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S1 Elastic model of wedge-induced bilayer thickness deformations

Peripheral membrane proteins inserting partially into one lipid bilayer leaflet are expected [1–5] to

induce shape and/or thickness deformations in one lipid bilayer leaflet while only indirectly affecting

the other bilayer leaflet via the coupling between the two leaflets. A physical model describing the lipid

bilayer deformations induced by protein wedges must therefore be able to account for protein-induced

deviations from the preferred membrane shape and thickness in one lipid bilayer leaflet without re-

quiring direct lipid-protein interactions in the other bilayer leaflet. The classic continuum elasticity

theory of protein-induced lipid bilayer deformations [6–10] successfully accounts for the symmetric

lipid bilayer thickness deformations induced by integral proteins spanning the lipid bilayer. Recent

generalizations of the continuum elasticity theory of lipid bilayer membranes [11–17] allow for asym-

metric lipid bilayer deformations and are thus suitable for capturing bilayer-wedge interactions.

To account for the basic phenomenology of bilayer-wedge interactions, we follow here the formalism

developed by Bitbol et al. [14] and describe wedge-induced lipid bilayer deformations using four fields,

h±(x, y) and u±(x, y), capturing height and thickness deformations in the upper (+) and lower (−)

lipid bilayer leaflets, respectively (see Fig. 2 of the main text). Expanding the lipid bilayer elastic

energy, Gbilayer, in terms of the lipid area deformations and the leaflet curvatures up to second order

one finds [14]

Gbilayer =

∫
dxdy

(
f+
0 + f−

0

)
, (S1)

where the upper and lower leaflet energy densities, f±
0 , are given by

f±
0 =

τ

2

(
1 +

u±

a
+

(∇h±)2

2

)
+

Kt

4a2
(u±)2 +

Kb

4
(∇2h±)2 ± KbC0

2
∇2h± ± Kb

2a
(C0 − C ′

0)u
±∇2h±

+
KG

2
det(∂i∂jh

±) + k′a(∇u±)2 + 4k′′aa
2(∇2u±)2 + β

[∇ · (u±∇u±)− a∇2u±
]
, (S2)
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where τ is the membrane tension, a is the thickness of the unperturbed monolayer hydrophobic core,

Kt is the thickness deformation modulus, Kb is the bending rigidity, KG is the Gaussian bending

rigidity, C0 is the intrinsic (spontaneous) curvature, C ′
0 captures the modification of the intrinsic

curvature due to area variations, and the terms k′a, k′′a , and β arise from the first- and second-order

variations in the area per lipid and have the same dimension as the membrane tension. Since the

two lipid bilayer leaflets form a continuous bilayer with no overlaps or voids, the four fields entering

Eq. (S1) must satisfy a continuity constraint. To second order, this continuity constraint is given

by [14]

h+ − h− =
(
u+ + a

) [
1− (∇h+)2

2

]
+
(
u− + a

) [
1− (∇h−)2

2

]
, (S3)

which, to leading order, reduces to Eq. (2) of the main text.

For our minimal elastic model of bilayer-mediated wedge interactions we simplify the general model

in Eq. (S1), as follows. First, we focus on bilayers with vanishing intrinsic curvature, yielding C0 = 0

and C ′
0 = 0 in Eq. (S1). Second, we note that the terms in Eq. (S1) with KG and β as coefficients enter

the energy of wedge-induced lipid bilayer deformations only as boundary terms. Such boundary terms

are expected to contribute to the insertion energy of N-BAR proteins, as well as the energy difference

between different membrane-bound conformational states of N-BAR proteins [1,2] (hence contributing

to the effective parameter εd in the main text). However, for a given N-BAR state (and membrane

topology), these terms do not affect bilayer-mediated interactions between N-BAR proteins due to

the H0 helices. We therefore set KG = 0 and β = 0 in Eq. (S1). Third, the coefficients k′a and k′′a

in Eq. (S1) modify how the membrane tension and bilayer bending rigidity couple to leaflet thickness

deformations. It has been argued [14] that k′′a ≈ 0 but that k′a may produce a considerable increase

in the effective value of the membrane tension, which could make the dependence of H0-induced N-

BAR interactions on membrane tension more pronounced. However, it has also been found, in the

case of integral membrane proteins, that the term with coefficient k′a in Eq. (S1) is not necessary

for a continuum elastic theory of the form in Eq. (S1) to successfully predict the basic experimental

phenomenology of bilayer-protein interactions [7, 9, 18–24] and to yield excellent agreement with the

results of MD simulations [25]. We therefore set here k′a = 0 and k′′a = 0, while noting that detailed

numerical estimates of the magnitude of the bilayer-mediated N-BAR interactions induced by the H0

helices, and the resulting optimal H0 separations, may require inclusion of these terms. Finally, we

neglect the terms in Eq. (S1) that are independent of the membrane deformation fields, since such

terms do not contribute to the energy cost of wedge-induced lipid bilayer deformations. Equation (S1)
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thus reduces to

G =
1

2

∫
dxdy

{
Kb

2

[ (∇2h+
)2

+
(∇2h−

)2 ]
+

Kt

2

[(
u+

a

)2

+

(
u−

a

)2 ]

+ τ

[
u+

a
+

u−

a

]
+

τ

2

[
(∇h+)2 + (∇h−)2

]}
, (S4)

which is equivalent to Eq. (1) of the main text.

As noted in the main text, insertion of amphipathic protein wedges can substantially decrease

the thickness of lipid bilayers [1–4, 26–32]. In the case of symmetric bilayer thickness deformations,

u+ = u−, Eq. (S4) with Eq. (S3) reduces to the classic elastic model of bilayer-protein interactions for

integral membrane proteins [5,7,9,18–24,33]. In this model, bilayer thickness and bilayer midplane de-

formations mathematically decouple from each other to leading order. The model predicts (strongly)

favorable bilayer-mediated protein interactions at small protein separations, yielding a general physical

mechanism for the organization of integral membrane proteins [5, 9, 18–22, 33]. In contrast, amphi-

pathic protein wedges only directly interact with one lipid bilayer leaflet, which we take to correspond

to the upper leaflet (see Fig. 2 of the main text). As a result, protein wedges are expected [1–5] to

asymmetrically perturb the lipid bilayer with, for large enough wedge immersion depths, substantial

compression of the leaflet into which the wedge is inserted, but only minor leaflet thickness defor-

mations in the opposing leaflet. In analogy to the assumption of hydrophobic matching underlying

bilayer-mediated interactions between integral membrane proteins [5,9,18–22,33], it is thereby assumed

that the upper lipid bilayer leaflet compresses so as to maintain favorable lipid-wedge interactions as

the wedge immersion depth is increased [1, 2]. While Eq. (S4) can account for deformations in both

u+ and u−, we thus simplify our model by assuming weak leaflet thickness deformations in the lower

leaflet, and set u− = 0. Equation (S4) then reduces to Eq. (3) of the main text,

G =
1

2

∫
dxdy

{
Kb

[ (∇2h+
)2 − (∇2h+

) (∇2u+
)
+

1

2

(∇2u+
)2 ]

