SUPPLEMENTARY INFORMATION

Cellular location of endo-acting galactanases confers keystone or recipient status to arabinogalactan degrading bacteria of the human gut microbiota

Alan Cartmell¹, Jose Muñoz-Muñoz¹, Jonathon Briggs¹, Didier A. Ndeh¹, Elisabeth C. Lowe¹, Arnaud Baslé¹, Nicolas Terrapon², Katherine Stott³, Tiaan Heunis¹, Joe Gray¹, Li Yu³, Paul Pearl Z. Fernandes⁴, Sayali Shah⁴, Spencer J. Williams⁴, Aurore Labourel¹, Matthias Trott¹, Bernard Henrissat^{2,5,6} and Harry J. Gilbert^{1,*}

	Annotation	Recombinant expression?	Active on LA-or GA- AGP	Other Comment	
PULAGPL	1				
BT0262	hypothetical protein	Yes	No		
BT0263	PL27	Yes	Yes	Rhamno-galaturonyl lyase	
BT0264	GH43_24	Yes	Yes	Endo-β1,3-galactanase	
BT0265	GH43_24	Yes	Yes	Exo-β1,3-galactosidase	
BT0266	hypothetical protein	Yes	No		
BT0267	HTCS	Yes	No		
BT0268	SusC	No			
BT0269	SusD	No			
BT0270	hypothetical protein	Yes	No		
BT0271	hypothetical protein(DUF5007)	Yes	No		
BT0272	SusC	No			
BT0273	SusD	No			
BT0274	hypothetical protein(Fasciclin)	Yes	No		
BT0275	hypothetical protein(DUF5008, DUF5124, DUF5122)	Yes	No		
BT0276	hypothetical protein(Laminin_G_3)	Yes	No		
BT0277	M60-like Peptidase, CBM32	Yes	No	Lacks catalytic residue	
BT0278	Type I phosphodiesterase	Yes	No		
BT0279	Hypothetical protein	Yes	No		
BT0280	Transposase	Yes	No		
BT0284	peptidoglycan binding protein	Yes	No		
BT0285	tolQ-type transport protein (MotA_ExbB)	Yes	No		
BT0290	GH35, CBM32	Yes	Yes	Exo-β1,6-galactosidase	
BT3674	GH127	Yes	Yes	β -L-arabinofuranosidase	
BT3675	GH43_34	Yes	Yes	α -L-arabinofuranosidase	
BT3676	BNR repeat-containing family member	Yes	No		
BT3677	hypothetical protein(DUF2264)	Yes	Yes	New family β-	
BT3678	HTCS	Yes	No	Sensor not soluble.	
BT3679	hypothetical protein(IPT/TIG domain)	Yes	Yes	New family α-L- arabinofuranosidase	
BT3680	SusC	No			
BT3681	SusD	No			
BT3682	hypothetical protein(DUF1735, DUF4973, DUF4361)	Yes	No		
BT3683	GH43_24-GH16	Yes	Yes	Exo-β1,3-galactosidase	
BT3685	GH43_24	Yes	Yes	Exo-β1,3-galactosidase	
BT3686	GH145	Yes	Yes	Exo-α-L-rhamnosidase	
BT3687	GH105	Yes	Yes	Unsaturated β- glucuronidase	

Supplementary Table 1 Annotation and activity of potential enzymes encoded by PUL_{AGPL} and PUL_{AGPS}

	k _{cat} (min⁻¹)	K _m (mM)	k _{cat} /K _m (min ⁻¹ M ⁻¹)
BT0264 (GH43_24)			
β-1,3 Gal ₂	_a	-	Inactive
β-1,4 Gal ₂	-	-	Not tested
β-1,6 Gal ₂	-	-	Inactive
BT0265 (GH43_24)			
β-1,3 Gal ₂	-	-	(4.2 ± 0.32) x 10 ³
β-1,4 Gal ₂	-	-	Inactive
β-1,6 Gal ₂	-	-	Inactive
BT0290 (GH35)			
Larch Wood	-	-	$(5.5 \pm 0.1) \times 10^{6}$
β -1,3-galactobiose	-	-	$(4.9\pm0.2) \times 10^3$
β -1,6-galactobiose	-	-	$(1.4 \pm 0.1) \times 10^6$
BT3674 (GH127)			
LA-AGP	124.3 ± 10.8	12.10 ± 2.1	$(1.1\pm0.4) \times 10^{5}$
GA-AGP	-	-	$(1.34\pm0.4) \times 10^{3}$
			$(4, 77 \pm 0, 0) \times 10^5$
GA-AGP	-	-	(4.77±0.5)×10
BT3677			
GA-AGP	38.36 ± 2.32	1.35 ± 0.21	$(2.8 \pm 1.1) \times 10^5$
GlcA-Gal-Gal	-	-	$(4.1 \pm 0.2) \times 10^5$
		I	
BT3679			
LA-AGP	-	-	$(5.3 \pm 0.4) \times 10^{5}$
GA-AGP	-	-	$(2.4 \pm 0.1) \times 10^{5}$
Wheat Arabinoxylan	-	-	(8.5 ± 0.7) x 10 ⁴
Sugar beet Arabinan	105.7 ± 16.2	274.5 ± 23.5	$(3.9 \pm 0.4) \times 10^5$
1,5-α-Arabinobiose	-	-	$(1.6 \pm 0.1) \times 10^5$
BT3683 (GH43_24)			
β-1,3 Gal ₂	-	-	$(9.7 \pm 2.2) \times 10^2$
β-1,4 Gal ₂	-	-	Inactive
β-1,6 Gal ₂	-	-	Inactive
BT3685 (GH43_24)			
β-1,3 Gal ₂	-	-	(2.3 ± 0.23) x 10 ⁶
β-1,4 Gal ₂	-	-	Inactive
β-1.6 Gal ₂	-	-	Inactive

