mutation is therefore given by Eq. (5) in the main text, and will vary depending on which ecotype dominates the population.

We can therefore distinguish between two regimes. If |2f∗0 − 1| �
√
s/sc, then both ecotypes are equally likely to fix, and

the average invasion fitness is

X inv = (β − α1)(α2 − α1)
β(1− β) + (β − α2)(α1 − α2)

β(1− β) = sc , [S64]

This leads to a diversification timescale τdiversify ∼ 1/NUαsc, and the diversification-selection balance in Eq. (13) in the main
text. On the other hand, if |2f∗0 − 1| �

√
s/sc then the clade with the larger initial frequency will typically be the one that

fixes. Without loss of generality, we will relabel the strains so that f∗ always represents this clade. In this scenario, the average
invasion fitness is instead given by X inv ∼ sc(1− f∗0 ), which is strictly smaller than sc. In this case, the diversification-selection
balance is given by

Pr[S = 2]
Pr[S = 1] ≈

τcollapse

τdiversify
∼ Uα
UX

(
sc
s

)2
(1− f∗0 ) log

(
1

2f∗0 − 1

)
. [S65]

For still larger values of Uα/UX , strategy mutations will start to occur before one of the clades has fixed in the population.
If the mutation occurs in the fitter clade, it will have an invasion fitness Sinv = |∆X|, and will reset the fitness difference to
zero if it establishes. On the other hand, if the mutation occurs in the less fit clade, it will have a negative invasion fitness and
will not be able to establish. Thus, the net effect of these strategy mutations is to set ∆X = 0 at a time-dependent rate

λ0(t) = 2NUαf∗∆Xθ(∆X)− 2NUα(1− f∗)∆Xθ(−∆X) , [S66]
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where θ(z) is the Heaviside step function, and f∗(t) and ∆X(t) are determined by the effective diffusion process in Eq. (12)
in the main text. The first successful strategy mutation will occur on a characteristic invasion timescale determined by the
implicit relation ∫ τinvade

0
λ(t)dt ∼ 1 . [S67]

Since the fitter strain will typically be the most abundant as well, Eq. (S66) will only differ by a factor of two from the much
simpler expression

λ0(t) ∼ NUα|∆X| . [S68]

Since Eq. (S67) is only accurate up to an order one factor, we will use this simpler approximation for λ0(t) instead.
Based on these definitions, we can obtain a self-consistent solution to Eq. (S67) in various regimes. If Uα � UX , then

strategy mutations will arise much faster than individual mutations. In this case, a lucky fitness mutation will establish in one
of the clades after a time of order 1/NUXs, so that∫ t

0
λ0(t′)dt′ ∼ NUαs

(
t− 1

NUXs

)
. [S69]

This yields an invasion timescale

τinvade ∼
1

NUαs
+ 1
NUXs

∼ 1
NUXs

, [S70]

which is self-consistent provided that Uα � UX .
If τinvade � 1/NUXs, then multiple fitness mutations will accumulate before the first successful strategy mutation arises. If

τinvade � τdrift then the fitness differential ∆X wanders diffusively as |∆X| ∼
√
NUXs3t, and∫ t

0
λ(t′)dt′ ∼ NUα

√
NUX(st)3/2 . [S71]

This leads to an invasion timescale of order

τinvade ∼
1

NUXs

(
UX
Uα

)2/3
, [S72]

which is self consistent provided that Uα � UX � Uα (sc/s)3/2.
If τinvade � τdrift, or if the initial frequency differential already exceeds the critical value

√
s/sc, then the successful strategy

mutation will occur when ∆X is growing deterministically as

∆X ∼ sc
√

(2f∗0 − 1)2 + s

sc
· e

4NUXs
2t

sc , [S73]

so that ∫ t

0
λ0(t′)dt′ ∼ Uαs

2
c

UXs2

√
(2f∗0 − 1)2 + s

sc
· e

4NUXs
2t

sc . [S74]

If τinvade � τcollapse, this leads to an invasion timescale,

τinvade ∼
sc

8NUXs2 log
(
U2
X

U2
α

s4

s4
c

1
(2f∗0 − 1)2 + s

sc

)
, [S75]

which will be self-consistent provided that Uα
(
sc
s

)3/2 � UX � Uα
(
sc
s

)2. Finally, for UX � Uα
(
sc
s

)2, strategy mutants
are sufficiently rare that the ecosystem will typically collapse and re-diversify before invasion can occur. In this case, τinvade
formally diverges. The various regimes for τinvade are summarized in Eq. (14) in the main text.
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The effects of clonal interference. In our analysis above, we have focused on the weak mutation limit, in which only two or three
strains exist within the population at any one time. While this enabled many analytical simplifications, it is also known that
many microbial populations lie outside this regime. This is particularly true for many microbial evolution experiments in which
stable coexistence has been observed to evolve spontaneously. While a thorough analysis of this regime is beyond the scope of
the present work, we will summarize the key differences that are likely to arise in the effective diffusion process in Eq. (12) in
the main text.