+
Kt

2

(
u+

a

)2

+ τ
u+

a
+ τ

[(∇h+
)2 − (∇h+

) · (∇u+
)
+

1

2

(∇u+
)2]}

, (S5)

which we employed for all the calculations described here. Note that, via Eq. (S3), the field h− is

completely specified by u+ and h+ which, in turn, are determined through minimization of Eq. (S5)

with respect to u+ and h+. From an intuitive perspective, and in analogy to integral membrane

proteins [5, 7, 9, 18–24, 33], the field u+ and its derivatives represent wedge-induced deformations of

the bilayer hydrophobic thickness from its unperturbed (flat) state, while the (2nd-order) derivatives

of h+ can be viewed as representing wedge-induced curvature deformations of the lipid bilayer from

its unperturbed (flat) state. Contrary to integral membrane proteins, however, the elastic energies

governing u+ and h+ do not decouple from each other in Eq. (S5).
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The model in Eq. (S5) extends [12–14,17] the classic coarse-grained models of bilayer-protein inter-

actions for integral membrane proteins [5, 7, 9, 18–24,33] and protein scaffolds [34–40] to amphipathic

protein wedges. Following previous studies [1–4, 26–37, 41–45], Eq. (S5) assumes that amphipathic

protein wedges such as the H0 helices of N-BAR proteins can deform the lipid bilayer shape and

thickness. The simplicity of our model means that our results only rely on generic features of bilayer-

wedge interactions, and may therefore apply to a variety of different systems [41–45]. However, the

simplicity of our model also means that it does not capture the detailed molecular properties of

bilayer-wedge interactions. For instance, wedges may induce lipid tilt. At the cost of introducing

additional assumptions about how wedge-induced lipid tilt deformations depend on the key structural

parameters characterizing bilayer-wedge interactions [1, 2, 34, 35, 46–50], wedge-induced lipid tilt de-

formations could be included in the framework employed here [15–17, 51, 52]. In the case of integral

membrane proteins, previous work has shown that protein-induced lipid bilayer shape and thickness

deformations are sufficient to explain the observed clustering of a variety of proteins [5,9,18–22,33], to

successfully predict the basic experimental phenomenology of bilayer-protein interactions [7,9,18–24],

and to produce excellent agreement with the results of MD simulations on protein-induced lipid bilayer

deformations [25], without invoking additional molecular degrees of freedom such as lipid tilt deforma-

tions. It remains to be seen under what circumstances lipid tilt deformations may play a crucial role

in bilayer-mediated interactions between amphipathic protein wedges. Our model of bilayer-mediated

wedge interactions is not designed to allow prediction of the effective intrinsic curvature produced by

protein wedges at the bilayer-wedge interface, which can be obtained from complementary modeling

approaches [34, 35, 46–49] (see Sec. S3).

S2 Analytic solution of bilayer-mediated wedge interactions

In this section we focus on the most straightforward scenario of two H0 helices facing each other. In this

case, the system can be approximated as being effectively one-dimensional, with the spatial coordinate

r being measured perpendicular to the (projected) helix axes (see Fig. S1). We denote the left and

right helices by “wedge 1” and “wedge 2,” respectively. For convenience we choose the origin r = 0 of

the coordinate system to be equidistant from the two helix axes, i.e., the two helix axes are located at

r = ±d/2. We denote the helix radius by r0 and the helix length by L. In our one-dimensional model,

the bilayer-mediated wedge interactions are set by the wedge-induced deformations of the lipid bilayer

region separating the two wedges, which corresponds to −d/2+ r0 < r < d/2− r0. In the following we

provide the exact analytic solution of the interaction potential between H0 helices for this effectively

one-dimensional system.
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Figure S1: Schematic of the coordinate system used for the analytic calculation of the interaction

potential between protein wedges in the face-on configuration (see also Fig. 2 of the main text). We

approximate the system as being effectively one-dimensional, with the only relevant spatial dimension

for bilayer-mediated wedge interaction being the distance d separating neighboring amphipathic helices

perpendicular to the helix axes. The schematic shows a cross section of the system perpendicular to

the helix axes. The function h−(r) is completely specified by the functions h+(r) and u+(r) according

to Eq. (S3) with u− = 0.

Replacing the fields h+(x, y) and u+(x, y) in Eq. (3) of the main text by the fields h+(r) and u+(r)

we obtain the coupled Euler-Lagrange equations (see Appendix A)⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Kb

(
2
d4h+

dr4
− d4u+

dr4

)
− τ

(
2
d2h+

dr2
− d2u+

dr2

)
= 0 ,

Kb

(
d4u+

dr4
− d4h+

dr4

)
+

Kt

a2
u+ − τ

(
d2u+

dr2
− d2h+

dr2

)
+

τ

a
= 0

(S6)

specifying the extrema of Eq. (3) of the main text. To analytically solve Eq. (S6) we note that the first

equation in Eq. (S6) can be used to eliminate the terms in the second equation in Eq. (S6) involving

h+. The solution of the system of differential equations in Eq. (S6) can therefore be obtained by

solving, separately, two 4th-order ordinary differential equations. We thus find the general solution

ū+(r) = A0e
√
ν+r +A1e

−
√
ν+r +A2e

√
ν−r +A3e

−
√
ν−r , (S7)

h+(r) =
ū+(r)

2
+B0 +B1r +B2e

r/λt +B3e
−r/λt , (S8)

where, for mathematical convenience, we have introduced the function [21]

ū+ = u+ +
τa

Kt
(S9)

and defined an inverse square decay length

ν± =
1

2

[
λ−2
t ± (

λ−4
t − λ−4

s

)1/2]
, (S10)
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with the characteristic length scales

λt =

(
Kb

τ

)1/2

and λs =

(
Kba

2

8Kt

)1/4

(S11)

arising from the competition, in Eq. (3) of the main text, between the leaflet bending terms and the

tension and leaflet thickness deformation (Hookian spring) terms, respectively.