^a: kinetic parameter not determined.

All kinetic parameters are +/- S.E.M . The values were determined from technical replicates n = 3. 2

Supplementary Table 3 Kinetic parameters of mutants of the GH43_24 module in BT3683 and BT3685.

Enzyme	β-1,3 Gal₂	2,4-DNP-β-Gal				
	Catalytic efficiency ($k_{cat}/K_m min^{-1}M^{-1}$) (9.7 + 2.2) x 10 ² (6.8 + 0.9) x 10 ²					
BT3683 wild type	(9.7 ± 2.2)x 10 ²	$(6.8 \pm 0.9) \times 10^2$				
GH43 module Q577A	Inactive	Inactive				
(catalytic base)						
GH43 module Q577N	Inactive	Inactive				
GH43 module Q577E	Inactive	Inactive				
GH43 module E367A	Inactive	Inactive				
(O4 specificity)						
GH43 module E367Q	Trace activity	$(2.7 \pm 0.3) \times 10^{1}$				
GH43 module D471A (pK _a	Inactive	Inactive				
modulator)						
GH43 module D471N	Inactive	Inactive				
GH43 module E520A	Inactive	$(4.0 \pm 0.5) \times 10^2$				
(catalytic acid)						
GH43 module E520Q	$(2.7 \pm 0.3) \times 10^3$	(7.5±0.9) x 10 ²				
GH43 module E319A	$(6.6 \pm 0.7) \times 10^2$	_ ^a				
GH43 module E319Q	$(3.5 \pm 0.05) \times 10^3$	-				
GH43 module R321A	$(1.8 \pm 0.15) \times 10^2$	-				
GH43 module R321K	(2. 3 ±0.15) x 10 ²	-				
GH43 module F326A	$(1.0 \pm 0.04) \times 10^4$	-				
GH43 module Y393F	$(2.2 \pm 0.14) \times 10^2$	-				
GH43 module S487A	$(2.6 \pm 0.12) \times 10^3$	-				
GH43 module S487V	$(2.3 \pm 0.33) \times 10^3$	-				
GH43 module C538A	$(3.2 \pm 0.14) \times 10^2$	-				
GH16 module E150A	$(1.2 \pm 0.06) \times 10^3$	-				
(catalytic nucleophile)	· · ·					
GH16 module E155A	$(7.6 \pm 0.08) \times 10^2$	-				
(catalytic acid/base)						
BT3685 wild type	(2.28 ± 0.23)x 10 ⁶	(9.8 ± 0.69) x 10 ⁴				
Q282A (catalytic base)	$(2.41 \pm 0.38) \times 10^3$	(4.5 ±1.0) x 10 ³				
Q282N	Inactive	$(1.5 \pm 0.31) \times 10^3$				
Q282E	$(3.1 \pm 0.56) \times 10^3$	(3.4 ±0.67) x 10 ²				
E121A (O4 specificity)	No Expression	No Expression				
E121Q	No Expression	No Expression				
D176A (pKa modulator)	No Expression	No Expression				
D176N	Inactive	(8.8 ± 0.23) x 10 ¹				
E225A (catalytic acid)	Inactive	Inactive				
E225Q	Inactive	$(6.2\pm0.15) \times 10^4$				

^a: activity not determined.

All kinetic parameters are +/- S.E.M . The values were determined from technical replicates n = 3.

Supplementary Table 4. Conservation of the key enzymes for AGP degradation in B. thetaiotaomicron and 19 Bacteroidetes species.

A phylogenetic tree of the 20 species, reconstructed from the 16S-RNA, is displayed on the left with the bootstrap numbers shown in blue. The table on the right shows with colored cells, the existence and conserved microsynteny of the orthologs to *B. thetaiotaomicron* key enzymes involved in the deconstruction of AGP regions. Growth data of each species on three substrates are shown in the last columns.