Outside of the weak-mutation limit, many established beneficial mutations will be driven to extinction due to clonal
interference with other beneficial mutations that happen to segregate at the same time (20). In the limit that clonal interference
is strong (NUX � 1), this has two main consequences. First, the rate of adaptive substitution scales much more weakly
with N than the linear expectation NUXs from the SSWM limit. In the case of coexisting strains, this will also apply to
the subpopulations Nf∗ and N(1 − f∗) that correspond to the two clades. As a result, the bias term in Eq. (12) will be
significantly reduced (and essentially vanishes in the limit of strong clonal interference). Second, clonal interference causes
the rate of adaptation to become more deterministic in addition to reducing it, since it is no longer limited by the supply
of beneficial mutations. The dynamics of these fluctuations are poorly understood in the general case, though Ref. (21) has
shown that they lead to a long-term diffusion constant,

DX =

[
s

log
(
s
UX

)]3

. [S76]

for the total fitness gain in a model similar to ours. Thus, as long as Nf∗(1 − f∗) remains sufficiently large that clonal
interference within each clade remains strong, we expect the effective diffusion model in Eq. (12) to be better approximated by
the limiting form

sc
∂f

∂t
∼
√
DX · η(t) . [S77]

Due to the weaker bias term, we expect that the relative frequencies of the clades can undergo dramatic reversals before one
or the other accumulates a fitness advantage that is large enough it to fix. Interestingly, such reversals have been observed
in a long-term experiment in E. coli (22). However, a more thorough analysis of this clonal interference regime remains an
interesting avenue for future work.
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3. Competition for many resources

In this section, we show how many of the results derived in the two-resource case can be extended to systems with larger
numbers of resources. Most of these results will apply for arbitrary values of R, but we are particularly interested in the
qualitative differences that arise in the many resource limit where R� 1.

3.1. Invasion of a mutant strain. We begin by considering a mutation that occurs in an ecosystem with an arbitrary number of
coexisting strains, with equilibrium resource-specific mean fitnesses, Xi. Without loss of generality, we will assume that the
mutation occurs in the µ = 1 strain, and leads to a new phenotype (Xµ + s, ~αµ + ∆~α), where the strategy perturbation must
satisfy the normalization constraint

∑
i
∆αi = 0. The invasion fitness for the resident strain µ must be zero, since it is by

definition present at the ecological equilibrium. Using this fact, along with the normalization condition on ∆~α, one can show
that the general invasion fitness for the mutant is given by

Sinv ≡
∑
i

(αµ,i + ∆αi)
[
eXµ+s−Xi − 1

]
, [S78]

= (es − 1) + es
∑
i

∆αi
(
eXµ−Xi − 1

)
, [S79]

which generalizes the two-resource invasion fitness in Eq. (S47). In the near-ESS limit where s, Xµ, and Xi are all small
compared to one, this expression reduces to Eq. (16) in the main text.

3.2. Ecological equilibria. The invasion fitness in Eq. (S78) depend on the structure of the stable ecosystem through the
resource-specific mean fitnesses, Xi, which depend on the equilibrium strain frequencies f∗µ through the definition in Eq. (2).
Compared to the two-resource case above, it is generally more difficult to calculate the ecological equilibrium for a set of strains
when R > 2. Part of this difficulty is caused by the vector nature of the resource space, which can no longer be projected down
onto a single scalar dimension. However, this is more than just a book-keeping issue — there are also fundamentally new kinds
of ecological equilibria that can arise when R > 2. In a two-resource system, ecological equilibria are either monocultures (with
S = 1 resident strains), or else contain the maximum number of coexisting strains permitted by the environment (S = 2).
However, when S > 2, one can also have stable coexistence at any intermediate value of 1 < S < R, in addition to the saturated
state with S = R. These two classes of equilibria turn out to have very different properties.

Saturated ecosystems. The saturated stable state (S = R) is the closest analogue of the two-resource equilibrium that
we studied in Appendix 2. In this case, we can obtain an explicit solution for the strain frequencies, f∗µ , and resource-specific
mean fitnesses, Xi, attained at equilibrium as a function of the phenotypes (Xµ, ~αµ) of the resident strains. By definition, the
per capita growth rate (∂t log fµ) of each resident strain must vanish at equilibrium, which yields a system of S equations for
the R resource-specific mean fitnesses: ∑

i

αµ,ie
−Xi = e−Xµ . [S80]

When k = p, this system can be inverted to obtain

e−Xi =
∑
µ

α−1
i,µe
−Xµ , [S81]

where α−1
i,µ is the left inverse of αµ,i. In the limit that |Xµ −Xν | � 1, this reduces to Eq. (17) in the main text. Using the

definition of Xi in Eq. (2) in the main text, we obtain a second system of R equations for the k equilibrium frequencies:

βi =
∑
µ

αµ,ie
Xµ−Xif∗µ , [S82]

which is the non-neutral generalization of Eq. (6) in the main text. Again, when S = R, we can invert this system to obtain

f∗µ = e−Xµ
∑
i

βie
Xiα−1

i,µ =
∑
i

βiα
−1
i,µ∑

ν
α−1
i,νe

Xµ−Xν
, [S83]

since the left and right inverses are equal in this case. In the limit that |Xµ−Xν | → 0, we obtain the leading order contribution

f∗µ ≈
∑
i

βiα
−1
i,µ −

∑
i,ν

βiα
−1
i,µα

−1
i,ν (Xµ −Xν) . [S84]

To gain intuition into these formulae, we consider a set of strains whose resource strategies are a mixture of specialist and
generalist components:

αµ,i = (1− ε)βi + εδµ,i , [S85]
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where 0 ≤ ε ≤ 1 provides a measure of the “distance” between the resource strategies. In this case, the inverse matrix has the
asymptotic limits

α−1
i,µ ∼

{
δi,µ +O(1− ε) if 1− ε� 1,
δi,µ−βµ

ε
+O(1) if ε� 1,

[S86]

so that

Xi ∼

{
Xi if 1− ε� 1,∑

j 6=i
βj(Xi−Xj)

ε
if ε� 1,

[S87]

and

f∗µ ∼

βµ if 1− ε� 1,

βµ

[
1−

∑
ν 6=µ

βν(Xµ−Xν)

ε2

]
if ε� 1.