The coefficients Ai and Bj with i = 0, 1, 2, 3 and j = 0, 1, 2, 3 in Eqs. (S7) and (S8) must be

determined from the boundary conditions on the lipid bilayer. Following previous work on bilayer-

protein interactions for integral membrane proteins [9,23,24], we first consider the boundary conditions

on h+(r) and its derivative:

h+
∣∣
r=−d/2+r0

= H1 , h+
∣∣
r=d/2−r0

= H2 , (S12)

dh+

dr

∣∣∣∣
r=−d/2+r0

= H ′
1 ,

dh+

dr

∣∣∣∣
r=d/2−r0

= H ′
2 , (S13)

where H1,2 and H ′
1,2 are constants. Since Eq. (3) of the main text is invariant under constant shifts

in h+, we can set H1 = 0 without loss of generality. We determine the value of H2 by minimizing the

energy in Eq. (3) of the main text with respect to H2, resulting in[
Kb

(
2
d3h+

dr3
− d3u+

dr3

)
− τ

(
2
dh+

dr
− du+

dr

)]
r=d/2−r0

= 0 . (S14)

The above two boundary conditions fixing H1,2 amount [23,24] to imposing a condition of zero vertical

force on the two protein wedges (see Appendix A). As expected [9, 23, 24], we find that Eq. (S14)

yields H1 = H2 for identical wedges. If the wedges are, for instance, at different immersion depths,

Eq. (S14) generally yields H1 �= H2. If, instead of Eq. (S14), we do not allow H2 to vary but assume

that the two wedges are always fixed at the same height so that H1 = H2, we obtain similar results

for bilayer-mediated wedge interactions as described in the main text. The values of H ′
1,2 in Eq. (S13)

are determined by the properties of the particular amphipathic protein wedge and lipid bilayer under

consideration, a point we return to in Sec. S3. As noted in the main text, N-BAR proteins interact

with lipid bilayers not just through a single H0 helix, but multiple interaction sites connected by a

BAR domain. We therefore assume in Eqs. (S12) and (S13) that interactions between a given H0

helix and the remainder of the N-BAR protein prevent the H0 helix from tilting in response to bilayer-

mediated wedge interactions [9,23,24]. For general protein wedges, which are not necessarily attached

to a larger membrane-bound molecule, this assumption may not be warranted. In this case, Eqs. (S12)

and (S13) would need to be modified to allow for a finite tilt angle, which can be obtained by imposing

conditions of zero torque [23, 24] on the protein wedges (see Appendix A), and Eqs. (S12) and (S13)

would need to be generalized to two-dimensional surfaces [23, 24] since one-dimensional systems are

not expected to be able to capture curvature-mediated interactions between tilting protein wedges.
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In analogy to Eqs. (S12) and (S13), and previous work on bilayer-protein interactions for integral

membrane proteins [5, 7, 9, 21, 33], we obtain the remaining boundary conditions for the solution in

Eqs. (S7) and (S8) by specifying u+(r) and its derivative along the bilayer-wedge interfaces (see

Appendix A):

u+
∣∣
r=−d/2+r0

= U1 , u+
∣∣
r=d/2−r0

= U2 , (S15)

du+

dr

∣∣∣∣
r=−d/2+r0

= U ′
1 ,

du+

dr

∣∣∣∣
r=d/2−r0

= U ′
2 , (S16)

where U1,2 and U ′
1,2 are constants. As discussed in the main text, the wedge immersion depths U1,2

(denoted by U in the main text) are key parameters for bilayer-mediated wedge interactions, which we

estimate for the H0 helices of N-BAR proteins based on data obtained from EPR experiments [1,2]. In

the context of integral membrane proteins, there has been some debate [5,7,11–14,21,25,33,53–58] as

to whether the derivatives of the bilayer thickness deformation field along the bilayer-protein interface

should be regarded as fixed, or whether the bilayer-protein interaction energy should be minimized

with respect to these derivatives. We return to the values of U ′
1,2 in Sec. S3.

Equations (S12)–(S16) allow us to determine the coefficients Ai and Bj in Eqs. (S7) and (S8) for

the lipid bilayer region separating the two wedges and, hence, completely specify the analytic solution

in Eqs. (S7) and (S8) for this region of the lipid bilayer. For convenience, we thereby numerically

solve, for a given set of values of H ′
1,2, U1,2, and U ′

1,2 (see Sec. S3), for the coefficients Ai and Bj

in Eqs. (S7) and (S8). In Fig. S2 we show examples of the resulting wedge-induced lipid bilayer

deformation profiles. Note that H1 = H2 = 0 for the two identical wedges considered in Fig. S2A and

Fig. S2B, while Eq. (S14) yields H1 �= H2 for the two wedges at distinct immersion depths considered

in Fig. S2C. Figure S2 shows, in addition to the lipid bilayer region separating the two wedges, also

the lipid bilayer regions extending from the two wedges to r → ±∞. For these two solution domains,

we use boundary conditions for the bilayer-wedge interfaces analogous to those used for the bilayer

region separating the two wedges. We take the lipid bilayer to be flat as r → ±∞ with all lipid bilayer

deformations decaying to zero. In particular, we enforce

u+
∣∣
r=±∞ = − τa

Kt
,

du+

dr

∣∣∣∣
r=±∞

= 0 ,
dh+

dr

∣∣∣∣
r=±∞

= 0 , (S17)

implying A1 = A3 = B1 = B3 = 0 for the lipid bilayer region extending to r → −∞, and A0 = A2 =

B1 = B2 = 0 for the lipid bilayer region extending to r → ∞. For the schematics in Fig. 2A of the

main text and Fig. S1 we calculated the deformation profiles as in Fig. S2A with d = 5 nm. For the

schematic in Fig. 2B of the main text we proceeded as for Fig. S2A but with d = 2 nm, and for the

schematics in the insets of Fig. 3 of the main text we proceeded as for Figs. S2A and S2B but with

d = 3 nm.
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Wedge 1 Wedge 2

r

h+(r ), h-(r )

u-= 0

a+u+

a

h+

h-

Figure S2: Wedge-induced lipid bilayer deformation profiles at d = 5 nm for (A) U1 = U2 = −0.9 nm,

(B) U1 = U2 = 0 nm, and (C) U1 = 0 nm and U2 = −0.9 nm, obtained from the analytic solution in

Eqs. (S7) and (S8), together with Eq. (2) of the main text, using the same parameter values as in the

main text with τ = 0. The boundaries of the lipid bilayer solution domains are indicated by dashed

lines. Scale bar, 2 nm.

The general analytic solution in Eqs. (S7) and (S8) allows calculation of the energy of bilayer-

mediated wedge interactions. It is thereby convenient to use the Euler-Lagrange equations in Eq. (S6)

to transform the energy in Eq. (3) of the main text into the form

G =L

∫
dr

{
∇
[
Kb

2

(
∇h+∇2h+ − h+∇3h+ − 1

2
∇h+∇2ū+ +

1

2
h+∇3ū+ +

1

2
∇ū+∇2ū+ − 1

2
ū+∇3ū+

+
1

2
ū+∇3h+ − 1

2
∇ū+∇2h+

)
+

τ

2

(
h+∇h+ − 1

2
h+∇ū+ +

1

2
ū+∇ū+ − 1

2
ū+∇h+

)]
− τ2

4Kt

}
,

(S18)

where, for simplicity, we focus on the effectively one-dimensional system considered here with ∇ ≡ d
dr .