Rhap decorations (only GA-AGP)				Growth on				
5	thway 2) BT3677	Lyase p 1) BT0263	athway 2) BT3687	Growth on LA-AGP	Growth on GA-AGP	GA-AGP +BT0264 or +BACCELL_	Growth on WH-AGP	Growth on WH-AGP +BT0264
		-				00844		
g	gene model	l			Growth			
C	I catalytic Hi	s residue			No growth			

Not tested

Supplementary Table 5. Proteins identified on the surface of *B. thetaiotaomicron::baccell00844* using proteomics.

SGBP	Uniprot No.	CAZyme family and/or PUL	Known or predicted function	Signal peptide	Predicted or known cellular location
BT3079	Q8A376	None	Unknown	Type II	Surface
BT2966	Q8A3I8	PUL44 ^L ; induced by host glycans	SGBP	Type II	Surface
BT1773	Q8A6V3	None	SusD-like	Type II	Surface
BT4080	Q8A0E1	PUL74 ^L ; induced by host glycans	Unknown	Type II	Surface
BT3159	Q8A2Z6	PUL50 ^L ; induced by host glycans	SGBP	Type II	Surface
BT1896	Q8A6I8	None	Unknown	Type II	Surface
BT1182	Q8A8I5	None	Unknown	Type II	Surface
BT3792	Q8A174	GH76 in PUL68 ^L ; induced by α- mannan	Endo-α1,6- mannanase	Type II	Surface
BT4088	Q8A0D3	PUL74 ^L ; induced by host glycans	SusC-like	Type II	Surface
BT2623	Q8A4H6	GH76 in PUL36 ^L ; induced by α- mannan	Endo-α1,6- mannanase	Type II	Surface
BT3066	Q8A388	None	Unknown	Type II	Surface
BT3523	Q8A1Y5	PUL60 ^L ; induced by host glycans	Unknown	Type II	Surface
BT3067	Q8A387	None	Unknown	Type II	Surface
BT2125	Q8A5W1	None	Unknown	Type II	Surface
BT3433	Q8A273	Unknown	Unknown	Type II	Surface
BT2193	Q8A5P5	PUL28 ^L ; induced by host glycans	Unknown	Type II	Surface

BT4245	Q89ZX6	PUL78 ^L ;	SGBP	Type II	Surface
		induced			
		by host			
		glycans			
BT3955	Q8A0R6	PUL71 ^L ;	Unknown	Type II	Surface
		induced			
		by host			
		glycans			
BT3960	Q8A0R1	PUL71 ^L ;	SGBP	Type II	Surface
		induced			
		by host			
		glycans			
BT4083	Q8A0D8	PUL74 ^L :	SGBP	Type II	Surface
		induced		51 -	
		by host			
		alvcans			
Baccell00844	E2N999	GH16	Endo-61.3-	Type II	Surface
			galactanase	51 -	
BT3438	Q8A268	None	Unknown	Type II	Surface
BT2317	Q8A5C2	None	Unknown	Type II	Surface
BT4984	Q8A0D7	PUL74 ^L :	SGBP		Surface
		induced			
		by host			
		glycans			
BT1938	Q8A6E6	None	Unknown	Type II	Predicted to
				. , , , , , , , , , , , , , , , , , , ,	be a
					lipoprotein
BT3961	Q8A0R0	PUI 71 ^{L.}	SGBP	Type II	Surface
210001		induced	0001	i ypo n	Canaco
		by host			
		divcans			
BT0153	Q8ABF7	None	Unknown	Type II	Surface
BT4171	084050		Unknown	Type II	Surface
	Q0/1000	induced	Children	i ype ii	Cunaco
		by RGI			
BT1044	08A8X3	GH18 in	endo-B-N-	Type II	Surface
BIIOII	Q0/10/10		acetylolucosaminidas	rype n	Curraco
		induced	A		
		hy host	č		
		dycans			
BT4167	084054		SGBP	Type II	Surface
014107	QUAUUT	induced	CCDI	турсп	Ounace
		by RGI			
BT3703	084173		Linknown	Type II	Surface
D13733	QUATIS	induced	OTIKHOWI	туре п	Sunace
		by u-			
BT/170	084051		PGLIvasa		Bactorial
D141/U	QOAUS I		r Gi iyase	туре п	Dautenal
		FUL//-,			SUIIdUE
BT2950	00110		Linknown		Surface
613039	QOATIZ	induced	UTIKHUWH	туреп	Sunace
	1	muuuueu		1	

