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Mapping a leaky integrate-and-fire network with stochastic
spiking to the nonlinear Hawkes model

As claimed in the Methods, we now show explicitly how to map a current-based
leaky-integrate and fire network model with stochastic spiking rules on to the nonlinear
Hawkes model we use in this work. Suppose each neuron’s membrane potential obeys
the differential equation

τm
dVi
dt

= −(Vi − EL) + Esyni (t) + Eexti (t), (S1)

where τm is the membrane time constant of the neuron, EL is its reversal potential,
Eexti (t) is an external current input (converted to a voltage by dividing by the
membrane resistance), and

Esyni (t) =
∑
j

∫ t

−∞
dt′ J̃ij(t− t′)ṅj(t′)

are the synaptic currents flowing into neuron i from presynaptic neurons j, where ṅj(t
′)

is the spike train from presynaptic neuron j at time t′ and J̃ij(t− t′) is a spike filter.

For notational convenience we also include the self-history coupling J̃i,i(t− t′) in this
term, though it has a physiologically different origin, representing refractory effects that
reset a neuron’s voltage after it spikes, rather than having a hard reset. Similarly, rather
than having a hard firing threshold, we assume that neurons spike stochastically with
an instantaneous rate

λi(t) = λ0φ

(
Vi(t)− Eth
Es

)
,

where λ0 sets a baseline firing rate, φ(·) ≥ 0 is a nonlinear function of the membrane
voltage, Eth is a “soft” threshold value, Es sets the steepness of the nonlinearity, and
Vi(t) is the membrane voltage given in Eq. (S1). We term this the instantaneous firing
rate because it is equal to the the trial-averaged spike trains ṅi(t), conditioned on the
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inputs to the neuron. The value Eth is a soft-threshold because while it is likely the
neuron will fire when Vi(t) reaches Eth, it is possible the neuron will fire at higher or
lower voltage. In this work we assume that the probability that the number of spikes
neuron i fires in a small time window ∆t around time t, given its input history, is

ṅi(t)∆t ∼ Poiss [λi(t)∆t] ;

however, we could have chosen many other point processes with instantaneous rates
λi(t). Note that while spiking is stochastic, a neuron is guaranteed to fire at times when
its instantaneous rate λi(t) diverges, so there is some sense of deterministic output
retained.

We can formally solve the membrane equation (S1), giving

Vi(t) = EL +

∫ t

−∞
dt′′

e−(t−t
′′)/τm

τm

Eext(t′′) +
∑
j

∫ t′′

−∞
dt′ J̃ij(t

′′ − t′)ṅj(t′)

 .
We now define

µi =
EL − Eth
Es

,

µext
i (t) =

∫ t
−∞ dt′′ e

−(t−t′′)/τm

τm
Eexti (t′′)

Es
,

and

Jij(t− t′) =
e−(t−t′)/τm

τm

∫ t−t′
0

dy ey/τm

τm
J̃ij(y)

Es
;

we arrive at this last definition by changing integration order∫ t

−∞
dt′′

e−(t−t
′′)/τm

τm

∫ t′′

−∞
dt′ J̃ij(t

′′ − t′)ṅj(t′)

=

∫ t

−∞
dt′

{∫ t

t′
dt′′

e−(t−t
′′)/τm

τm
J̃ij(t

′′ − t′)

}
ṅj(t

′)

and then changing variables to y = t− t′′. With these definitions,

λi(t) = λ0φ

µi + µext
i (t) +

∑
j

∫ t

−∞
dt′ Jij(t− t′)ṅj(t′)

 ;

i.e., we have shown the the soft-threshold leaky integrate-and-fire model is equivalent to
a nonlinear Hawkes model, Eq. (5). Because the argument of the rate is now expressed
entirely in terms of the spiking of the neurons, and not the membrane voltage, we need
only simulate the spiking activity of the network; i.e., we do not need to keep track of
the membrane voltages and can simply use Eq. (5).

Lastly, we note that membrane potential dynamics are more appropriately described
by changes to a neuron’s membrane conductance, rather than current inputs [1]. If we
insert conductance-based synaptic inputs, such as

Esyni (t) = −(Vi(t)− ESi )
∑
j

∫ t

−∞
dt′ J̃cond

ij (t− t′)ṅj(t′),

into Eq. (S1), the voltage equation is still formally solvable, but the rates λi(t) will no
longer be of the form of Eq. (5), except in approximate limits or if special conditions are
met [2]. We leave a more detailed investigation of conductance-based models—including
those with nonlinear voltage dependence—for future work.
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Complete derivation of the contribution of self-cycles to nodes
in Fig. 2

In the Methods section of the full text, we heuristically argued that loops from a neuron
back to itself in the series expansion of Γ̂h,h′(ω) = [I− V̂(ω)]−1h,h′γh′ could be explicitly

summed into a factor 1/(1− γhĴh,h(ω)) contributed by each node h. This factor can be
derived directly; we do so here.