The integrand in Eq. (S18) can be transformed back into the integrand in Eq. (3) of the main text by

noting that, in terms of ū+(r), the Euler-Lagrange equations in Eq. (S6) take the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E1 ≡ Kb

(
2
d4h+

dr4
− d4ū+

dr4

)
− τ

(
2
d2h+

dr2
− d2ū+

dr2

)
= 0 ,

E2 ≡ Kb

(
d4ū+

dr4
− d4h+

dr4

)
+

Kt

a2
ū+ − τ

(
d2ū+

dr2
− d2h+

dr2

)
= 0

. (S19)

Equation (3) of the main text is then obtained by adding to Eq. (S18) the term

1

4

[
E1h

+(r) + E2ū
+(r)

]
, (S20)

8



which is identical to zero for the analytic solution in Eqs. (S7) and (S8), and replacing ū+(r) by u+(r)

via Eq. (S9).

We use Eq. (S18), together with Gauss’s theorem, to analytically calculate the wedge interaction

energy associated with the solution in Eqs. (S7) and (S8) by evaluating

G =L

[
Kb

2

(
∇h+∇2h+ − h+∇3h+ − 1

2
∇h+∇2ū+ +

1

2
h+∇3ū+ +

1

2
∇ū+∇2ū+ − 1

2
ū+∇3ū+

+
1

2
ū+∇3h+ − 1

2
∇ū+∇2h+

)
+

τ

2

(
h+∇h+ − 1

2
h+∇ū+ +

1

2
ū+∇ū+ − 1

2
ū+∇h+

)]r=d/2−r0

r=−d/2+r0

.

(S21)

Upon subtracting from the total energy of wedge-induced bilayer deformations in Eq. (S21) the con-

tribution to G not due to interactions,

G0 = lim
d→∞

G(d) , (S22)

we obtain from Eq. (S21) the wedge interaction potential used for Figs. 3, 5, and 6 of the main text.

S3 Numerical values of model parameters

In our minimal elastic model of bilayer-mediated wedge interactions, the shape of the H0 helices of

N-BAR proteins is specified by the H0 length L and the H0 radius r0. As stated in the main text, we

used the value L ≈ 3 nm [50]. With an approximate helix length of 0.15 nm per amino acid (3.6 amino

acids per turn of the α-helix, with a turn length ≈ 0.54 nm [59]), L ≈ 3 nm yields a wedge length of

approximately 20 amino acids. We used a H0 helix radius r0 ≈ 0.6 nm typical for α-helices [59]. EPR

experiments [1, 2] suggest U1,2 ≈ 0 nm for the shallow immersion state of the H0 helices of N-BAR

proteins and U1,2 ≈ −0.9 nm for the deep immersion state of the H0 helices of N-BAR proteins. For

the effective material parameters characterizing lipid bilayer elastic properties, we used the values

Kb ≈ 20 kBT , Kt ≈ 60 kBT/nm
2, and a ≈ 2.0 nm, which are typical for phospholipid bilayers [9, 60].

In Eq. (S16), the derivatives of the bilayer thickness deformation field along the bilayer-protein

interface are specified by U ′
1,2. As noted in Sec. S2, there has been some debate [5,7,11–14,21,25,33,

53–58, 61], in the context of integral membrane proteins, as to whether the derivatives of the bilayer

thickness deformation field along the bilayer-protein interface should be regarded as fixed, or whether

the bilayer-protein interaction energy should be minimized with respect to these derivatives. Previous

studies have shown that, with the derivatives of the bilayer thickness deformation field along the

bilayer-protein interface set to zero, the classic elastic model of lipid bilayer thickness deformations

due to integral membrane proteins can explain the basic experimental phenomenology of the gating
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Figure S3: Interaction potential Gint between two parallel H0 helices of neighboring N-BAR proteins

as in Fig. 3 of the main text but using the indicated values of U ′
1 = U ′

2 = U ′ for the measured

shallow (U ≈ 0 nm) and deep (U ≈ −0.9 nm) membrane immersion states of the H0 helices of N-BAR

proteins [1, 2], with (A) both H0 helices in the same immersion state and (B) one H0 helix in the

shallow and one H0 helix in the deep immersion state.

of gramicidin channels [7, 62, 63] and the mechanosensitive channel of large conductance [6, 9, 64, 65].

It has also been found [25] that, if the bilayer-protein interaction energy is optimized with respect to

the derivatives of the bilayer thickness deformation field along the bilayer-protein interface, the classic

elastic model of lipid bilayer thickness deformations due to integral membrane proteins can produce

excellent agreement with the results of MD simulations of protein-induced lipid bilayer deformations.

Optimization of the bilayer-protein interaction energy with respect to the derivatives of the bilayer

thickness deformation field along the bilayer-protein interface thereby resulted in contact slopes of the

bilayer thickness deformation field that tended to be small and positive [25], with some variability

along the bilayer-protein interface.

In Fig. S3 we examine the dependence of the bilayer-mediated wedge interactions predicted by our

model on U ′
1,2. We thereby set U ′

1 = U ′
2 ≡ U ′ and, based on the aforementioned studies of bilayer-

protein interactions for integral membrane proteins [6,7,9,62–65], perturb U ′ about U ′ ≈ 0. With the

possible exception of lipid bilayers enriched in lipids with substantial intrinsic curvature [66], wedge-

induced leaflet thickness deformations are expected to primarily compress or expand the hydrophobic

thickness of the lipids surrounding the protein wedge, rather than primarily perturb the hydrophobic

thickness of lipids further away from the protein wedge with little compression or expansion of the
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hydrophobic thickness of the lipids surrounding the protein wedge. While, for completeness, we allow

in Fig. S3 for non-zero U ′ for the shallow H0 immersion state with U ≈ 0, we therefore expect that

protein wedges with U ≈ 0 show U ′ ≈ 0. We find that, for the parameter values in Fig. S3, the

strength of unfavorable bilayer-mediated wedge interactions for the shallow immersion state of the H0

helices [1, 2] tends to increase with increasing U ′. Furthermore, Fig. S3 suggests that an increase in

U ′ results in a slight increase in the characteristic separation of two H0 helices in the deep immersion

state predicted by our model. We also find that the magnitude of the dimerization energy of the H0

helices in the deep immersion state found in the main text increases with decreasing U ′. Finally, we

note from Fig. S3 that U ′ < 0 can, in principle, produce a non-monotonic interaction potential also for

cases in which at least one H0 helix is in the shallow immersion state with U ≈ 0, provided that |U ′|
is large enough. As noted above, however, we generally do not expect that protein wedges with U ≈ 0

show substantial |U ′|. We thus find from Fig. S3 that the basic form of the predicted bilayer-mediated

interaction potentials between protein wedges is robust with respect to variations in U ′. We follow

here previous work on the experimental phenomenology of integral membrane proteins [6, 7, 9, 62–65]

and set U ′
1 = U ′

2 = U ′ ≈ 0 independent of the wedge immersion depth, while noting that detailed

numerical estimates of the magnitude of bilayer-mediated wedge interactions may require a closer

examination of the values of U ′
1,2.