[S88]

Unsaturated ecosystems. In contrast to the saturated case, when the number of surviving species is less than the number
of resources (S < R) the equations in Eq. (S80) underdetermine the resource-specific mean fitnesses, Xi, so we must invoke
the non-linear constraints in Eq. (S82) to jointly solve for Xi and f∗µ . Alternatively Ref. (1) has shown that the equilibrium
values of Xi can be obtained from the solution of a convex optimization problem, subject to the constraints in Eq. (S80). In
particular, if we define the transformed variable hi = e−Xi , then the equilibrium value of hi is the solution to the convex
optimization problem

~h∗ = argmax~h

{∑
i

βi log hi :
∑
i

αµ,ihi = e−Xµ ∀µ

}
. [S89]

In fact, this method yields a general solution for the equilibrium value of Xi for any initial collection of strains, provided that
the equality constraints in Eq. (S89) are replaced by inequalities (≤). Given the equilibrium values of Xi, the surviving species
correspond to the indices µ where the equality condition is satisfied. The corresponding values of f∗µ satisfy the (generally
overdetermined) set of equations in Eq. (S82), which can be inverted using constrained linear regression. We employ this
technique to implement the SSWM simulations in Appendix 5 below.

We note that since the objective function in Eq. (S89) depends on βi, the equilibrium values of Xi will also generally depend
on the environmental supply vector in an unsaturated ecosystem, in contrast to the β-independent values obtained in the
saturated case. Thus, the ecosystem is no longer able to dynamically adjust to “shield” the internal selection pressures from
the current state of the environment (1–3). Shifts in βi can therefore lead to new opportunities for evolutionary adaptation.

3.3. Evolution in a binary resource usage model. Since there are few empirical constraints on the genetic architecture of
resource strategies in the limit of many resources (R � 1), we focused on a toy “binary usage” model similar to the one
considered by Ref. (1). In this model, genomes can either encode the ability to utilize a given resource or not (e.g. through the
presence or absence of a particular pathway), so that the resource strategy is of the form

αµ,i = Iµ,i∑
i
Iµ,i

. [S90]

where Iµ,i ∈ 0, 1 is a binary indicator variables. Individuals can acquire loss-of-function mutations at rate U−α
∑

i
Iµ,i, which

cause one of the values of Iµ,i = 1 to switch to Iµ,i = 0. We also assume that they can acquire gain of function “mutations”
(e.g. horizontal acquisition of a gene from the environment) at rate U+

αR, which force a randomly chosen uptake rate to the
Iµ,i = 1 state. Under these assumptions, the pure mutation dynamics will lead to an binomial ensemble of resource strategies,
analogous to the one considered by Ref. (1), with a “success probability” of〈∑

i
Iµ,i
〉

R = U+
α

U−α
. [S91]

For simplicity, we will assume that the R resources are all supplied at nearly identical rates. Note that in the completely
symmetric case (βi = 1/R), a “generalist” strain with Iµ,i = 1 will constitute a marginal evolutionary stable state. To avoid
this pathological behavior, we will consider small perturbations around the completely symmetric state:

βi = 1
R

(
1 + εi −

1
R
∑
j

εj

)
, [S92]
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where the εi are small random perturbations drawn from some distribution, and sorted in descending order (ε1 ≥ ε2 ≥ . . . εR).
For simplicity, we will assume that the εi are i.i.d. Gaussian variables with scale ε � 1. The steep tail ensures that the
maximum perturbation scales as

ε1 ∼
√

2ε2 logR , [S93]

and can be bounded to be sufficiently small for a suitable choice of ε. Under these assumptions, an ecosystem comprised of a
single “generalist” strain will still have nonzero ecological selection pressures encoded by the resource-specific mean fitnesses,

Xi ≈ −εi , [S94]

so that some alternate resource strategies will be favored to invade.
By simulating evolutionary dynamics in this model in the weak mutation limit for various values of UX and s (Appendix 5.2),

we find that the long-term structure of the ecosystem tends toward a state in which there is a single generalist strain and S − 1
single loss-of-function variants that have recently descended from this strain (Figs. 5 and S2-S4). In the limit that UX/Uα → 0,
this state must also coincide with a saturated state (S = R). If we let f1 denote the frequency of the generalist strain, then the
equilibrium frequencies are given by

f1 = 1− (R− 1)ε1 , [S95]

fi =
(

1− 1
R

)
(ε1 − εi) , [S96]

where we have assumed that Rε1 � 1. In other words, all resources except the one with the largest value of εi will have a
loss-of-function strain. In the limit that ε1R � 1, the loss-of-function strains will constitute a tiny fraction of the population,
and most mutations will arise in the generalist strain. In particular, the accumulation of fitness mutations will cause the fitness
of the generalist strain to grow as X1 ∼ NUXs2t. We therefore wish to understand when and how this fitness differential drives
some of the loss-of-function variants to extinction.