Let us decompose the matrix V̂(ω) in a diagonal and off-diagonal piece,
V̂(ω) = V̂diag(ω) + V̂off(ω). Then,[

I− V̂(ω)
]−1

=
[
I− V̂diag(ω)− V̂off(ω)

]−1
=

[(
I− V̂diag(ω)

)(
I−

(
I− V̂diag(ω)

)−1
V̂off(ω)

)]−1
=

[
I−

(
I− V̂diag(ω)

)−1
V̂off(ω)

]−1 [
I− V̂diag(ω)

]−1
We assumed that I− V̂diag(ω) is invertible, which requires that there is no element for

which 1− γhĴh,h(ω) = 0 for all ω. Assuming this is the case, the inverse of the matrix is
trivial to calculate, as it is diagonal:[

I− V̂diag(ω)
]−1
h,h′

=
1

1− γhJh,h(ω)
δh,h′ .

The matrix

[
I−

(
I− V̂diag(ω)

)−1
V̂off(ω)

]−1
can be expressed as a series, as before:

[
I−

(
I− V̂diag(ω)

)−1
V̂off(ω)

]−1
h,h′′

=
∑
`=0

[[(
I− V̂diag(ω)

)−1
V̂off(ω)

]`]
h,h′′

=
∑
`=0

∑
h1,...,h`

[(
I− V̂diag(ω)

)−1
V̂off(ω)

]
h,h1

. . .

[(
I− V̂diag(ω)

)−1
V̂off(ω)

]
h`,h′′

=
∑
`=0

∑
h1,...,h`;hi 6=hi+1

γh

1− γhĴh,h(ω)
Ĵh,h1

(ω) . . .
γh`

1− γh` Ĵh`,h`(ω)
Jh`,h′′(ω)

Hence, inserting the contribution from the factor
[
I− V̂diag(ω)

]−1
that we pulled out,

and the factor γh′ that left-multiplies
[
I− V̂(ω)

]−1
to give Γ̂h,h′(ω), we have

Γ̂h,h′(ω) =
∑
`=0

∑
h1,...,h`;hi 6=hi+1

γhĴh,h1
(ω)

1− γhĴh,h(ω)
. . .

γh` Ĵh`,h′(ω)

1− γh` Ĵh`,h`(ω)

γh′

1− γh′ Ĵh,h′(ω)

This is the same as our previous expression, with γh → γh/(1− γhĴh,h(ω)) and
restricting the sum over hidden units such that self-loops are removed (hi 6= hi+1),
proving the result described informally above. We note again that this puts restrictions
on the allowed size of self-interactions, as the zeros of 1− γhĴh,h(ω) must be in the
upper-half plane of the complex ω plane in order for the filters to be causal and
physically meaningful (given our Fourier sign-convention f̂(ω) =

∫∞
−∞ dt e−iωtf(t)).
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The complete expression for the correction term
∑
h,h′ Ĵr,h(ω)Γ̂h,h′(ω)Ĵh′,r′(ω) is

thus∑
h,h′

Ĵr,h(ω)Γ̂h,h′(ω)Ĵh′,r′(ω) =

∑
`=0

∑
h,h1,...,h`,h′;hi 6=hi+1

Ĵr,h(ω)
γhĴh,h1

(ω)

1− γhĴh,h(ω)
. . .

γh` Ĵh`,h′(ω)

1− γh` Ĵh`,h`(ω)

γh′

1− γh′ Ĵh,h′(ω)
Ĵh′,r′(ω).

This is the exact mathematical expression underlying the graphical rules given in Fig. 2.

Second order nonlinear response function

Higher order terms in the series expansion represent nonlinear response functions. We
do not focus on these terms in this work, assuming instead that we can truncate this
series expansion at linear order. We will, however, estimate the error incurred by this
truncation by calculating the second order response function, which we label

Γ
(2)
h,h1,h2

(t, t1, t2). Rather than differentiate our formal solution for the linear response,
we differentiate the implicit form, yielding an integral equation

Γ
(2)
h,h1,h2

(t, t1, t2) ≡ δ2E[ṅh| {Ih(t)}]
δIh2

(t2)δIh1
(t1)

∣∣∣∣
Ih=0

= γ
(2)
h

[
δh,h2

δ(t− t2) +
∑
h′

Jh,h′ ∗ Γh′,h2

][
δh−h1

δ(t− t1) +
∑
h′

Jh,h′ ∗ Γh′,h1

]

+ γh

[∑
h′

∫ ∞
−∞

dt′ Jh,h′(t− t′)Γ(2)
h,h1,h2

(t′, t1, t2)

]

where we have defined

γ
(2)
h ≡ λ0φ′′

(
µh +

∑
h′

Jh,h′νh′
)
.