Finally, we consider the values of the lipid bilayer leaflet gradients H ′
1,2 in Eq. (S13). A simple

estimate of H ′
1,2 can be obtained from the helical wheel of the H0 helices of endophilin [1]. To this end,

we define the hydrophobicity angle of an amphipathic helix, α, as one-half of the angle associated with

the hydrophobic portion of the helical wheel of the amphipathic helix. The helical wheel of the H0

helices of endophilin suggests that the boundaries between the hydrophobic and hydrophilic portions of

the H0 helix roughly lie at residues 7-14 and residues 2-9 or 9-16 in the helical wheel of the H0 helix in

Fig. 2B of Ref. [1], yielding a range α ≈ 70◦–80◦ for α. We expect that it is energetically favorable for

h+(r) to connect to the H0 helix at the boundaries of the hydrophobic portion of the helical wheel so

that the interfaces between lipid headgroups and lipid tails match the boundaries of the hydrophobic

portion of the α-helix, with the normals of h+(r) at the lipid-helix interfaces being parallel to the

helix radius at that boundaries. On this basis we obtain the estimate H ′
1,2 = − tan (90◦ − α), yielding

− tan 20◦ � H ′
1,2 � − tan 10◦ for the H0 helices of endophilin.

For a more detailed estimate of H ′
1,2 in Eq. (S13) we draw on a previously-developed approach

for describing wedge-induced lipid bilayer deformations [34, 35, 46, 48], which is complementary to

our minimal elastic model of bilayer-mediated wedge interactions. In this modeling approach, lipid

bilayers are described as three-dimensional continuous elastic materials, which deform as rigid, rodlike
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inclusions representing protein helices are inserted into their interior. Importantly, this modeling

approach yields estimates of the membrane curvature induced by rodlike inclusions as a function of

helix immersion depth [46], which, as described below, we can use to estimate H ′
1,2 in Eq. (S13).

In particular, we can estimate H ′
1,2 in Eq. (S13) based on Fig. 7 of Ref. [46], which provides a

comprehensive set of estimates of the intrinsic (spontaneous) curvature induced by a rodlike inclusion

as a function of the position of the center of the inclusion above the bilayer midplane, zinc, for lipid

bilayer leaflets that are laterally coupled (no lipid exchange) as well as laterally uncoupled (lipid

exchange permitted). Quantitative studies of membrane remodeling are typically based on in vitro

assays such as in Refs. [1,2,41,67–71], for which the scenario of laterally coupled lipid bilayer leaflets is

thought to be most relevant [46]. We therefore focus here on the results in Fig. 7 of Ref. [46] pertaining

to laterally coupled lipid bilayer leaflets. The computations yielding Fig. 7 of Ref. [46] were performed

for a lipid bilayer with a total thickness of each unperturbed lipid bilayer leaflet equal to 2 nm,

with one third of the thickness corresponding to the lipid headgroups and the remaining two thirds

corresponding to the lipid tails, yielding an unperturbed hydrophobic tail length equal to 4/3 nm. To

translate the results in Fig. 7 of Ref. [46] to the unperturbed lipid tail length a = 2 nm considered

here we calculate the insertion ratio R ≡ |U |/a. As mentioned above, EPR experiments [1,2] suggest

U ≈ 0 nm for the shallow immersion state of the H0 helices of N-BAR proteins and U ≈ −0.9 nm

for the deep immersion state of the H0 helices of N-BAR proteins. As a result, we obtain R ≈ 0%

for the shallow H0 immersion state and R ≈ 45% for the deep H0 immersion state, translating to

U ≈ 0 and |U | ≈ 0.6 nm for the shallow and deep H0 immersion states for the lipid bilayer thickness

considered in Fig. 7 of Ref. [46]. We thus obtain zinc ≈ 1.3 nm and zinc ≈ 0.73 nm for the shallow

and deep H0 immersion states. Using these estimates of zinc, together with the computational results

in Fig. 7 of Ref. [46] for laterally coupled lipid bilayer leaflets, we estimate that the H0 helices in the

shallow immersion state yield an intrinsic curvature c0 ≈ 0.33 nm−1, while the H0 helices in the deep

immersion state yield c0 ≈ 0.07 nm−1. A wedge-induced intrinsic curvature c0 can be viewed as a

circular arc curving the upper lipid bilayer leaflet at the interface between lipid heads and lipid tails,

with radius of curvature rc = 1/c0 and an approximate projected width 2r0 along the r-axis (Fig. S1).

We hence obtain the estimate H ′
1,2 = − tan(sin−1(r0c0)), suggesting that H ′

1,2 ≈ − tan 11◦ for the

shallow H0 immersion state and H ′
1,2 ≈ − tan 2.4◦ for the deep H0 immersion state.

In summary, the above two approaches for estimating H ′
1,2, based on the hydrophobicity angle

of the H0 helices of endophilin [1] and a three-dimensional elastic model of protein wedging [46],

suggest that − tan 20◦ � H ′
1,2 � − tan 10◦ and − tan 11◦ � H ′

1,2 � − tan 2◦, respectively. A crucial

difference between these two approaches for estimating H ′
1,2 is that the former approach implies a
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Figure S4: Interaction potential Gint between two parallel H0 helices of neighboring N-BAR proteins

as in Fig. 3 of the main text but using the indicated values of H ′
1 and H ′

2 for the measured shallow

(U ≈ 0 nm) and deep (U ≈ −0.9 nm) membrane immersion states of the H0 helices of N-BAR

proteins [1, 2], with (A) both H0 helices in the same immersion state and (B) one H0 helix in the

shallow and one H0 helix in the deep immersion state.

constant H ′
1,2, while the latter approach implies that H ′

1,2 changes with wedge immersion depth. In

particular, shallow wedge immersion depths are expected to yield increased values of |H ′
1,2| [46]. The

maximum intrinsic curvature in Fig. 7 of Ref. [46] is given by c0 ≈ 0.8 nm−1, which corresponds

to H ′
1,2 ≈ − tan 29◦ in our model. To explore the effect of the value of H ′

1,2 on bilayer-mediated

wedge interactions, we recalculated the energy potentials for lipid bilayer-mediated wedge interactions

predicted by our model for a range of different values of H ′
1,2 (see Fig. S4). In particular, we considered

− tan 12◦ ≤ H ′
1,2 ≤ − tan 1◦ for H0 helices in the deep immersion state, and − tan 29◦ ≤ H ′

1,2 ≤
− tan 3◦ for H0 helices in the shallow immersion state. For all scenarios considered, we find that the

main effect of increasing |H ′
1,2| is to yield a more pronounced repulsive component of the bilayer-

mediated wedge interactions predicted by our model. However, we also find that, similarly as for U ′ in

Fig. S3, the basic form of the predicted bilayer-mediated interaction potentials between protein wedges

is robust with respect to variations in H ′
1,2. For the sake of simplicity in our model assumptions,

we therefore chose a value of H ′
1,2 intermediate between the approximate minimum and maximum

values H ′
1,2 ≈ − tan 15◦ and H ′

1,2 ≈ − tan 2◦ suggested by the above estimates, and used a constant

H ′
1 = H ′

2 ≡ H ′ ≈ − tan 9◦ independent of the wedge immersion depth. As for U ′, we note that

detailed numerical estimates of the magnitude of bilayer-mediated wedge interactions may require a
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Table S1: Dependence of Uc on selected model parameters. In the main text we used Kb ≈ 20 kBT ,

a ≈ 2.0 nm, U ′ ≈ 0, and H ′ ≈ − tan 9◦. For all scenarios we set the lipid bilayer thickness deformation

modulus Kt ≈ 60 kBT/nm
2 and calculated bilayer-mediated wedge interactions as in Fig. 3 of the

main text.