		by α- mannan			
BT4471	Q89ZA6	PUL83	SusD-like	Type II	Surface
BT4668	Q89YR3	GH53 in PUL86 ^L ; induced by galactan	Endo-β1,3- galactanase	Type II	Surface
BT0142	Q8ABG8	None	Unknown	Type II	Surface
BT3988	Q8A0N3	PUL72 ^L	Unknown	Type II	Surface
BT3436	Q8A270	None	Unknown	Type II	Surface
BT4166	Q8A055	PUL77 ^L ; induced by RGI	Unknown	Type II	Surface
BT3741	Q8A1C5	None	Unknown	Type II	Surface
BT3476	Q8A230	PUL59 ^L	SGBP	Type II	Surface
BT3026	Q8A3C8	PUL46 ^L	Unknown	Type II	Surface
BT4605	Q89YX5	None	Unknown	Type II	Surface
BT1038	Q8A8X9	PUL14 ^L	SGBP	Type II	Surface

SGBP; surface glycan binding proteins. ^L; PUL identified from the literature in PULDB (http:// www.cazy.org/PULDB/). Function is predicted (**red**) based on the position of the gene adjacent to *susC-susD* pairs, in the case of putative SGBPs, or the CAZy family in which the protein is located. Cellular location is predicted (**red**) based on the presence of a type II signal peptide that anchors the protein onto the outer membrane. Proteins displaying substantial sequence identity to SusD or SusC proteins are coloured **blue**. These proteins are highly likely to be located on the outer membrane exposed on the surface. Proteins coloured **green** have been shown to display the function identified and/or experimentally demonstrated to be presented on the bacterial surface.

	BT0265	BT0265Hexa	BT3683Gal	BT3683GallM
		Data collection		
Date	16/10/15	12/12/16	13/02/16	08/05/17
Source	IO4-1	IO4-1	IO4-1	IO4-1
Wavelength	0.98	0.93	0.97	0.97
Space Group	P1	P212121	H3 ₂	H3
Cell dimensions				
a, b, c (Å)	73.32, 73.33,	106.00, 119.70,	136.38, 136.38,	135.40, 135.40,
	116.46	182.18	53.44	51.69
α,β,γ, (°)	91.04, 72.59,	90, 90, 90	90, 90, 120	90, 90, 120
	80.07			
No. of measured	114998 (9158)	864376 (43789)	196254 (14984)	253965 (13080)
reflections				
No. of	58162 (4564)	117960(5795)	36549 (2705)	45732 (2309)
independent				
reflections				
Resolution (A)	46.53-2.75 (2.83-	100.4-2.2 (2.24-	68.19-1.76 (1.81-	25.59-1.61 (1.64-
	2.75)	2.20)	1.76)	1.61)
CC _{1/2}	0.978 (0.650)	0.998 (0.667)	0.997 (0.435)	0.997 (0.475)
Mean I/σI	45(16)	13 3 (3 1)	11 5 (1 6)	10.8 (1.3)
Completeness	98 4 (98 0)	100 (100)	99.5 (99.9)	99.9 (100)
Redundancy	2.0 (2.0)	13.3 (3.3)	5.4 (5.5)	5.6 (5.7)
j		Refinement		
R _{work} /R _{free}	0.22/0.25	0.21/0.27	0.17/0.21	0.13/0.19
No. atoms				
Protein	14732	14919	2771	2822
Ligand/lons	-/-	232/-	24/1	14
Water	-	538	268	410
B-factors				
Protein	30.97	38.3	30.5	19.9
Ligand/lons	-/-	57.8	28.7/51.7	22.7
Water	-/-	38.3	38.7	31.6
r.m.s deviations				
Bond lengths	0.011	0.017	0.013	0.014
Bond angles	1.50	1.77	1.51	1.53
PDB code	6EUJ	6EUF	6EUI	6EUG

Supplementary Table 6a. Data statistics and refinement details.

*(Values in parenthesis are for the highest resolution shell).

[#]5% of the randomly selected reflections excluded from refinement.

⁺Calculated using MOLPROBITY.