γh without the superscript is the gain defined previously, γh = λ0φ
′(µh +

∑
h′ Jh,h′νh′).

Rearranging,∫
dt′
∑
h′

[
δh,h′δ(t− t′)− γhJh,h′(t− t′)

]
Γ
(2)
h′,h1,h2

(t′, t1, t2)

= γ
(2)
h

[
δh−h2

δ(t− t2) +
∑
h′

Jh,h′ ∗ Γh′,h2

][
δh−h1

δ(t− t1) +
∑
h′

Jh,h′ ∗ Γh′,h1

]
.

Inverting the operator on the left hand side yields the input linear response function
(when introducing the factor of 1 = γh′/γh′ on the right hand side), giving the solution

Γ
(2)
h,h1,h2

(t, t1, t2) =

∫ ∞
−∞

dt′
∑
h′

Γh,h′(t− t′)
γ
(2)
h′

γh′

[
δh′,h2δ(t

′ − t2) +
∑
h′′

∫ ∞
−∞

dt′′ Jh′,h′′(t
′ − t′′)Γh′′,h2(t′′ − t2)

]

×

[
δh′,h1δ(t

′ − t1) +
∑
h′′

∫ ∞
−∞

dt′′ Jh′,h′′(t
′ − t′′)Γh′′,h1(t′′ − t1)

]
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Because Γh,h′(t− t′) is proportional to γh, the second order nonlinear response function

is proportional to γ
(2)
h . For an exponential nonlinearity, γ

(2)
h = γh = νh, and the second

order response function is of the same order of the linear response (but the overall
contribution to network statistics is not of the same order; see below). For a rectified

linear nonlinearity (as in Figs. 3 and 4), γ
(2)
h = 0 and the second-order response vanishes.

The effective quadratic interaction from two recorded neurons r′1 and r′2 to neuron r
is thus ∫

dt′1dt
′
2

∑
r′1,r

′
2

J
(2)
r,r′1,r

′
2
(t, t′1, t

′
2)ṅr′1(t′1)ṅr′2(t′2),

where we have defined the quadratic spike interaction J
(2)
r,r′1,r

′
2
(t, t′1, t

′
2) to be

J
(2)
r,r′1,r

′
2
(t, t′1, t

′
2) =

∫
dt′dt1dt2

∑
h,h1,h2

Jr,h(t−t′)Γ(2)
h,h1,h2

(t′, t1, t2)Jh1,r′1
(t1−t′1)Jh2,r′2

(t2−t′2)

(S2)

Estimating the error from neglecting higher order spike filtering
(exponential nonlinearity)

In the main text we calculate corrections to the baseline and linear spike filters,
neglecting higher-order spike filtering and fluctuations around the mean input to the
recorded neurons. In the methods we validated this result numerically; here we derive
an analytic estimate of the order of the error we incur by neglecting these terms. We
will do so within mean field theory (meaning the noise fluctuations contribute zero error
as they do not contribute to the mean field approximation). Specifically, we will assume
that the quadratic spike filtering term is small, and calculate the corresponding
correction to our mean field approximation of the firing rates when this term is
completely neglected. If we take as our approximation of the recorded neuron firing
instantaneous firing rates

λr(t) ≈ λ0 exp

(
µeff
r +

∑
r1

∫
dt1J

eff
r,r1(t− t1)ṅr1(t1)

+ b
∑
r1,r2

∫
dt1dt2 J

(2)
r,r1,r2(t, t1, t2)ṅr1(t1)ṅr2(t2)

)
,

then the mean field approximation of the firing rates is

〈ṅr〉 ≈ λ0 exp

(
µeff
r +

∑
r1

J eff
r,r′〈ṅr1〉+ b

∑
r1,r2

J (2)
r,r1,r2〈ṅr1〉〈ṅr2〉

)
,

where we have used the fact that the average firing rates are independent of time, and

replaced Jeff
r,r′(t− t1) and J

(2)
r,r1,r2(t, t1, t2) with their time integrals, denoted by J eff

r,r′ and

J (2)
r,r1,r2 . The parameter b is just a book-keeping parameter.