Due to the symmetry of the system, if j strains are driven to extinction, these must be strains with loss-of-function mutations
in genes with the next j largest values of εi, i.e. i = 2, . . . , j + 1. Let Xc(j) denote the critical value of X1 required for these
j strains to go extinct. Expanding Eq. (1) in the main text to lowest order in X1, (1 − f1), 1/R, and ε, the equilibrium
frequencies satisfy

R− 1 =
∑
i

(1− δµ,i)
[R− 1
R (1−X1f1) + εi + f1

R + fiδi>j+1

]
, [S97]

or

fi ≈
1− f1

R − εi −RX1f1 . [S98]

To self consistently solve for 1− f1, we sum over i = j + 2, . . . ,R to obtain:

1− f1 ≈ R ·
1

j + 1

j+1∑
k=1

εk −
R2(R− 1− j)

j + 1 X1 . [S99]

Substituting this back into our expression for fi, we obtain:

fi ≈
1

j + 1

j+1∑
i=1

εk − εi −
R2

j + 1X1 . [S100]

We can then self-consistently solve for j by setting fj+1 = 0. For example, if j = 1, then we have

Xc(1) ∼ ε1 − ε2
R2 . [S101]

This will be a quenched random variable, since we have assumed that the εi are randomly distributed. Given our Gaussian
assumption, the typical value of ε1 − ε2 will occur for

ε1 − ε2 ∼
ε log logR√

logR
, [S102]

which yields

Xc(1) ∼ ε · log logR
R2
√

logR
. [S103]
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On the other hand, if j ∼ R, we have

Xc(j) ∼ ε ·
1
R . [S104]

These two fitness scales are separated by a gap of order

Xc(R)
Xc(1) ∼

R
√

logR
log logR , [S105]

which grows increasingly large as R� 1.
We can use these results to derive heuristic expressions for the number of species S at steady state as a function of Uα/UX .

We first consider the limit where S � R. As mentioned above, the generalist strain comprises the vast majority of the
population, so that to a first approximation, we can assume that all fitness and strategy mutations occur on this genetic
background. Furthermore, since S � R, most loss of function mutations will target a resource i that does not already have a
loss-of-function variant, where the resource-specific mean fitness is given by

Xi ≈ log
(
α1,ie

X1

βi

)
≈ X1 − εi . [S106]

According to Eq. (16), the invasion fitness for a loss-of-function variant that targets resource i is given by

Sinv ∼
−εi
R . [S107]

Since these loss of function mutations are produced from the generalist background at rate NUα per resource, the number of
coexisting strains increases at rate

dS
dt

=
∑
i

NUα ·
|εi|
R
θ(−εi) ∼ NUαε . [S108]

in the absence of fitness mutations.
However, as we mentioned above, the accumulation of fitness mutations will cause the fitness of the generalist strain to grow

as X1(t) ∼ NUXs2t. Since loss-of-function variants do not acquire further fitness mutations of their own, their fitness is frozen
at whatever fitness the generalist strain had at the time that the mutation arose. The fitness difference between the mutant
and the generalist therefore grows with time until it reaches a critical value Xc(R) ∼ ε/R, at which point the loss-of-function
variant is driven to extinction. This gives rise to two characteristic dynamical regimes depending on whether Xc(R) is larger or
smaller than the effect s of a typical fitness mutation.

If s � Xc(R), then the generalist lineage must acquire multiple fitness mutations to drive one of the loss-of-function
variants to extinction. To a first approximation, the fitness difference between the generalist and the jth most-recently created
loss-of-function variant in this regime is given by

∆Xj ∼
j

NUαε
·NUXs2 . [S109]

The number of coexisting ecotypes S at steady-state is therefore determined by the relation ∆XS ∼ Xc(R), which reflects a
balance between the elimination of the oldest loss-of-function variant due to the accumulation of fitness mutations and the
production of new loss-of-function variants through strategy mutations. Solving for S, we obtain the scaling relation,

S ∼ 1
R

Uα
UX

(
ε

s

)2
, [S110]

listed in Eq. (19) in the main text.
On the other hand, if s� Xc(R), then a single fitness mutation in the generalist strain is sufficient to drive loss-of-function

variants to extinction. Before this mutation arises, all the loss-of-function variants will share the same fitness difference
(∆Xj = 0), and this value suddenly shifts to � Xc(R) once the successful fitness mutation occurs, driving all of the existing
loss-of-function variants to extinction. This leads to oscillations in S in the time between successive fitness mutations, which
range from Smin ∼ 1 immediately after the fitness mutation arises, to a maximum value of Smax ∼ Uαε/UXs right before the
next mutation arises. Since the loss-of-function variants accumulate linearly with time, this leads to a time-averaged value

S ∼ Uαε

UXs
. [S111]

Both expressions should remain valid up to the point where there is an appreciable probability that new loss-of-function
mutations target a resource that already has pre-existing variant (S ∼ R). However, there can still be a broad intermediate
regime between this point and the point where the ecosystem is completely saturated (R− S . 1). The saturated state will
coincide with the evolutionary steady-state if the generalist strain is able to seed fitter loss-of-function variants into all the
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relevant resource dimensions before X1(t) increases to the point Xc(1), where the first strains start to go extinct. Once again,
there are two characteristic timescales depending on whether Xc(1) is large or small compared to s.