	BT3683GalDNJ BT0290Gal		BT3674
	Data co	llection	
Date	13/02/16	26/01/14	02/02/16
Source	IO4-1	IO2	IO2
Wavelength	0.97	0.98	0.98
Space Group	P1	P22121	P6 ₅
Cell dimensions			
a, b, c (Å)	52.18, 77.20, 78.69	62.04, 101.16,	136.81, 136.81,
	444.00 404.70	143.21	135.56
α,β,γ, (*)	114.00, 101.78, 100.78	90,90,90	90, 90, 120
No. of measured	134165 (8686)	640375 (28390)	886170 (65903)
No of	67881 (4470)	02027 (4405)	77030 (5696)
indonondont	07001 (4470)	92027 (4185)	77030 (5090)
rofloctions			
Desclution (Å)	67 22 2 00 (2 05		69 40 2 46 (2 22
Resolution (A)	2 00	46.61-1.75	2 16)
	2.00)	(1.77-1.75)	2.10)
CC _{1/2}	0.947(0.685)	-	0.998 (0.578)
Mean I/σI	7.2 (2.8)	13.8 (2.5)	12.9 (1.4)
Completeness	95.9 (93.9)	99.3 (92.0)	100 (99.9)
Redundancy	2.0 (1.9)	7.0 (6.8)	11.5 (11.6)
	Refine	ement	
R _{work} /R _{free}	0.18/0.23	0.16/0.18	0.17/0.22
No. atoms			
Protein	8229	6153	4910
Ligand/lons	33/3	13/-	-/2
Water	618	625	727
B-factors			
Protein	24.13	17.6	35.8
Ligand/lons	32.48/32.48	11.4/-	-/30.06
Water	30.83	26.7	40.9
r.m.s deviations			
Bond lengths	0.013	0.010	0.018
Bond angles	1.55	1.43	1.80
PDB code	6EUH	6EON	6EX6

Supplementary Table 6b. Data statistics and refinement details.

*(Values in parenthesis are for the highest resolution shell).

#5% of the randomly selected reflections excluded from refinement.

⁺Calculated using MOLPROBITY.

	H1	H2	H3	H4	H5	H6	C1	C2	C3	C4	C5	C6
Tetrasad	charide											
β-D-	4.597	3.492	3.651	3.956	3.902	3.896,	97.21	72.60	73.45	69.61	74.56	70.28
Gal <i>p</i> ₁						4.047						
α-D-	5.265	3.800	3.869	4.018	4.280	3.849,	93.16	69.09	69.76	70.15	70.12	70.39
Gal <i>p</i> ₁						4.039						
β-D-	4.433	3.529	3.651	3.934	3.894	3.897,	103.94	71.53	73.32	69.41	74.56	70.34
Galp ₂						4.016						
β-D-	4.558	3.369	3.605	3.639	3.955	-	103.52	73.97	74.91	79.65	75.23	174.11
GlcpA ₃												
α-L-	4.742	3.926	3.746	3.432	4.013	1.245	101.74	71.04	70.87	72.65	69.89	17.24
Rha <i>p</i> ₄												
Heptasa	ccharide											
β-D-	4.599	3.494	3.657	3.963	3.897	3.895,	97.22	72.60	73.41	69.60	74.65	70.36
Galp ₁						4.066						
α-D-	5.272	3.803	3.872	4.019	4.279	4.052,	93.18	69.09	69.99	70.13	70.18	70.41
Gal <i>p</i> ₁						3.856						
β-D-	4.515	3.723	3.875	4.180	3.985	3.883,	103.74	71.39	80.43	74.47	74.41	70.66
Galp ₂						4.001						
β-D-	4.496	3.360	3.564	3.566	3.725	-	103.72	74.08	75.05	79.94	77.11	176.07
GlcpA ₃												
α-L-	4.728	3.927	3.758	3.422	4.018	1.244	101.54	71.08	70.84	72.71	69.72	17.28
Rha <i>p</i> ₄												
α-L-	5.386	4.159	3.912	4.068	3.685,	-	108.92	82.22	77.60	84.93	62.01	-
Araf ₅					3.799							
α-L-	5.270	4.391	3.939	4.281	3.859,	-	110.33	80.87	85.68	83.73	61.97	-
Araf ₆					3.742							
α-D-	5.026	3.802	3.865	3.982	4.066	3.750,	100.93	69.12	69.94	70.05	72.17	62.00
Galp7						3.750						

Supplementary Table 7. ¹H and ¹³C NMR assignments of the AGP tetraand heptasaccharides at 25 °C in D_2O .

С

GH35

Baccell_00872 Baccell_00873

Baccell_00065 Baccell_00066

GH28

PL (Current Polysaccharide Lyase family)

HTCS (Hybrid Two Component System)

GH2/GH43_24

Baccell_00064

SusD-like

SusC-like

Baccell 00061

HTCS

Baccell 00869

SusD-like

Baccell_00062

GH2

Baccell_00063

Baccell_00870 Baccell_00871

GH (Current Glycoside Hydrolase family)

SusC-like

HP

HP (Hypothetical protein)