To calculate the lowest order correction to the linear filtering approximation (b→ 0),
we write 〈ṅr〉 = νsubr + bν̃r, treating b formally as a small parameter. The linear firing
rate νsubr is given by

νsubr = λ0 exp

(
µeff
r +

∑
r′

J eff
r,r′ν

sub
r′

)
.
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For the quadratically-modified firing rates, keeping terms only to linear order in b,

νsubr + bν̃r ≈ λ0 exp

(
µeff
r +

∑
r1

J eff
r,r′ν

sub
r′ + b

∑
r′

J eff
r,r′ ν̃r′ + b

∑
r1,r2

J (2)
r,r1,r2ν

sub
r1 νsubr2

)

= νsubr exp

(
b
∑
r′

J eff
r,r′ ν̃r′ + b

∑
r1,r2

J (2)
r,r1,r2ν

sub
r1 νsubr2

)

≈ νsubr

{
1 + b

∑
r′

J eff
r,r′ ν̃r′ + b

∑
r1,r2

J (2)
r,r1,r2ν

sub
r1 νsubr2

}
.

Collecting on b and rearranging,∑
r′

[
δr,r′ − νsubr J eff

r,r′
]
ν̃r′ = νsubr

∑
r1,r2

J (2)
r,r1,r2ν

sub
r1 νsubr2 .

Because νsubr ∝ exp(µeff
r ) ∝ exp(µr) = εr, the expansion parameters we have been using,

the lowest order approximation for ν̃r is

ν̃r ≈ νsubr

∑
r1,r2

J (2)
r,r1,r2ν

sub
r1 νsubr2 .

To evaluate the coefficient J (2)
r,r1,r2 , we may use the fact γh = νh and to leading order

νh ∼ λ0ε and Γ
(2)
h,h1,h2

(t, t1, t2) ≈ λ0εδh,h1
δh,h2

δ(t− t1)δ(t− t2), giving

J (2)
r,r1,r2(t, t1, t2) ≈ λ0ε

∫
dt′
∑
h

Jr,h(t− t′)Jh,r′1(t1 − t′)Jh,r′2(t2 − t′)

and hence

J (2)
r,r1,r2 ≡

∫
dt1dt2 J

(2)
r,r1,2(t, t1, t2) ≈ λ0ε

∑
h

Jr,hJh,r1Jh,r2 .

To lowest order the error term ν̃r is

ν̃r = (λ0ε)
4
∑
h,r1,r2

Jr,hJh,r1Jh,r2 .

For Ji,j i.i.d., the population average should converge to the expected value, which is
zero because the Ji,j have mean zero. We can calculate the root-mean-squared-error
(RMSE) by looking at the variance:

var(ν̃r) = var

 ∑
h,r1,r2

Jr,hJh,r1Jh,r2

 =

 ∑
h,r1,r2

Jr,hJh,r1Jh,r2

2

=
∑
h,r1,r2

J 2
r,h J 2

h,r1
J 2
h,r2

In principle, we should take care to separate out the r1 6= r2 and r1 = r2 terms from the
sum, as the latter will contribute a factor J 4

h,r1
, which we have not specified yet

(though one could calculate for specific choices, such as the normal distribution that we

use for most of our numerical analyses). However, both J 2
h,r

2
and J 4

h,r1
will scale as

(J2
0/(pN)2a)2, so we will neglect constant factors and simply use this scaling to arrive at

the result

var(ν̃r) ∼ (λ0ε)
8N2

recNhid
J6
0

(pN)6a
.
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If we take N →∞ with Nrec = fN and Nhid = (1− f)N for f fixed, the RMSE scales
as

ν̃RMSE ∼ (λ0ε)
4f
√

1− f J3
0

(pN)3a−3/2
.

For a = 1 (weak coupling), the error falls off quite quickly as N3/2, while it is
independent of N for a = 1/2 (strong coupling). However, the error does still scale with
the fraction of observed neurons, as f

√
1− f . This demonstrates that the typical error

that arises from neglecting the nonlinear filtering is small both when most neurons have
been observed (f . 1) and when very few neurons have been observed (f & 0). While it
may at first seem surprising that the error is small when very few neurons have been
observed, the result does make intuitive sense: when a very small fraction of the
network is observed, we can treat the unobserved portion of the network as a “reservoir”
or “bath.” Feedback from the observed neurons into the reservoir has a comparatively
small effect, so we can get away with neglecting feedback between the observed and
unobserved partitions of the network. However, when the number of observed neurons is
comparable to the number of unobserved neurons, neither can be treated as a reservoir,
and feedback between the two partitions is substantial. Neglecting the higher order
spike filter terms may be inaccurate in this case.