Kb a U ′ H ′ Uc

20 kBT 2.0 nm 0 − tan 9◦ −0.40 nm

14 kBT 1.6 nm 0 − tan 9◦ −0.33 nm

30 kBT 1.6 nm 0 − tan 9◦ −0.40 nm

14 kBT 2.2 nm 0 − tan 9◦ −0.39 nm

30 kBT 2.2 nm 0 − tan 9◦ −0.47 nm

20 kBT 2.0 nm tan 5◦ − tan 9◦ −0.61 nm

20 kBT 2.0 nm − tan 5◦ − tan 9◦ −0.21 nm

20 kBT 2.0 nm 0 − tan 6◦ −0.27 nm

20 kBT 2.0 nm 0 − tan 12◦ −0.54 nm

closer examination of the values of H ′
1,2.

In the main text we find that there is a critical membrane immersion depth of the H0 helices,

Uc, governing the crossover from unfavorable to favorable bilayer-mediated interactions between two

H0 helices in the same membrane-bound conformational state. In particular, we obtain unfavorable

bilayer-mediated H0 interactions for |U | < |Uc|, but find that bilayer-mediated H0 interactions can

become favorable for |U | > |Uc|, where Uc = −0.4 nm in Fig. 3 of the main text. The numerical value

of Uc depends, on the one hand, on the elastic properties of the lipid bilayer, which can be changed

by changing the lipid composition. In Table S1 we explore how Uc varies as the lipid bilayer bending

rigidity, Kb, and the unperturbed thickness of the monolayer hydrophobic core, a, are varied over the

approximate ranges of these elastic parameters measured for phospholipid bilayers [60]. Furthermore,

we also explore in Table S1 how Uc changes as U ′ and H ′ are varied. Table S1 illustrates that the

numerical value of Uc depends on the particular parameter values considered in the model, but that the

predicted transition from unfavorable to favorable bilayer-mediated H0 interactions with increasing

H0 membrane immersion depth is robust with respect to variations in these model parameters.
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Figure S5: Interaction potential Gint between two parallel H0 helices of neighboring N-BAR proteins as

in Fig. 3 of the main text but using the indicated values of the wedge length L for the measured shallow

(U ≈ 0 nm) and deep (U ≈ −0.9 nm) immersion states of the H0 helices of N-BAR proteins [1, 2],

with both H0 helices in the same immersion state.

S4 Strength of bilayer-mediated wedge interactions increases with wedge length

The strength of bilayer-mediated wedge interactions is expected to increase with increasing wedge

length L. Within the approximation of an effectively one-dimensional system employed for Figs. 3, 5,

and 6 of the main text, the magnitude of the interaction energy scales linearly with the wedge length

(see Fig. S5). Consequently, for H0 helices in the shallow immersion state [1,2], bilayer-mediated wedge

interactions become increasingly unfavorable with increasing helix length. Similarly, the strength of

favorable interactions between H0 helices in the deep immersion state [1, 2] increases with increasing

wedge length, yielding an increase in the magnitude of the dimerization energy of two H0 helices in

the deep immersion state. It is important to note that, as the wedge length is decreased, finite-size

effects due to the wedge tips are expected to become increasingly relevant, making it necessary to

employ a two-dimensional modeling approach (as, e.g., in Fig. 4 of the main text) rather than the

one-dimensional modeling approach used for Fig. S5 (as well as, e.g., Figs. 3, 5, and 6 of the main text).

S5 Bilayer-mediated wedge interactions in curved membrane geometries

As noted in the main text, we generally follow here previous theoretical and computational studies of

protein-induced bilayer deformations [5,7,9,21,23,24,33,39,40,72,73] and assume that the unperturbed

reference state of the lipid bilayer corresponds to a flat surface with h± = u± = 0. For completeness,

we consider in this section the analytic solution of bilayer-mediated wedge interactions in Sec. S2 for

a system in which the unperturbed reference state of the lipid bilayer is not flat but shows a radius of

curvature R ≈ 15–25 nm [50, 70, 71, 74]. The corresponding bilayer-mediated wedge interactions are

plotted in Fig. S6. As in Sec. S2, we obtained Gint in Fig. S6 from G in Eq. (S21) by subtracting G0
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Figure S6: Interaction potential Gint between two parallel H0 helices of neighboring N-BAR proteins

as in Fig. 3 of the main text but for curved membrane geometries with the indicated radii of curvature

R for the measured shallow (U ≈ 0 nm) and deep (U ≈ −0.9 nm) immersion states of the H0 helices

of N-BAR proteins [1,2], with (A) both H0 helices in the same immersion state and (B) one H0 helix

in the shallow and one H0 helix in the deep immersion state. The gray areas indicate the approximate

d-range for which the H0 helices predominantly interact with the fixed boundary conditions imposed

by the system geometry, rather than with each other.

in Eq. (S22), which corresponds to the energy of wedge-induced bilayer deformations for R → ∞ and

d → ∞.

For the calculations in Fig. S6 we proceeded similarly as in Sec. S2 and assumed that interactions

between a given H0 helix and the remainder of the N-BAR protein force the line symmetrically

bisecting the hydrophilic and hydrophobic portions of the H0 cross-section to point towards the center

of curvature of the undeformed reference state (with now R taking a finite value rather than R → ∞
as in Sec. S2). Hence, we did not allow the wedges to tilt in response to bilayer-mediated wedge

interactions. We used a projected total system size (along the r-axis in Fig. S1) corresponding to an

arc length of the undeformed reference state equal to 2πR/10. For the boundary conditions at the

left and right system boundaries we used the values of h+(r) and its derivative mandated by a circle

of radius R, with both u+(r) and its derivative being equal to zero. We obtained the heights H1,2

of the two wedges relative to the center of curvature of the undeformed reference state by applying

zero-force boundary conditions analogous to Eq. (S14) at the wedge boundaries facing towards the

system boundaries, and fixed all other boundary conditions as described in Secs. S2 and S3. We also
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considered the case in which a zero-force boundary condition as in Eq. (S14) was applied for one of the

wedges, with a zero-force boundary condition analogous to Eq. (S14) on the other wedge at the wedge

boundary facing towards the system boundary. This latter set of boundary conditions yielded similar

results as in Fig. S6. In the small-d regime with substantial bilayer-mediated wedge interactions,

indicated in white in Fig. S6, we find bilayer-mediated wedge interactions similar to those in Fig. 3 of

the main text. At large d, the H0 helices in Fig. S6 no longer substantially interact with each other

but, instead, interact strongly with the fixed boundary conditions imposed by the system geometry.