If s� Xc(1), then the generalist lineage must acquire multiple fitness mutations to before the first loss-of-function variants
are driven to extinction. This will happen over a timescale,

Tcollapse ∼
Xc(1)
NUXs2 ∼

ε

NUXs2 ·
log logR
R2
√

logR
. [S112]

During this time, loss-of-function mutations will occur in the generalist background at rate NUαR and will establish with
probability ∼X1(t). Since the loss-of-function mutations are chosen randomly, R logR such establishments are required to
cover the total number of resource dimensions with high probability (23). This requires a timescale Tdiv that satisfies∫ Tdiv

0
NUαRNUxs2t ∼ R logR , [S113]

or

Tdiv ∼
√

logR
NUαNUXs2 . [S114]

The ecosystem will remain saturated if Tcollapse � Tdiv, which leads to the condition

UX �
Uα

R4 log2R

(
ε

s

)2
. [S115]

We can compare this point to the transition to R− S ∼ R from Eq. (19), which shows that these regimes are separated by
a gap of order

UX(R− S ∼ 1)
UX(R− S ∼ R) = (R logR)2 , [S116]

while

UX(R− S ∼ R)
UX(S ∼ 1) = R2 . [S117]

3.4. Limits on the number of utilized resources. The fragility of the diversification-selection balance in Appendix 3.3 can be
attributed in large part to the emergence of a fit generalist strain that is able to utilize all of the available resources. In
practice, however, there might be biological constraints or other costs that limit the number of resources that a given strain
can metabolize. This leads us to consider an extension of our binary resource usage model, in which the maximum number
of utilized resources is capped at some value Rc � R. In this way, we can consider complex ecosystems (R → ∞) while
restricting the metabolic repertoire of any given strain. A full analysis of this model is beyond the scope of the present work.
Instead, we will outline a heuristic calculation that suggests that diversification-selection balance at large R is achieved for
substantially higher values of S than in Appendix 3.3 above.

We first note that when Rc � R, multiple strains are required to cover the available resources. The minimum possible
number of strains is S ∼ R/Rc, which is achieved when each of the strains specializes on a disjoint subset of Rc resources. To
lowest order in ε, the frequencies of these strains are given by

fµ ≈
Rc
R . [S118]

With the same genetic architecture of strategy mutations that we assumed above, this state will form the basis of the new
diversification-selection balance. Generalizing our analysis above, this state will consist of R/Rc independent copies of the
diversification-selection balance in Appendix 3.3, except with R → Rc. The strains that utilize Rc resources will be prevented
from branching into new resources because of the maximum resource capacity. Meanwhile, single loss-of-function mutants
on these backgrounds will be too small to acquire a gain-of-function mutation before their parent acquires enough fitness
differences to drive them to extinction.

However, this behavior is strongly dependent on the specific genetic architecture that we assumed, as well as our focus
on the SSWM limit. In larger populations, there may be a substantial probability for strains to acquire multiple strategy
mutations in a short period of time, which would allow them to break out of their resource neighborhood. To mimic this effect
in the SSWM limit, we can introduce a new rate U (2)

α � Uα to represent the probability that two strategy mutations arise in
the same lineage in a single generation. In particular, we will use this new rate to model resource swap events, in which one of
the currently utilized resources is deleted and replaced with a randomly drawn resource. As above, we will assume that this
mutation rate scales with the number of utilized resources, so that the net rate is given by U (2)

α kµ, where kµ = 1/
∑

i
α2
µ,i.

In this augmented model, if we start from the set of R/Rc disjoint strains, then the fitnesses of these strains will wander
diffusively as Xµ ∼ NUXfµs

2t ±
√
NUXfµs3t, so that the typical fitness differences between a pair of strains is of order
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∆X(t) ∼
√
NUXfµs3t. These fitness differences will create a selection pressure for strategy mutations that swap a resource

from one of the fitter strains with a resource from one of the less fit strains. Such a mutation will have an invasion fitness

Sinv = e∆X(t) − 1
Rc

≈ ∆X(t)
Rc

. [S119]

Successful swap mutations will be produced on a timescale τdiversify that satisfies∫ τdiversify

0
NU (2)

α Rc ·
√
NUXfµs3t

Rc
dt ∼ 1 . [S120]

Solving for τdiversify, we obtain

τdiversify ∼
1
s

(
NU (2)

α

)−2/3
(
NUX ·

Rc
R

)−1/3
, [S121]

∆X(τdiversify) ∼ s
(
UXRc
U

(2)
α R

)1/3

. [S122]

Once the successful swap mutation invades, it will create a new ecotype that coexists with the parent clade, as well as the
ecotype that currently utilizes the new resource. To lowest order in 1/Rc, the equilibrium frequency is given by

f∗ν ∼
1− e−∆X(t)

2
Rc
R . [S123]

When ∆X � 1, this frequency will be small compared to the other dominant ecotypes. As above, fitness mutations will
therefore preferentially accumulate in the dominant ecotypes, causing the fitness advantage, ∆X(t), of the swap mutant to
decrease over time at rate NUXf∗µs2. After a time of order

τcollapse ∼
∆X(τdiversify)
NUXs2 · RcR

∼ 1
s

(
UXRc
U

(2)
α R

)1/3 R
NUXRc

, [S124]

the fitness of the less fit ecotype will have caught up to the swap mutant, and the latter will be driven to extinction. The ratio
between τcollapse and τdiversify is therefore given by

τcollapse

τdiversify
∼
(
U

(2)
α R

UXRc

)1/3

. [S125]

If this ratio is sufficiently large, then new swap mutants will typically establish before the fitness differences drive any of the
existing swap mutants to extinction. For fixed Rc, this will become increasingly true R →∞.