Tree-level calculation of the effective noise correlations

In our approximation of the model for the recorded neurons, we also neglected
fluctuations from the mean input around the hidden neuron input. We should therefore
check how strong this noise is. At the level of a mean-field approximation we may
neglect it, so we will need to go to a tree-level approximation to calculate it. (The
means and response functions are not modified at tree-level.)

The noise is defined by

ξr(t) =
∑
h

∫ ∞
−∞

dt′ Jr,h(t− t′)
(
ṅh(t′)− E[ṅh|{ṅr}]

)
.

It has zero mean (by construction), conditioned on the activity of the recorded units —
i.e., the “noise” receives feedback from the recorded neurons. We can evaluate the
cross-correlation function of this noise, conditioned on the recorded unit activity. This is
given by

E[ξr(t)ξr′(t
′)|{ṅr}]c =

∑
h1,h2

∫ ∞
−∞

dt1dt2 Jr,h1
(t− t1)Jr′,h2

(t′ − t2)E[ṅh1
(t1)ṅh2

(t2)|{ṅr}]c,

where

E[ṅh1
(t1)ṅh2

(t2)|{ṅr}]c = E[ṅh1
(t1)ṅh2

(t2)|{ṅr}]− E[ṅh1
(t1)|{ṅr}]E[ṅh2

(t2)|{ṅr}]

is the cross-correlation function of the spikes (the superscript c denotes ‘cumulant’ or
‘connected’ correlation function to distinguish it from the moments without the
superscript). At the level of mean field theory

E[ṅh1
(t1)ṅh2

(t2)|{ṅr}] ≈ E[ṅh1
(t1)|{ṅr}]E[ṅh2

(t2)|{ṅr}],

and thus the cross-correlation function is zero. We can go beyond mean field theory and
calculate the tree-level contribution to the correlation functions using the field theory
diagrammatic techniques of [3]. We will do so for the reference state of zero-recorded
unit activity, {ṅr} = {0}, as we expect this to be the leading order contribution to the
correlation function. As we are interested primarily in the typical magnitude of the

PLOS 7/14



noise compared to the interaction terms, we will work only to leading order in
ε = exp(µ0) for the exponential nonlinearity network. We find

E[ṅh1(t1)ṅh2(t2)|0]ctree =

∫ ∞
−∞

dt′
∑
h′

∆h1,h′(t1 − t′)∆h2,h′(t2 − t′)νh′

≈ λ0εδh1,h2
δ(t1 − t2),

where ∆h,h′(ω) ≈ δh,h′ +O(ε) is the linear response to perturbations to the output of a
neuron’s rate. It is related to Γh,h′(ω) by Γh,h′(ω) = ∆h,h′(ω)γh′ , where γh = νh for
φ(x) = ex. The overall noise cross-correlation function is then approximately

E[ξr(t)ξr′(t
′)|0]c = λ0ε

∑
h

∫ ∞
−∞

dt1 Jr,h(t− t1)Jr′,h(t′ − t1).

If r 6= r′, the expected noise cross-correlation, averaged over the synaptic weights Ji,j , is
zero. If r = r′, the expected value is non-zero. The expected noise auto-correlation
function is then

E[ξr(t)ξr(t′)|0]c = λ0εNhidvar[J ]

∫ ∞
−∞

dt1 g(t− t1)g(t′ − t1)

= λ0ε(1− f)J2
0

1

(pN)2a−1

∫ ∞
−∞

dt1 g(t− t1)g(t′ − t1).

For the specific case of g(t) = α2te−αtΘ(t), we have

E[ξr(t)ξr(t′)|0]c =
1

4
λ0ε(1− f)J2

0

1

(pN)2a−1
αe−α|t−t

′|
(

1 + α|t− t′|
)
.

For weak coupling (a = 1), the expected autocorrelation function falls off with network
size as 1/N , while for strong coupling (a = 1/2), it scales with the fraction of observed
neurons f , but is independent of the absolute network size. The overall λ0ε scaling puts
the magnitude of the autocorrelation function on par with contributions from hidden
paths through a single hidden neuron that contributes a factor of λ0ε to the correction
to the coupling filters. Based on our results shown in Fig. 5, which suggest that
contributions from long paths through hidden neurons are significant when the fraction
of neurons f is small and J0 . 1, we expect that network noise will also be significant in
these regimes. This will not modify the results presented in the main paper, however. It
simply means that this noise should be retained in the rate of our approximate model,

λr(t) ≈ λ0 exp

(
µeff
r +

∑
r′

Jeff
r,r′ ∗ ṅr′(t) + ξr(t)

)
.

