SUPPLEMENTARY INFORMATION FOR:

Estimating the effect size of surgery to improve walking in children with cerebral palsy from retrospective observational clinical data

Apoorva Rajagopal^{1*}, Łukasz Kidziński², Alec S. McGlaughlin², Jennifer L. Hicks², Scott L. Delp^{1,2}, Michael H. Schwartz^{3,4}

¹Department of Mechanical Engineering, Stanford University, Stanford, CA, USA

²Department of Bioengineering, Stanford University, Stanford, CA, USA

³Center for Gait and Motion Analysis, Gillette Children's Specialty Healthcare, St. Paul, MN,

USA

⁴Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA

* Please direct correspondences to Apoorva Rajagopal (apoorvar@stanford.edu)

APPENDIX Equations to implement propensity and regression models

Propensity score

The propensity score (p) for a limb is the probability of that limb undergoing a specified treatment (T) conditioned on pre-treatment variables (X). For the *surgery* model, the specified treatment assignment was a SEMLS (i = 1), and for the *control* model, the treatment assignment was only conservative treatment (i = 0):

$$p = P(T = i|X). \tag{A1}$$

Feature selection

The l_1 -regularized model error was defined as:

$$J = \sum_{k} w_{k} (y_{k} - (c_{0} + \tilde{c}^{T} \tilde{x}_{k}))^{2} + \lambda |\tilde{c}|, \qquad (A2)$$

where

$$w_k = \max\left(\frac{1}{p_k}, 20\right)$$

 $y_k = \text{GDI}$ at follow-up visit for limb k $\tilde{x}_k = \text{vector of 0-mean, 1-variance standardized features variables for limb <math>k$ $\tilde{c}, c_0 = \text{unknown feature coefficients and constant term, and}$ $\lambda = \text{regularization weight}$

To select features for the regression models, we chose the largest λ such that the mean 10-fold cross validation error, J, was within 1 standard deviation of the minimum mean cross-validation error. The selected features were those corresponding to the resulting non-zero coefficients, \tilde{c} .

Regression model

The regression coefficients for the chosen features, x^* , were computed as

$$c, c_0 = \operatorname{argmin} \sum_k w_k (y_k - (c_0 + c^T x_k^*))^2.$$
 (A3)

Covariance of the coefficients were computed as

$$\Sigma_{c,c_0} = \sigma^2 (X^{*T} W X^*)^{-1},$$
 (A4)

where X^* is the matrix containing the n_f selected features for all observations, W is a diagonal matrix of observation weights, and

$$\sigma^{2} = \frac{1}{\sum w_{k} - n_{f} - 1} \sum_{k} w_{k} (y_{k} - (c_{0} + c^{T} x_{k}^{*}))^{2}.$$

New predictions

For a new observation with features, x, we estimate outcome, y, as

$$y \sim \mathcal{N} \Big(c_0 + c^T x, \ x^T \Sigma_{c,c_0} x \Big). \tag{A5}$$

SUPPLEMENTARY TABLE S1 Candidate feature variables.

Data Source (data type)	Variables
Kinematics (continuous)	Pelvic tilt – mean; hip flexion– initial contact; hip flexion– foot-off; hip
	flexion- mean extension velocity in stance; hip adduction- initial contact;
	hip rotation– mean; knee flexion– initial contact; knee flexion – mean
	stance; knee flexion – peak extension; knee flexion – peak flexion; knee
	flexion – mean extension velocity in swing; ankle dorsiflexion – initial
	contact; ankle dorsifiexion – peak in stance; ankle dorsifiexion – time of
	peak in stance (normalized); ankle dorsifiexion – peak in swing; foot
Vinction	Dis extension mean stance
Kinetics	hip extension moment – peak stance, nip nexton moment – peak stance;
(continuous)	mp adduction moment – peak stance; ankie plantaritexion moment – peak;
Temporal/Spatial	Parcent goit evelo in stance: percent goit evelo in single stance: welking
(continuous)	speed (normalized): step length (normalized): cadence (normalized): step
(continuous)	length asymmetry: stance asymmetry
Physical exam	Femoral anteversion angle: thigh-foot angle: popliteal angle: knee flexion
(continuous)	contracture: ankle dorsiflexion angle – peak with knee extended: ankle
()	dorsiflexion angle – peak with knee flexed 90° selective motor control
	score; strength score; spasticity score; selective motor control asymmetry;
	strength asymmetry; spasticity asymmetry
Patient history	Age; elapsed time between initial and follow-up gait visit; body-mass
(continuous, binary)	index; diagnosis (triplegic, quadriplegic); delivery weeks premature; walk
	without assistive device $(1/0)$; had previous surgery $(1/0)$; had previous
	selective dorsal rhizotomy (1/0); had previous major orthopedic surgery
	(1/0)
Musculoskeletal model	Peak muscle-tendon lengths for lateral gastrocnemius, soleus, psoas,
(continuous)	semimembranosus, rectus femoris, vastus medialis; peak muscle-tendon
	velocities (z-scores, normalized to typical gait) for lateral gastrocnemius,
T 1' ' 1	soleus, psoas, semimembranosus, rectus femoris, vastus medialis
Low-dimensional	Gait Deviation Index (ipsilateral and contralateral), coordinates of
representations of time	Kinematics projected into 10-dimensional subspace; Gait Deviation index
series data	- Kinetic, muscle-tendon length deviation maex, cooldinates of muscle-
(continuous)	velocity deviation index, coordinates of muscle tendon velocities projected
	into 1-dimensional subspace
Uncoming surgeries	Insilateral or contralateral adductor lengthening gastrocnemius or soleus
(binary)	lengthening hamstring lengthening natellar tendon advance nsoas
(oning)	lengthening rectus femoris transfer distal femoral extension osteotomy
	femoral derotation osteotomy, tibial derotation osteotomy; selective dorsal
	rhizotomy