Supplemental Information

Renal COP9 signalosome deficiency alters CUL3-KLHL3-WNK signaling pathway

Ryan J. Cornelius, Jinge Si, Catherina A. Cuevas, Jonathan W. Nelson, Brittany D.K. Gratreak, Ruggero Pardi, Chao-Ling Yang, David H. Ellison

Table of Contents

Table S1

Figure S1

Figure S2

Figure S3

Figure S4

Table S1. Antibodies used for Western blot and immunofluorescent staining

Target	Figure	Source	ID	App	Dilution
JAB1	1	Santa Cruz	FL-334, SC-9074	IF,	1:50, 1h
				WB	1:1,000, o/n
Calbindin D-28	1, S1, S2	Swant	CB300	IF	1:50-1:200 1h
NHE3	1	Chemicon	MAB3134	IF	1:50, 1h
CUL3	2	Cell Signalling	2759	WB	1:1,000, o/n
NEDD8	2	Cell Signaling	19E3, 2754	WB	1:1,000, o/n
KLHL3*	3	Proteintech	16951-1-AP	WB, IF	1:500, o/n 1:50, o/n
Parvalbumin	3	Swant	GP72	IF	1:50, 1h
WNK4	4, S1	Ellison Lab		WB, IF	1:1,000, 1h, 1:500, 1h
pWNK4 ^{S1196}	4	Ellsion Lab		WB	1:500, o/n
WNK1	4	Ellison Lab		WB	1:1,000, 1h
SPAK	4, S2	Delpire Lab		WB, IF	1:5,000, o/n 1:200 1h
OSR1	4, S2	Delpire Lab		WB, IF	1:5,000, o/n 1:200 1h
pSPAK/pOSR1	4	Millipore	07-2273	WB	1:1,000, o/n
NCC	5	Ellison Lab		WB	1:6,000, 1h
pNCCT53	5	Ellison Lab		WB	1:2,000, o/n
Keap1	3	Millipore	MABS514, c144	WB	1:1,000, o/n
NKCC2	6	Bachmann Lab		WB	1:1,000, o/n
pNKCC2	6	Bachmann Lab		WB	1:1,000, o/n
AQP2	6	Santa Cruz	SC-9882	WB	1:1,000, 1h
Cyclin E	6	Roberts Lab		WB	1:500, 1h
HA	5C	Covance	HA1.1, MMS-101P	WB	1:1,000, 1h

Abbreviations: App, application; WB, Western blot; IF, immunofluorescence; o/n, overnight.

^{*} KLHL3 antibody was incubated in Can Get Signal for WB as stated in methods section.

Figure S1. Stain-free gel imaging. Image of a stain-free gel membrane, shown here as an example of stain-free imaging used for loading control.

A. Control WNK4 WNK4/C KS-*Jab1*^{-/-} WNK4 Control В. SPAK SPAK/Calbindin/DAPI 100 μΜ KS-Jab1^{-/-} SPAK SPAK/C 100 μΜ C. Control OSR1 OSR1/C 100 μΜ KS-*Jab1*⁴-OSR1/Calbindin/DAP 100 μΜ

Figure S2

Figure S2. Co-immunofluorescent staining of WNK4, SPAK, and OSR1 with calbindin.

Immunofluorescent staining of kidney cortex sections from control and KS-*Jab1*^{-/-} mice. WNK4 (A) SPAK (B) and OSR1 (C) localization was examined in kidney cortex by co-staining with the distal nephron marker calbindin. There was low abundance of WNK4, SPAK and OSR1 staining in control mice relative to KS-*Jab1*^{-/-} mice. Staining of KS-*Jab1*^{-/-} mice kidney sections showed protein translocated into puncta in calbindin-positive cells.

Figure S3

Figure S3. Effects of nephron-specific Jab1 deletion on NKCC2, pNKCC2, and AQP2 protein abundance.

Western blot of whole-kidney lysates from control and KS-*Jab1*-/- mice. Immunoblotting was performed with antibodies against the Na-K-2Cl cotransporter (NKCC2), phosphorylated NKCC2 at threonine 96/101 (pNKCC2^{T96/101}), or aquaporin 2 (AQP2). There was no difference in NKCC2 or pNKCC2^{T96/101} protein abundance between KS-*Jab1*-/- and control mice. AQP2 abundance was lower in KS-*Jab1*-/- mice.

Figure S4

Figure S4. Effects of nephron-specific *Jab1* deletion on blood pressure. A) Radiotelemetry was used to measure systolic blood pressure in control and KS- $Jab1^{-/-}$ mice. The tracing (left), using 1 h average values, and the analysis of the mean of the 1 h averages of three dark periods (right) showed that there was no difference between KS- $Jab1^{-/-}$ mice and control mice. Data represent individual values as well as mean \pm SEM (control, n = 5; KS- $Jab1^{-/-}$, n = 5).