Validating the mean field approximation and linear conditional
rate approximation via direct simulations of network activity
(exponential nonlinearity)

The results presented in the main text are based on analytical calculations or numerical
analyses using analytically derived formulas. For example, the statistics of J eff

r,r′ are

calculated based on our expression J eff
r,r′ = Jr,r′ +

∑
h,h′ Jr,hΓ̂h,h′(0)Jh′,r′ , where

Γ̂h,h′(0) can be calculated by solving the matrix equation

Γ̂h,h′(0) = δh,h′ +
∑
h′′

νhJh,h′′ Γ̂h′′,h′(0).
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Generating these results does not require a simulating the full network, so we check here
that our approximations indeed agree with the results of full network simulations.

We check the validity of two main results: 1) that mean field theory is an accurate
approximation for the parameters we consider, and 2) that our truncation of the
conditional hidden firing rates E[ṅh(t)|{ṅr}] at linear order in ṅr(t) is valid.

We first discuss some basic details of the simulation. The simulation code we use is a
modification of the code used in [3], written by Gabe Ocker; refer to this paper for full
details of the simulation.

The main changes we made are considering exponential nonlinearities and synaptic
weights drawn from normal or lognormal distributions.

As in [3] and the main text, we choose the coupling filters to follow an alpha function

gj(t) = α2te−αtΘ(t), ∀j.

The Heaviside step function Θ(t) enforces causality of the filter, using the convention
Θ(0) = 0. All neurons have the same time constant 1/α.

To efficiently simulate this network the code computes the synaptic variable
sj(t) =

∫
dt′g(t− t′)ṅj(t′) not by direct convolution but by solving the inhomogeneous

system of differential equations, setting x(t) = s(t) and y(t) = ṡ(t),

ẋj(t) = yj(t)

ẏj(t) = −2αjyj(t)− α2
jxj(t) + α2

j ṅj(t),

The instantaneous firing rates of the neurons can in this way be quickly computed in
time steps of a specified size ∆t. The number of spikes ni that neuron i fires in the tth

time bin is drawn from a Poisson distribution with probability
(λi(t)∆t)

ni exp(−λi(t)∆t)/(ni)!. An initial transient period of spiking before the
network achieves a steady state is discarded.

The parameters we use in our simulations of the full network are given in Table S1.

Table S1. Network activity simulation parameter values.

Network connectivity parameters See Table 1.
Alpha function decay time τ ≡ 1/α 10

Time bin width ∆t 0.01τ
Transient time window 5τ

Simulation stopping time 4000τ + transient

Validating the mean field approximation

To confirm that the mean field approximation is valid, we seek to compare the
empirically measured spike rates measured from simulations of the network activity to
the calculated mean field rates. The empirical rates are measured as

〈ṅi〉emp =
number of spikes emitted by neuron i

length of spike train window
,

calculated after discarding the initial transient period of firing, for any neuron i
(recorded or hidden).

The steady-state mean field firing rates are the solutions of the transcendental
equation

〈ṅi〉full MFT = λ0 exp

µi +
∑
j

Ji,j〈ṅj〉full MFT

 .
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The only difference between this equation and the equation for νh is that the neuron
indices are not restricted to hidden units. i.e., the νh are the mean field rates for the
hidden neurons only (recorded neurons removed entirely), whereas the 〈ṅi〉full MFT are
the mean field rates for the entire network. If the mean field approximation is valid, the
empirical rates should be approximately equal to the mean field rates, so a scatter plot
of 〈ṅi〉MFT versus 〈ṅi〉emp should roughly lie along the identity line. We test this for a
network in the strong coupling limit (

√
var(J ) = J0/

√
N) for four values of J0,

J0 = 0.25, 0.5, 0.75, and 1.0. We expect J0 = 1.0 to be close to the stability threshold of
the model based on a linearized analysis [4, 5]; i.e., for J0 & 1.0 there may not be a
steady state, so this may be where we expect the mean field approximation to break
down. As seen in Fig. S1, the mean field approximation appears to hold well even up to
J0 = 1.0, though there are some slight deviations for neurons with large rates.
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Fig S1. Empirical estimates of average neuron firing rates from simulations plotted
against mean firing rates predicted by mean field theory. The fact that the data lies
along the identity line demonstrates validity of the mean field theory approximation up
to J0 = 1.0.

Verifying the linearized conditional mean approximation

Having verified that the mean field approximation is valid, we now seek to check our
linearized approximation of the firing rates of the hidden neurons conditioned on the
activity of the recorded neurons, E [ṅh(t)| {ṅr(t)}]. That is, we calculated above that

E [ṅh(t)| {ṅr(t)}] ≈ νh +
∑
h′,r

[Γh,h′ ∗ Jh′,r ∗ ṅr](t) + . . . ;

the . . . correspond to higher order spike filtering terms that we have neglected in our
analyses, assuming them to be small. In an earlier calculation above, we estimated that
the error incurred by neglecting higher order spike filtering is of the order
(λ0 exp(µ0))4f

√
1− fJ3

0 , but we would like to confirm the negligibility of the higher
order coupling through simulations.