GH136

GH43_24

GH136

Baccell 00874 Baccell 00875

GH51

Baccell_00067 Baccell_00068

PL27

SusC-like

SusD-like

500

m/z

550

Supplementary Figure 1 RT-PCR of PULs activated by AGP and mass spectrometry of galactosidase reaction products. In a RT-PCR of the SusC genes in B. thetaiotaomicron PULAGPS and PULAGPL were used to determine the upregulation of the two loci in the bacterium cultured on LA-AGP and GA-AGP (biological replicates n = 6). In **b** RT-PCR of susC genes in loci containing GH16 and/or GH43 24 genes in *B. cellulosilyticus* cultured on LA-AGP or GA-AGP (biological replicates n = 3). In **a** and **b** error bars are standard errors of the mean. The SusC genes baccell00838, baccell00841 and baccell00852, which were substantially upregulated by both AGPs, are in a single large PUL whose content is shown in Supplementary Fig. 15. The structure of the PULs containing the other two susC genes, baccell00061 and baccell00871, which were only marginally upregulated, are shown in c. In d [example of independent replicates (n = 2)] the two major products generated by exo-β1,3-galactosidase BT0265 acting on LA-AGP (see Fig. 2) were subjected to LC-MS (see Methods). The mass of the oligosaccharides (relevant peaks shaded according to the adduct ion) were consistent with β1,6-galactobiose and β1,6-galactotriose.

350

400

m/z

450

b

Supplementary Figure 2. Growth profile of wild type and mutants of B. thetaiotaomicron. Wild type (WT) and mutants were cultured on minimal medium containing the appropriate AGP at 10 mg/ml and growth was monitored at 600 nm every 15 min using an automated spectrophotometer (independent replicates n = 3, error bars s.e.m.). **a** shows the growth profiles of mutants in which the two AGP PULs have been deleted (KO), and **b** displays the growth curves of the mutant in which the gene encoding the rhamnosidase BT3686 had been deleted (KO).

Supplementary Figure 3. Crystal structure of BT3674 (PDN 6EX6). a, schematic of BT3674 colour ramped from the N-terminus (blue) to the C-terminus (red). b, the active site amino acids of BT3674 (carbons coloured green) that interact with arabinofuranose (carbons in yellow) are shown with polar contacts depicted by broken black lines. c, an overlay of the active site residues of BT3674 (amino acids coloured green and arabinofuranose yellow) with the *Bifidobacterium longum* β -L-arabinofuranosidase HypBA1 (PDB code 3WKX; amino acids shown in light grey).

Supplementary Figure 4.1H-NMR analysis of the activity of BT3685. Enzyme at 20 μ M was incubated with 5 mM 2,4-dinitrophenyl β -D-galactopyranoside in 20 mM sodium phosphate buffer pH 7.0 implemented with 150 mM NaCl standard conditions in a solvent of D₂O. Spectra were recorded at the indicated times. The data presented are examples of biological replicates (n = 2). Ar means Aromatic ring of 2,4-dintrophenyl β -D-galactopyranoside.

Supplementary Figure 5. Mass spectrometry of oligosaccharides derived from gum arabic arabinogalactan. The structure of the oligosaccharides and their size determined by mass spectrometry are shown in **a**, **b**, **c**, and **d**. Relevant peaks were shaded according to the adduct ion; grey H⁺, mouve, NH₄⁺, pink Na⁺, green K⁺. The tandem mass spectrometry (MS/MS) spectrum of the per-methylated heptasaccharide is shown in **e**, with inset a schematic structure of the oligosaccharide. The blue arrows in the inset illustrate the generation of the fragment ions seen in the MS/MS. 2D NMR in the case of the tetrasaccharide and the heptasaccharide was also used to determine the structure of these oligosaccharides (see **Supplementary Fig. 6**). **a**, **b**, **c** and **d** are examples of independent replicates (n = 2), while collectively, the data in **e** are examples of replicates n = 3.

α-1,4 œ-1,4 $\overline{\checkmark}$ β-1,6 b β-1,6 α-1,4 α-1,3 Af α-1,3 а β-1,6 G7 U3 G2 G1_h d HSQC HSQC ¹ J_{C-1,H-1} 170 Hz 60 60 $A6_5 G7_e$ H2BC H2BC J_{C-1,H-1} 160 Hz 0. HMBC HMBC R4_{6Me} Ô. 70 70 1.5 R4 →U3 ≻G2→G1 С A5 - $R4 \rightarrow U3 \rightarrow G2 \rightarrow G1$ G7→A6 80 80 TOCSY U32 - 91 ROESY DOFCOSY 90 90 ¹³C (ppm) G1_{1a} G1_{1a} G1_{1b} 3.8 G1_{1b} 3.8 e **G7**1 100 100 R41 R41 9 4.0 U3-Ô U31 10 - 00 - 110 G21 G21 2 8 A5 4.2 4.2 110 110 ò 0 A61