This, possibly unphysical, regime is indicated in gray in Fig. S6.

S6 Simulated annealing Monte Carlo simulations

To test whether lipid bilayer-thickness-mediated interactions between N-BAR proteins due to H0-

induced leaflet thickness deformations can yield self-assembly of extended tip-to-tail N-BAR chains

with the observed antiparallel alignment and dimerization of neighboring H0 helices [41, 67–71] we

calculated the directional N-BAR pair potentials due to H0-induced leaflet thickness deformations in

two-dimensional membranes (see Fig. S7A). We computed these bilayer-thickness-mediated interaction

potentials Gint(d, ω1, ω2), where d is the center-to-center distance between the two wedges and the ω1,2

capture the wedge orientations (Fig. S7A), by minimizing the energy in Eq. (3) of the main text for

h+ = 0 using finite elements (FE) as described in Ref. [21]. To avoid numerical issues arising from

sharp corners of the integration domain we approximated, when computing Gint(d, ω1, ω2), the shape

of the H0 helices of N-BAR proteins as rounded rectangles of total length L = 3 nm along the helix

axis, with the helix tips modeled as semicircles of radius r0 = 0.6 nm (Fig. S7A). Along the straight

long sides of the rounded rectangles we imposed a constant hydrophobic mismatch U ≈ −0.9 nm

corresponding to the deep immersion state of the H0 helices of N-BAR proteins [1, 2], and linearly

let U → 0 along the rounded wedge tips towards the centers of the wedge tips. To account for steric

constraints on lipid size, we only allowed for wedge separations and orientations with sufficient space

for at least one lipid at the closest wedge separation. We implemented this condition by imposing

an effective steric constraint on wedge configurations corresponding to a rectangle of length 4 nm

and width 2.2 nm centered at the wedge center. Consistent with lipid bilayer-thickness-mediated

interactions between integral membrane proteins [75], we find that the bilayer-thickness-mediated

interactions between protein wedges in Fig. S7A are approximately pairwise additive (see Fig. S8).

We modeled the BAR domains, with one BAR domain connecting two H0 helices (perpendicular to

the long axis of the BAR domain) for each N-BAR protein (see Fig. 1 of the main text), as rectangles

of length 13 nm and width 2.5 nm with hardcore steric repulsion, with a distance ≈ 4.8 nm between
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Figure S7: Examples of the directional pair interaction potentials used for Fig. 4 of the main text.

(A) Lipid bilayer-mediated interactions between N-BAR proteins due to H0-induced leaflet thickness

deformations obtained by minimizing Eq. (3) of the main text for h+ = 0 using FE as described in

Ref. [21]. (B) Lipid bilayer-mediated pair interactions between BAR domains in Eq. (S23), which we

modeled after Ref. [39]. The vertical lines indicate steric constraints.

the centers of the BAR domains and the centers of the H0 helices (see Fig. S7B). Based on Ref. [41], we

thus approximated the effective, fixed shape of N-BAR proteins setting the hardcore steric constraints

on N-BAR configurations as indicated in Fig. 4 of the main text and Fig. S7B.

Lipid bilayer-mediated interactions between BAR domains are expected to favor a face-on orien-

tation of neighboring BAR domains [38–40], with a preferred separation ≈ 10 nm for the endophilin

BAR domains [39]. To incorporate bilayer-mediated BAR interactions in Fig. 4B of the main text we

employed, based on previous calculations of bilayer-mediated interactions between endophilin BAR

domains [39], the modified Lennard-Jones pair potential

GBAR
int (r, θ1, θ2) = ε

[(rm
r

)12 − 2
(rm

r

)6
(
1− |2θ1 − π|

2π
− |2θ2 − π|

2π

)]
, (S23)

where the θ1,2 capture the BAR orientations with a positive modulus π rad and r is the center-to-center

distance between BAR domains (Fig. S7B). Based on Ref. [39] we used ε = 10 kBT and rm = 10 nm.

We obtained the pair interactions between N-BAR proteins used for Fig. 4A of the main text from

the pair interactions due to the H0-induced leaflet thickness deformations, and the pair interactions

between N-BAR proteins used for Fig. 4B of the main text by adding up the pair interactions due to

the BAR domains and the H0-induced leaflet thickness deformations.

For our simulated annealing Monte Carlo simulations of N-BAR pair potentials we proceeded
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Figure S8: Bilayer-thickness-mediated wedge interactions per protein wedge, G
(p)
int , for the two wedge

configurations indicated in the insets of (A) and (B) computed, as in Fig. S7A, using FE [21] for

the full three-body systems in (A) and (B), and by adding up the corresponding pairwise (two-body)

wedge interactions. In panel (A), we use a fixed center-to-center distance between the top and bottom

wedges equal to 4.4 nm.

similarly as in Ref. [75]. A single Monte Carlo step in our Monte Carlo simulations consisted, on

average, of one displacement trial (δr = 0.1 nm) and one rotation trial (δθ = 1◦) per N-BAR protein.

The trials were accepted or rejected according to the Metropolis algorithm. In a typical run, we first

used 107 Monte Carlo steps at constant T = 2Trm, where Trm = 298 K is the room temperature, and

then decreased the temperature linearly to T = 0 over 5 × 106 Monte Carlo steps. To increase the

computational efficiency of our Monte Carlo simulations, we built a table of bilayer-mediated wedge

interaction energies with a translational resolution of Δd = 0.25 nm and an orientational resolution

of Δω1,2 = 3◦. For arbitrary values of (d, ω1, ω2), we first rounded ω1 and ω2 to their closest values in

the table, and then linearly interpolated the bilayer-mediated wedge interaction energy between the

two closest values of d in the table.

S7 Concerted structural reorganization of N-BAR proteins

The position-averaged Boltzmann weight associated with a state (s1, s2) of two N-BAR proteins in

Eq. (6) of the main text [76] is obtained from

z(s1, s2) =
1

A2

∫
A
dx1dx2e

−Gpair(s1,s2,d) , (S24)
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where, following Eq. (4) of the main text,

Gpair(s1, s2, d) = Gnon(s1, s2) +Gint(s1, s2, d) , (S25)

the integrals in Eq. (S24) run over the average membrane area A associated with the two N-BAR

proteins with the two-dimensional coordinates x1,2 pertaining to the positions of the two N-BAR

proteins, and we measure all energies in units of kBT . Since Gpair in Eq. (S24) only depends on the

relative position of the two N-BAR proteins, we can rewrite Eq. (S24) as

z(s1, s2) =
2π

A
e−Gnon

∫ √
A/π

0
dre−Gint(s1,s2,r)r , (S26)

where we have assumed a circular patch shape for the H0-induced N-BAR interactions. Defining the