On the other hand, if τcollapse � τdiversify, then a typical resource swap mutation will be driven to extinction before the next
arises. However, because the timing of the swap mutations is a random process, anomalously late mutations may occur for
which ∆X(t) ∼ O(1). In this case, the swap mutant is no longer rare compared to its parent, and there is strong selection
pressure for loss- (and later gain-) of-function mutations to arise in this mutant background.

Together, these arguments suggest that the simplest generalization of the steady-state in Appendix 3.3 will generally be
unstable whenever we impose a cap on the number of utilized resources, and that the corresponding diversification-balance
will be attained for much higher values of S than we would expect based on our previous analysis. Further analysis of these
dynamics are left for future work.
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4. Connections to adaptive dynamics

Our model shares certain features associated with the traditional models studied in adaptive dynamics (14, 15), though it also
differs from these models in several key ways. In this section, we attempt to make this connection more explicit, using the
notation and terminology employed in the adaptive dynamics literature. As adaptive dynamics relies on the weak mutation
limit, we will confine our discussion to this regime as well.

4.1. Two resources, no fitness differences. For simplicity, we will start by considering the two-resource case in the absence of
fitness differences, where individuals are described by a scalar resource phenotype α. To make the connection with adaptive
dynamics explicit, we will define a rescaled trait,

x = α− β√
β(1− β)

, [S126]

such that x→ 0 as α→ β. Following Ref. (14), we then let sx(y) denote the invasion fitness of a mutant of phenotype y in a
monomorphic population of phenotype x. In the neighborhood of x→ 0, Eq. (5) shows that sx(y) takes on a simple quadratic
form

sx(y) = (x− y)x . [S127]

Under the standard adaptive dynamics assumption that y is infinitesimally close to x, the phenotypes will evolve in the
direction of the fitness gradient,

D(x) = ∂sx(y)
∂y

∣∣∣∣
y=x

= −x . [S128]

This gradient vanishes for x = 0 which shows that x∗ = 0 (or α=β) is an evolutionarily singular strategy. This strategy
is convergence stable, in that infinitesimal mutations drive the population toward x = 0 when |x| > 0. However, it is only
marginally ESS-stable, since ∂2sx(y)/∂y2 = 0 at x = 0. The second derivative classification in Ref. (14) also shows that stable
dimorphisms can coexist in the neighborhood of x∗.

These two features combine to make our evolutionarily singular strategy behave as both an evolutionarily stable strategy
(ESS) and an evolutionary branching point. On the one hand, x∗ = 0 resembles an ESS because no mutant strains are favored
to invade once the population reaches x∗. On the other hand, x∗ = 0 resembles an evolutionary branching point because the
population will typically branch into a stable dimorhpism once x− x∗ approaches the typical spacing between mutants. Thus,
in practice, the population will always branch before it reaches the ESS, even if this is excluded under truly infinitesimal
evolution. However, unlike a traditional branching point where ∂2s∗x(y)/∂2y > 0, there is no further selection to drive the
branched phenotypes x1 and x2 away from each other once branching has occurred. We showed in the text that this can be
viewed as a generic feature of a saturated ecosystem (where S = R) when there are no overall fitness differences between
strains.

4.2. Resource continuum, no fitness differences. One might ask why the evolutionarily singular strategy is so peculiar in our
model, given that consumer-resource theory is often touted as an example of evolutionary branching points in the adaptive
dynamics literature (24). The key difference is that in this existing literature, the trait x does not usually refer to the uptake
rate of a single resource, but instead is used to parameterize an entire curve of resource uptake rates for a continuum of different
resources. To choose a simple example, one might imagine that the resources denote seeds of different sizes, which are indexed
by a continuous parameter z. The function β(z) then represents the distribution of seed sizes supplied by the environment,
which is often assumed to have a Gaussian form

β(z) = e−
z2
2

√
2π

, [S129]

centered at some special value z = 0. Individual uptake rates are often assumed to have a similar Gaussian shape

α(z|x) = e
− (z−x)2

2σ2
√

2πσ2
, [S130]

with a preferred value of z = x and a characteristic width σ. The trait x is then subject to further evolution, rather than the
individual uptake rates α(z). Substituting these functions into Eq. (1) (with Xµ = 0), the invasion fitness for phenotype y in a
monomorphic population of phenotype x is given by

sx(y) = exp
(

1
σ2

[
x2

2

(
1 + 1

σ2

)
− y2

2

(
1− 1

σ2

)
− 2xy

σ2

])
− 1 . [S131]
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The fitness gradient ∂sx(y)/∂y vanishes when x = 0, showing that x∗ = 0 is an evolutionarily singular strategy, as anticipated.
The second derivative is given by

∂s∗x(y)
∂y2 = 1− σ2

σ4 . [S132]

For σ > 1, x∗ is a true ESS, while for σ < 1, x∗ is a true evolutionary branching point. In the neighborhood of x∗, selection
will act to drive the phenotypes further apart from each other after branching has occurred.

We can understand this behavior using the intuition developed in the main text. Since there are an infinite number of
resources in this model, the ecosystem is certainly not saturated when S = 2. Thus, we can expect much of the selection
pressure to focus on bringing the population averaged uptake rate α(z) closer to the environmental supply rate β(z). When the
niche width σ is larger than the range of resources supplied by the environment, the best way to do this is with a single strain
centered at x = 0. Branching is therefore not favored. On the other hand, if σ is smaller than the range of supplied resources,
then the ecosystem as a whole can match the environmental supply rate better if there are two strains centered at intermediate
locations on the real axis (|x− y| > 0).