Supplementary Figure 6. NMR analysis of the tetra- and heptasaccharides. Derived structures of (a) the¹ te¹/₄ reasaccharide and (b) the heptasaccharide, shown above 2D ¹⁸C HSQC (Heteronuclear Single Quantum Coherence), H2BC and HMBC spectra (red, blue and green, respectively) displaying the assignment of all well-resolved H, ¹⁸C HSQC peaks. (Assign¹³/₄ entry the more congested region are not shown but are listed in Supplementary Table 7). Glycosidic bonds were evident from inter-residue cross-peaks in the HMBC (grey dotted lines) and downfield shifts of the 13C resonance positions of the linked carbon. The methyl group in the 6-position of α -L-Rhap is shown in a separate panel (b, top right). (c) H-1 strip plots from 2D H-H TOCSY [Total Correlation SpectroscopY (red)], ROESY [Rotating-frame Overhauser Effect SpectroscopY (blue)] and DQFCOSY [Double Quantum Filtered COrrelation SpectroscopY (green)] spectra showing the NOE connectivity in the hepta- and tetra-saccharides arising from the glycosidic linkages.(d) Strip plots of the C-1,H-1 peaks from an F1-coupled C HSQC showing the α - and β -anomeric linkages of R4 and G7 (alpha, JC-1,H-1 ~ 170 Hz) and G1 β (beta, 1JC-1,H-1 ~ 160 Hz) in the heptasaccharide and U3 and G2 (beta, 1JC-1,H-1 ~ 160 Hz) in the tetrasaccharide (the U3 and G2 signals were not perfectly resolved in the heptasaccharide). The data are, collectively, examples of replicates n = 3.

¹H (ppm)

4.0

3.5

3.0

5.0

4.5

5.5

3.0

4.0 ¹H (ppm)

4.5

3.5

5.5

5.0

4.7 4.5 5.0

¹H (ppm)

5.4

4.5 4.6 4.7

4.4 4.6

¹H (ppm)

Supplementary Figure 7. Biochemical characterization of two enzymes that are the founding members of previously unknown GH families. **a**, activity of BT3677. The panel shows the release of GlcA from GA- AGP using HPAEC. The conditions were 20 mM sodium phosphate buffer, pH 7.0, $[GA]_0 = 10 \text{ mg/ml}$, $[BT3686]_0 = 1 \mu M$ and $[BT3677]_0 = 1 \mu M$. **b**, shows HPAEC analysis of BT3679 incbuted with LA-AGP, or GA- AGP and WH-AGP. The release of arabinose was visible. **c**, 1H-NMR analysis of the activity of the enzyme. BT3679 was incubated with 4-nitrophenyl α -L-arabinofuranoside (4NPA) in the absence (**ii**) and presence (**iv**) of 2.5 M methanol. As controls 4NPA was incubated in the absence of enzyme plus (**iii**) or minus (**i**) methanol. The reaction products were lyophilised, resuspended in D2O and analysed by 1H-NMR. The signal corresponding to the anomeric proton of methyl α -L-arabinofuranose is labelled Me-1 α . Ar-H refers to a proton in the aromatic ring. H-1 is the anomeric proton in 4NPA (**i** and **iii**) and arabinose in **ii** and **iv**. H-2 (**i** and **iii**) is the proton of C2 of the arabinose in 4-NPA. The figure is representative of biological replicates (n = 2).

Supplementary Figure 8. Enzymes active against the GA-AGP derived heptasacchride. The heptasaccharide substrate was released from GA-AGP by the exo- β 1,3-galactosidase BT0265 and then purified by size exclusion chromatography. Individual B. thetaiotaomicron enzymes (1 µM) were incubated with the glycan (5 mM) for 16 h at 37 °C in 20 mM sodium phosphate buffer, pH 7.0. Monosaccharides and oligosaccharides generated were identified by HPAEC-PAD. BT4157 is a non-specific α -galactosidase derived from RGI-PUL25. The example presented here is representative of biological replicates (n =2).

Supplementary Figure 9. Crystal structure of BT0290 (PDB 6EON). **a**, schematic of BT0290 in which the N-terminal TIM barrel catalytic domain as blue, followed by the three β -sandwich domains coloured green, yellow and red from the N- to C-termini. **b**, the active site amino acids of BT0290 (carbons coloured salmon pink) that interact with galactose (carbons in green) are shown with polar contacts depicted by broken black lines. The electron density map (2Fo – Fc) of the galactose is shown in blue mesh at 1.5 °. **c**, an overlay of the structure of BT0290 (amino acids coloured salmon pink and galactose blue) with the Streptococcus β 1,3-galactosidase BgaC (PDB code 4EBC; amino acids shown in light grey and galactose in salmon pink) showing the catalytic acid base and nucleophile in the active site, and BT0290 Trp215, the proposed specificity determinant, in the +1 subsite. The distance (3.6 Å) between the tryptophan and O1 of β -galactose in the active site is shown as a dashed line.

Supplementary Figure 10. Western blot of BT2064 and BT4662 and SDS-PAGE gel of purified BT0264. Western blot detection of a BT0264 and b a known surface enzyme (BT4662) in LA-AGP/heparin cultured *B. thetaiotaomicron,* after treatment of the bacterial cells with proteinase K (PK+) or untreated (PK-). Purified recombinant BT0264 was also subjected to proteinase treatment to verify the enzyme is sensitive to the proteinase. The regions of the gels presented in **Figure 5a**, where the lanes are fully annotated, are indicated by red rectangles.