To do so, we compare the empirical firing rates of the designated “hidden” neurons
obtained from simulations of the full network models with the approximation of the
firing rates of the hidden neurons conditioned on the recorded neurons using the linear
expansion, averaged over recorded neuron activity to give

〈ṅh〉approx ≈ νh +
∑
h′,r

Γ̂h,h′(0)Jh′,r〈ṅr〉emp,

where as usual the zero-frequency component of the linear response function Γ̂h,h′(0) of
the hidden neurons is calculated in the absence of recorded neurons.

If we make a scatter plot of this against the empirical estimates of the hidden
neurons, 〈ṅh〉emp, the data points will lie along the identity line if our approximation is
valid. If the data deviates from the identity line, it indicates that the neglected
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higher-order filtering terms contribute substantially to the firing rates of the neurons. It
is possible that the zeroth order rate approximation, νh, would be sufficient to describe
the data, so we compare the empirical rates to both νh and 〈ṅh〉approx.

As in the mean field approximation test, we focused on a strongly coupled network
with J0 = 0.25, 0.5, 0.75, and 1.0. In the SI we analytically estimate the error,
predicting it is small for both small and large fractions of recorded neurons and largest
error when Nrec ∼ Nhid, so we check both Nrec = 100 neurons out of N = 1000 neurons
(f = 0.1) in Fig. S2 and Nrec = 500 neurons out of N = 1000 (f = 0.5) in Fig. S3.

For each value of J0, we present two plots: the empirical rates versus the mean field
rates νh in the absence of recorded neurons (the zeroth order approximation; Figs. S2
and S3, top row), and the empirical rates versus the linear approximation 〈ṅh〉approx
(the first order approximation; Figs. S2 and S3, bottom row). We find that in both
cases the data is centered around the identity line, but the spread of data grows with J0
for the zeroth order approximation, while it is quite tight for the first order
approximation up to J0 = 1.0, validating our neglect of the higher order spike filtering
terms. We also confirm that Nrec = 500 offers worse agreement than Nrec = 100, though
the agreement between 〈ṅh〉emp and 〈ṅh〉approx is still not too bad.
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〈ṅ
h
〉a

p
p
r
o
x

J0 = 0.5

0 0.5 1 1.5
0

0.5

1

1.5

〈 ṅh〉
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Fig S2. Top row: scatter plot comparing νh, the mean field firing rates of the hidden
neurons in the absence of recorded neurons, to empirically estimated firing rates in
simulations of the full network, for four different values of typical synaptic strength,
J0 = 0.25, 0.5, 0.75, and 1.0. The data lie along the identity line, demonstrating a strong
correlation between νh and the empirical data. However, the spread of data around the
identity line indicates that deviations of the mean firing rates away from νh, caused by
coupling to the recorded neurons, is significant. Bottom row: Comparison of the first
order approximation of the firing rates of hidden neurons, which accounts for the effects
of recorded neurons, to the empirical rates. The data lie tightly along the identity with
very little dispersion, demonstrating that higher order spike filtering is unnecessary even
up to J0 = 1.0, for Nrec = 100.

Full mean-field reference state

For most of our analyses, we have been expanding the conditional firing rates of the
hidden neurons around a reference state of zero activity of the recorded neurons. The
quantities νh, γh, Γ̂h,h′(ω), and so on, are thus calculated using a network in which the
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Fig S3. Same as Fig. S2 but for Nrec = 500 recorded neurons out of a total of
N = 1000. Demonstrates validity of linear approximation (neglecting higher order spike
filtering) up to J0 = 1.0, for Nrec = 500. The zeroth order approximation (top row) is
quite poor, indicating the necessity of accounting for feedback from the recorded
neurons. This first order approximation (bottom row) lies tightly along the identity line,
indicating that even when the recorded and hidden populations are of comparable size,
higher order spike filtering may not be significant. However, there appears to be some
deviation for J0 = 1.0, indicating that accounting for higher order spike filtering may be
beneficial in this parameter regime.

recorded neurons have been removed. We have demonstrated that this approximation is
valid for the networks considered in this paper. However, this approximation may break
down in networks in which the recorded neurons spike at high rates. In this case, we
may need another reference state to expand the conditional rates around. A natural

choice of reference state ṅ
(0)
r (t) in this case would be the mean firing rates of the

neurons. We will set up this expansion here.
The mean firing rates of the neurons are intractable to calculate exactly, so we will

estimate them by the mean field rates, an approximation that we expect to be accurate
in the high-firing rate regime.