Mayer-f function as in Eq. (7) of the main text,

f12(s1, s2, r) ≡ e−Gint(s1,s2,r) − 1 , (S27)

Eq. (S26) becomes

z(s1, s2) = e−Gnon

[
1 +

2π

A

∫ √
A/π

2r0

drf12(s1, s2, r)r

]
, (S28)

where we have set, for r < 2r0, the contribution to z(s1, s2) due to bilayer-mediated wedge interactions

equal to zero and, for r ≥ 2r0, we take Gint to be set by bilayer-mediated wedge interactions as

described in the main text. Following previous work [76], we replaced in Eq. (6) of the main text

the upper limit of the integral in Eq. (S28) by the cutoff rc on Gint(s1, s2, r), so as to sample the

relative N-BAR positions over all values of r yielding a substantial interaction energy between the H0

helices (see Fig. 3 of the main text). As shown in Fig. S9, Eq. (S28) and Eq. (6) of the main text

yield similar results for the probability of a pair of N-BAR proteins to be collectively in the observed

conformational state with deep immersion of the H0 helices [1, 2], plotted in Fig. 6 of the main text

[see Eq. (8) of the main text]. We also show in Fig. S9 the Pd obtained as in Fig. 6 of the main text but

using a lower steric cutoff equal to 2r0 + 1 nm, rather than 2r0, in the integral in Eq. (6) of the main

text, thus ensuring that at least one lipid can fit between the wedges for all the wedge configurations

considered. This change in the lower cutoff in the integral in Eq. (6) of the main text shifts the curve

Pd = 1/2, but leaves the key results in Fig. 6 of the main text unchanged.
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Figure S9: Probability of a pair of N-BAR proteins to be collectively in the observed conformational

state with deep immersion of the H0 helices [1,2], Pd, obtained from Eq. (8) of the main text following

similar steps as in Fig. 6 of the main text using (A) Eq. (6) of the main text, (B) Eq. (S28), and

(C) Eq. (6) of the main text with a lower cutoff in the integral equal to 2r0 + 1 nm rather than 2r0.

In all panels, Pd is plotted over an identical range of εd and c as in Fig. 6 of the main text, and we use

the same labeling conventions as in Fig. 6 of the main text. We use the same color bar for all panels.

The data in panel (A) is identical to the data plotted in Fig. 6 of the main text and reproduced here

for completeness.
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A Variation of the energy of wedge-induced lipid bilayer deformations

For a one-dimensional system, the energy in Eq. (3) of the main text reduces to (see Sec. S2)

G =
1

2

∫ r2

r1

dr

{
Kb

[(
d2h+

dr2

)2

−
(
d2h+

dr2

)(
d2u+

dr2

)
+

1

2

(
d2u+

dr2

)2 ]

+
Kt

2

(
u+

a

)2

+ τ
u+

a
+ τ

[(
dh+

dr

)2

−
(
dh+

dr

)(
du+

dr

)
+

1

2

(
du+

dr

)2 ]}
(S29)

≡
∫

drf(u+, u+r , u
+
rr, h

+
r , h

+
rr) ,

where r1,2 = d/2± r0 and we have implicitly defined the energy density f . To derive the equilibrium

conditions for Eq. (S29), we consider [24] variations of u+ and h+ about the equilibrium solutions u0

and h0:

u+(r) = u0(r) + εuδu(r) , (S30)

h+(r) = h0(r) + εhδh(r) . (S31)

For the variations in u+, we have

df

dεu
=

∂f

∂u+
du+

dεu
+

∂f

∂u+r

du+r
dεu

+
∂f

∂u+rr

du+rr
dεu

. (S32)

Using the product rule, the second and the third terms on the right-hand side of Eq. (S32) can be

expressed as

∂f

∂u+r

du+r
dεu

=
∂

∂r

(
∂f
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)
− ∂
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(
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)
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(S33)

and

∂f

∂u+rr

du+rr
dεu

=
∂
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)
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)
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, (S34)

respectively. Thus, we obtain
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. (S35)

At equilibrium, we must have dG
dεu

= 0. Upon performing the integrals for the boundary terms in

Eq. (S35), we thus find

dG

dεu
=
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dr
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= 0 (S36)
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at equilibrium. From the definition of f in Eq. (S29) we find

∂f

∂u+
=

Kt

2a2
u+ +

τ

2a
,

∂f
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τ
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, (S37)

∂f

∂u+rr
=

Kb

2

(
∂2u+

∂r2
− ∂2h+

∂r2

)
.

Substitution of Eq. (S37) into the first term of Eq. (S36) yields the Euler-Lagrange equation
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= 0 (S38)

associated with u+(r), which is equivalent to the second Euler-Lagrange equation in Eq. (S6). For the

boundary term in Eq. (S36), Eq. (S37) yields{[
τ

2

(
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}r2

r1

= 0 , (S39)

where the first and second terms yield the zero force and zero torque boundary conditions [24, 77]

associated with u+, respectively. The boundary conditions in Eqs. (S15) and (S16) imply that the

variations in u+ and its derivative must vanish at r = r1,2. Thus, the zero force and zero torque

boundary conditions in Eq. (S39) are satisfied by solutions respecting Eqs. (S15) and (S16).

For the variations of the energy in Eq. (S29) with respect to h+ we follow similar steps as for the

variations in u+ above. In particular, for h+ we have

dG

dεh
=

∫ r2

r1

dr

(
∂f

∂h+
− ∂

∂r

∂f

∂h+r
+

∂2

∂r2
∂f

∂h+rr

)
dh+

dεh

+

[(
∂f

∂h+r
− ∂

∂r

∂f

∂h+rr

)
dh+

dεh
+

(
∂f

∂h+rr

)
dh+r
dεh

]r2
r1

= 0 (S40)

at equilibrium. The definition of f in Eq. (S29) implies the relations

∂f

∂h+
= 0 ,
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= τ
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∂r
− 1

2

∂u+

∂r

)
, (S41)
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2
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.

Substitution of Eq. (S41) into the first term of Eq. (S40) yields the Euler-Lagrange equation
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(
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− 1

2
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− τ
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− 1

2
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)
= 0 (S42)

associated with h+(r), which is equivalent to the first Euler-Lagrange equation in Eq. (S6). For the

boundary term in Eq. (S40), Eq. (S41) yields the zero force and zero torque boundary conditions [24,77]
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associated with h+:{[
τ

(
∂h+

∂r
− 1

2
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)
−Kb
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− 1

2
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(S43)

The boundary conditions in Eq. (S13) ensure that the variations of the derivative of h+(r) vanish at

r = r1,2. Thus, the zero torque boundary conditions in Eq. (S43) are satisfied by solutions respecting

Eq. (S13). We impose, without loss of generality, Eq. (S14), which is obtained from the zero force

boundary conditions in Eq. (S43), at r = r2 and set H1 = 0, thus ensuring that the zero force boundary

conditions in Eq. (S43) are satisfied.
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