QER[VKNPNYNPNATGGNSWK]QTREAEYTSACVVAQNKYAFKYGKLVVRAKIPIEQGGWPAIWSTGNWYEWPLGGEIDFLEFYKKIHANL

CWGGNKR[WDGSWNSANYPITDFTSK]DAKWAEKYHVWMMDWDEKYIRIYLDDVLLNETDLSTTYNKGDHGAGEGGYINPYSNDLEGFG

QLMMLNLAIGGSNGR[PIEATFPLEYR]VDYVRVYQKK

Supplementary Figure 11. Surface proteome (surfome) analysis to determine BACCELL 00844 subcellular protein localiza on in B. thetaiotaomicron. (a) Experimental workflow used for analysis of the *Bacteriodes* thetaiotaomicron surfome. Extracted ion chromatograms of the YEEGFQR tryp c pep de, which is in the BACCELL 00844-expressing *B. thetaiotaomicron* strain (**b**), but absent in wild-type *B. thetaiotaomicron* (c). (d) Sequence of Baccell 008444 with the five pep des, iden fied by mass spectrometry, that are unique to this enzyme indicated in red between square brackets. The data in **b** and **c** are examples of independent replicates (n = 2).

Supplementary Figure 12. Degradation pathways of GA-AGP that resulted in the limit products generated by *B. thetaiotaomicron* and *B. cellulosilyticus*. **a**, the enzyme systems that degrade the heptasaccharide in GA-AGP that resulted in the limit products observed in the two organisms. **b**, **c**, structures of the limit products produced by *B. thetaiotaomicron* and *B. cellulosilyticus*, respectively. The smaller product generated by *B. cellulosilyticus* reflects the use of the LU pathway in which the GH105 unsaturated glucuronidase Baccell00857 can cleave its target linkage when Gal at the +1 subsite of the enzyme is decorated at O4. The α -Gal is released from the oligosaccharide by the GH97 α -galactosidase Baccell00859, which is encoded by the B. cellulosilyticus AGP PUL. The data in are examples of biological replicates (**a**, n = 4; **b** and **c**, n = 2).

Supplementary Figure 13. Full TLC plate showing the band corresponding to the GA-AGP- derived limit products subjected to mass spectrometry. The heptasacchride shown in Supplementary Fig. 12a was incubated with cell free extracts of (a) *B. cellulosilyticus* and (b) *B. thetaiotaomicron* for 16 h at room temperature. The region of the two TLC plates containing the single oligosaccharide species displayed in Supplementary Fig. 12b and 12c are identified by a red rectangle. The monosacchrides gerated by the cell-free extracts are identified as rhamose (Rha), galactose (Gal) and 4,5anhydro-galactose (4,5anhydro-Gal).

Supplementary Figure 14. Genomic view of *B. thetaiotaomicron* PULAGPL and microsyntenic regions in the species studied in this work.

Protein-coding genes are depicted by colored rectangles to highlight the following functional modules: GHs in light pink, PLs in dark pink, HTCSs regulators in cyan, SusC transporters in purple, SusD outer membrane proteins in orange, peptidases in gold, integrases in grey. Genes are represented either above or below a central black line to represent the coding strand. The central balck line is dotted to indicate a large genomic region of unknown genes (locus tags indicated above) which has not been represented. When PUL genes are split across several scaffolds, due to incomplete genome assembly, the scaffold limits are indicated by vertical red bars. A blue arrow shows the translocation of a gene from PUL_{AGPS} into the *B. finegoldii* PUL.

Supplementary Figure 15. Genomic view of B. thetaiotaomicron PUL_{AGPS} and microsyntenic regions in the species studied in this work. Protein-coding genes are depicted by colored rectangles to highlight the following functional modules: GHs in light pink, PLs in dark pink, HTCSs regulators in cyan, SusC transporters in purple, SusD outer membrane proteins in orange. Genes are represented either above or below a central black line to represent the coding strand. When PUL genes are split across several scaffolds, due to incomplete genome assembly, the scaffold limits are indicated by vertical red bars. *B. cellulosilyticus DSM 14838* genomic fragments were ordered according to *B. cellulosilyticus WH2* complete assembly (not shown). A blue arrow shows the translocation of a gene usually found in PUL_{AGPL} (in *B. thetaiotaomicron* and *B. finegoldii*) close to PUL_{AGPS} in *B. cellulosilyticus* (which do not have a PUL_{AGPL}), and a missing gene model in *B. xylanisolvens*. PULs were represented for species that displayed at least two orthologous and microsyntenic CAZymes.