The mean field equations for the full network are

〈ṅi〉 = λ0φ

µi +
∑
j

Jij ∗ 〈ṅj〉

 .

We can then expand E [ṅh| {ṅr}] around ṅr = 〈ṅr〉, truncating at linear order to
obtain

E [ṅh(t)| {ṅr}] ≈ 〈ṅh〉+
∑
h′,r

∫ ∞
−∞

dt′dt′′ Γfull
h,h′(t− t′)Jh′,r(t′ − t′′)(ṅr(t′′)− 〈ṅr〉),

where Γfull
h,h′(t− t′) is the input linear response of the full network, including the

recorded neurons.
We can then approximate the instantaneous firing rates of the recorded neurons by
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λr(t) ≈ λ0φ

({
µr +

∑
r′

Jr,r′ ∗ 〈ṅr〉

}
+
∑
r′

Jr,r′ ∗ (ṅr − 〈ṅr〉) +
∑
h

Jr,h ∗ E [ṅh(t)| {ṅr}]

)

≈ λ0φ

{µr +
∑
r′

Jr,r′ ∗ 〈ṅr〉+
∑
h

Jr,h ∗ 〈ṅh〉

}
+
∑
r′

Jr,r′ +
∑
h,h′

Jr,h ∗ Γfull
h,h′ ∗ Jh′,r′

 ∗ (ṅr − 〈ṅr〉)

 ;

note that we introduced 0 =
∑
r′〈ṅr′〉 −

∑
r′〈ṅr′〉 so that we could write the

instantaneous firing not as a function of filtered spike trains but as a function of filtered
deviations from the mean firing rate. Importantly, although it looks like only the
baseline is different from the zero-activity reference state case but the coupling is the
same, the linear response function Γfull

h,h′(τ) is not the same as the zero-reference state
case, and hence the correction to the coupling is slightly different. The solutions look
similar, but the linear response functions now incorporate the effects of the recorded
units as well. In particular, Γfull

ij (t− t′) satisfies the equation∫ ∞
−∞

dt′′
[
δik − γfulli Jik(t− t′′)

]
Γfull
kj (t′′ − t′) = γfulli δijδ(t− t′),

where γfulli is the gain of neuron i accounting for the entire network,

γfulli = λ0φ
′

µi +
∑
j

Jij ∗ 〈ṅj〉

 .

Thus, in Fourier space

Γ̂full
ij (ω) =

[
I− V̂full(ω)

]−1
ij
〈ṅj〉

=

∞∑
`=0

[
V̂full(ω))`

]
ij
〈ṅj〉,

where V̂ full
i,j (ω) = γfulli Ĵi,j(ω) is an N ×N matrix – i.e., it contains the couplings and

firing rates of all neurons, recorded and hidden. Hence, while this looks formally similar
to the result we obtained in the zero activity state, the inclusion of recorded neurons
modifies our rules for calculating contributions to the effective coupling filters. In
particular, Ĵeff

r,r′(ω)− Ĵr,r′(ω) involves contributions from paths through both hidden
and recorded neurons, unlike the zero-activity reference case, which involved
contributions only from paths through hidden neurons. The reason for this, of course, is
that the reference state depends on the entire network, not just the hidden neurons.
The difference between the cases matters only at higher orders in our expansion —
paths of length ` = 4 or greater. We can see this by writing out the first few terms in
the path length expansion of the effective coupling,

Ĵeff
r,r′(ω) = Ĵr,r′(ω) +

∑
h

Ĵr,h(ω)γfullh Ĵh,r(ω) +
∑
h,h′

Ĵr,h(ω)γfullh Ĵh,h′(ω)γfullh′ Ĵh′,r′(ω)

+
∑
h,h′,j

Ĵr,h(ω)γfullh Ĵh,j(ω)γfullj Ĵj,h′(ω)γfullh′ Ĵh′,r′(ω) + . . . ;

for conciseness, we have assumed zero-self coupling (Ĵi,i(ω) = 0), but this can be

restored by setting γfulli → γfulli /(1− γfulli Ĵi,i(ω)).
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We see that the first few terms of the expansion are the same as the zero-activity
reference case, with the exception that the γfullh are the gains for the entire network, not
just the hidden network absent the recorded neurons. It is only the ` = 4 term at which
contributions to the linear response functions involving paths through any neuron j,
recorded or hidden, start to appear. Because we typically expect the amplitude of these
terms to be small, we anticipate expanding around the mean field reference state will
yield similar results to the expansion around the zero-activity reference state presented
in the main paper.
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