In this way, we see that the R = 2 resource case, far from being pathological, serves as a basic building block that allows us
to understand more complex scenarios that are often considered in the literature. It also illustrates how the genetic architecture
of the uptake rates (in this case, whether the α(z) can evolve independently or are restricted to the Gaussian family) can play
a key role in determining the emergent dynamics of the model.

4.3. Directional selection as an intermediate asymptotic. We now return to the two-resource case above and examine how
changes in the overall fitness (X) alter the adaptive dynamics analogy. Individuals are now described by a two-dimensional
phenotype, (X,α). Generalizing our analysis above, we will now define a two-dimensional trait space:

x1 = α− β√
β(1− β)

, x2 = X . [S133]

In this notation, the invasion fitness in Eq. (7) becomes

sx1,x2 (y1, y2) = (y2 − x2) + (x1 − y1)x1 , [S134]

whose fitness gradient is given by

∇ysx1,x2 (y1, y2) = (−x1, 1) . [S135]

As expected, the overall fitness dimension always selects for phenotypes that increase X, regardless of the value of α. As a
consequence, there are no longer any evolutionarily singular strategies in this model, so the formal classification such points
in the adaptive dynamics framework does not apply any more. Nevertheless, we have seen that behaviors very similar to
evolutionary branching still occur in our model if we project down onto the x1 coordinate. Furthermore, the old evolutionarily
singular strategy at x∗1 = 0 continues to play a key role in these dynamics. The major difference is that these ecologically
stable polymorphisms are now only quasi-stable under evolutionary perturbations, as our analysis in the main text shows that
further fitness evolution can drive one of the ecotypes to extinction (Fig. 2B). This behavior is consistent with observations
from laboratory evolution experiments (22).

Although we have motivated this behavior with the abstract notion of overall fitness, our analysis suggests that similar
behavior will generically arise in multi-dimensional phenotype spaces whenever one of the traits (i) approaches its marginal
branching point x∗i , while at least one of the other traits (j) remains far from x∗j (Fig. S1). Previous work suggests that such
highly asymmetric approaches to a stationary point may be common feature of gradient descent dynamics in high dimensional
spaces (25). This suggests that the competition between resource and strategy mutations can be viewed as a more general
intermediate asymptotic that describes the process of ecological diversification during the asymptotically long times required to
approach an evolutionarily singular strategy in a high dimensional trait space.

Of course, our simplified consumer-resource model is peculiar in that it contains just a single marginal ESS (~α = ~β) even for
large R. For generic high-dimensional landscapes, in contrast, previous work suggests that the relevant critical points will
often be more akin to saddle points (25). In this case, we conjecture that Fig. S1 would describe the approach to one such
saddle point, until the positive eigenvalues combine to drive the population away from the current critical point and toward
a saddle of lower index. This hypothesis suggests that repeated bouts of diversification and ecosystem collapse could occur
even in glassy regimes where the population never reaches a true ESS. A detailed understanding of these dynamics remains an
interesting topic for future work.
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5. Simulations

5.1. Individual-based simulations. The simulations in Fig. 1 were carried out using an individual-based, discrete generation
algorithm similar to the one employed in Refs. (16, 26) for a single resource. Each simulation starts with a clonal population of
N individuals, and in each subsequent generation, the population undergoes a selection step followed by a mutation step. At
each step, we keep track of the number of individuals nµ with a given strategy vector αµ,i and overall fitness Xµ.

In the selection step, each lineage nµ is assigned a new size from a Poisson distribution with mean

λµ = C

(
R∑
i=1

αµ,ie
Xµ−Xi

)
, [S136]

where

Xi = log

[∑
µ

αµ,ie
Xµ

βi
·
(

nµ∑
ν
nν

)]
, [S137]

and C = N/
∑

λµ is a normalization constant chosen to ensure that the total population size remains near N ±O(
√
N).

In the mutation step, the new lineage size is pruned into multiple sublineages representing different mutations that occur
on the original lineage background. With probability UX , an individual founds a new sublineage ν is founded with fitness
Xν = Xµ + s, where s is drawn from the distribution of fitness effects ρX(s). With probability Uα, an individual founds a new
sublineage with a strategy vector ~αν drawn from the distribution ρα(~α′|~α).

The simulations in Fig. 1 were carried out for R = 2 with β = 0.5. We utilized a Gaussian distribution of fitness effects,
ρX(s) ∝ exp(−s2/2s2

0), for the pure fitness mutations. The distribution of strategy mutations, ρα(α′|α), was taken to be a
beta distribution with mean α and coefficient of variation Var(α′)/E(α′)2 = 0.05, but with α′ rounded to the nearest value of
1/5, . . . , 4/5. The initial resource strategy for the ancestral population was chosen uniformly at random from these discrete
values.

Each simulation was performed for a total of 60, 000 generations with a population size of N ∼ 107. Every 500 generations,
we simulated a round of “metagenomic sequencing”. We calculated the population frequencies of all mutations present in the
population, and reported these values after binomial resampling at a depth of D = 1000.

A copy of our implementation in C++ is available on Github (https://github.com/benjaminhgood/consumer_resource_simulations).

5.2. SSWM simulations. To simulate the long-term dynamics of the binary usage model in Fig. 4 (Appendix 3.3), we use an
optimized simulation algorithm that is specifically designed for the strong-selection, weak mutation (SSWM) regime. Similar
to traditional SSWM algorithms in population genetics (27), this algorithm gains an efficiency advantage by simulating only
successful invasion events. In our case, however, the successful invasion events can now lead to non-trivial ecological equilibria,
in addition to simple fixation.

Our simulations start with a collection of strains (Xµ, ~αµ) at time t = 0. To assess convergence to diversification-selection
balance, we performed simulations for two initial conditions: (i) a single generalist strain with αµ,i = 1/R (ii) a collection of R
specialist strains with αµ,i = δµ,i and Xµ drawn from a Gaussian distribution with variance σ = 10−7. Figs S3 and S4 show a
comparison of these two initial conditions for R = 10. Since the agreement is generally good, we utilized the more rapidly
converging generalist initial conditions for the main simulations in Figs. 4 and S2.

After drawing the initial condition, we first calculate the ecological equilibrium, f∗µ , for this collection of strains using the
convex optimization procedure in Appendix 3.2, using the MOSEK software package (28). This algorithm yields the equilibrium
values of h∗i = e−Xi and the set of ecotypes Σ∗ that survive at equilibrium. Within this subset, the equilibrium frequencies are
obtained from the solution of the linear system in Eq. (S82), which will be overdetermined when S < R. We obtain a solution
to this system by solving the constrained least squares problem,

~f∗ = argmin~f

{∑
i

∣∣∣∣∣∑
µ∈Σ∗

αµ,ie
Xµfµ −

βi
h∗i

∣∣∣∣∣
2

:
∑
µ∈Σ∗

fµ = 1

}
, [S138]

using the SciPy library (29).
Once the initial ecological equilibrium is obtained, the simulation proceeds via a series of virtual timesteps, each of which

represents the successful invasion of a single mutation. In each step, we first enumerate the set of fitness and strategy mutants
that are generated from mutations on each of the current strains µ, and calculate their corresponding invasion fitness from
Eq. (S78). We use these values to calculate the net rate of successful invasions from each mutation type. We assume that
fitness mutations confer a characteristic fitness benefit s, so that the rate of successful fitness mutations in strain µ is given by

RXµ = NUXf
∗
µ (es − 1) . [S139]

The rate of successful loss-of-function mutations for resource i is given by

R−µ,i = max

{
0, NUαf∗µ ·

∑
j 6=i

αµ,j(h∗j − h∗i )
kµ − 1 · θ(αµ,i − δ)

}
, [S140]
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where kµ = 1/
∑

i
α2
µ,i is the current number of resources utilized by strain µ, θ(z) is the Heavisde step function, and δ is an

infinitesimally small positive number so that the step function is well-defined. The rate of successful gain-of-function mutations
is given by an analogous expression,

R+
µ,i = max

{
0, NUαf∗µ ·

∑
j 6=i

αµ,j(h∗i − h∗j )
kµ + 1 · θ(δ − αµ,i)

}
. [S141]

Since these successful invasion events arise as a compound Poisson process, the time Test to the next successful invasion event
is exponentially distributed with rate

Rtot =
∑
µ

[
RXµ +

∑
i

(
R+
µ,i +R−µ,i

)]
. [S142]

Using the Poisson thinning property, the identity of the invading mutation is chosen at random from the enumerated list with
probability proportional to its corresponding R-value. Once the identity of the invading strain is determined, we find the new
ecological equilibrium ~h∗ and ~f∗ using the constrained procedure above. By assumption, the time to reach this new equilibrium
is negligible compared to Test in the SSWM limit. The current time t is then incremented by Test, and the process repeats itself.

We repeated this process for a total of M successful invasion steps until the ecosystem converged to diversification-selection
balance (M ∼ 100, 000). The simulations in Figs. 4 and S2-S4 were carried out for ε = 10−3 and s = 10−7, scanning through
different values of UX/Uα.

A copy of our implementation in Python is available on Github (http://github.com/StephenMartis/consumer-resource-many-resources).
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Fig. S1. An intermediate asymptotic of adaptive dynamics. In a multidimensional phenotype space, a population that is far from the evolutionarily singular strategy can
display the quasi-stable branching behavior analyzed in the main text if one of the trait dimensions (x1) is close to the singular coordinate (x∗1 ). In the specific context of our
consumer resource model, x1 corresponds to the resource uptake strategy (α), while x2 corresponds to the overall fitness (X).
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Fig. S2. Ecological structure at diversification-selection balance in a binary usage model. (Top) For each of the simulated populations in Fig. 4, the fraction of the
population occupied by the generalist ecotype, αµ,i = 1/R. (Bottom) For the same populations, the frequency-weighted average of kµ = 1/

∑
i
αµ,i (a measure of the

number of utilized resources) for the remaining non-generalist ecotypes. A value ofR− 〈kµ〉 = 1 indicates that the rest of the population consists of single loss-of-function
mutants that descend from the generalist background.
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Fig. S3. Approach to diversification-selection balance from different initial conditions. An analogous version of Fig. 4 comparing specialist and generalist initial
conditions forR = 10.
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Fig. S4. Long-term ecological structure from different initial conditions. An analogous version of Fig. S2 comparing specialist and generalist initial conditions forR = 10.
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