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Supplementary Figure 1. Benchmarks of single-chip image object classification 

performance and energy efficiency (EE) in silicon GPU (data a-f), CPU (data g, h), ASIC 

(data i, j), and neuromorphic (NMC) (data k) processors, all running deep convolutional 

neural network (CNN) algorithms for inference on standard image sets. A record EE of 6.7 nJ/bit 

was realized in a silicon NMC processor (TrueNorth, data k)1, which is one decade better than 

the record EE of 48.4 nJ/bit for GPUs (Nvidia Tegra X1, data f), and two decades better than the 

record EE of 509.7 nJ/bit for CPUs (Intel i7 6700K, data h)2,3. However, the throughput (in bit/s) 

of a silicon NMC chip is the lowest among the three categories, reaching only 31 Mbit/s, barely 

faster than a human operator (~20 Mbit/s). Best-case performance of ASIC (TPUv2, data i)4 is 

comparable to that of GPUs. Dotted line is a speculated empirical boundary of the chip-level 

inference throughputEE product for the surveyed technologies, i.e. the so-called ‘performance-

efficiency dilemma’, possibly limited by the silicon CMOS device physics. The bit rates for 

60Hz 1080p or 4K video are 2.99 Gb/s and 12.7 Gb/s, respectively. For a GPU to deliver 

inference throughput at 1080p HD bit rate, the extrapolated chip-level power consumption is 

~3.8 kW. Standard AlexNet architecture and non-batched ImageNet image set (8-bit RGB 

images with 65536 pixels) are used in GPU and CPU benchmarking. A custom CNN architecture 

and CIFAR10 image set (8-bit RGB images with 1024 pixels) is used in NMC benchmarking. 

The reported inference throughput values in frame/s were first converted to pixel/s then to bit/s 

by the formula of (bit count) = (pixel count)  (color channel)  (color depth) = pixel count  24. 
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Supplementary Figure 2. The scaling of neuron energy efficiency (EE, in number of spikes 

per Joule) vs. neuron area. Data points encircled by the magenta ellipse are from silicon 

CMOS neurons published in 2008-20145-13, with the lowest reported energy use at 0.4 pJ/spike9. 

The estimated domain of biological neurons is outlined by the green rectangle. Simulated 

Hodgkin–Huxley (HH) cells (green dotted lines, simulated at ion channel density of 0.5, 1, 2, and 

4 μm-2 respectively, from top to bottom) illustrate trends of higher EE for smaller neurons, and 

higher EE for lower ion channel densities14. Simulated VO2 memristor neurons (blue dashed 

lines, at specific membrane capacitance of 1, 10, and 43 fF μm-2, from top to bottom) show a 

similar trend of higher EE for smaller neurons (but with a higher slope of change), and higher EE 

for smaller specific membrane capacitance. This is understandable, since the dynamic spiking 

energy is proportional to the membrane capacitance (see Supplementary Fig. 36). At the same 

neuron (and capacitor) area, lower specific membrane capacitance translates into lower dynamic 

spiking energy and hence higher EE. At 1 fF μm-2 specific capacitance (the topmost blue line), 

VO2 neurons show superior EE-area scaling than the best-case HH cells at neuron sizes smaller 

than 70 μm2, and can surpass the estimated human brain EE (horizontal green dashed line) of 

1.81014 spike/J (or 5.6 fJ/spike energy use) at neuron sizes smaller than 3 μm2. Orange line is 

the conceived fundamental limit of EE for digital computers15. For simplicity, a one-to-one 

conversion is assumed between the EE of multiply–accumulate operations (MAC) per Joule in a 

digital computer and the EE of spikes per Joule in the brain, i.e. 1 MAC/J = 1 spike/J. The unit of 

EE used in simulated HH cells14 is bit/ATP, which is converted to spike/J by conversion factors 

of 1 ATP = 10-19 J and 1 bit = 1 spike. In simulated VO2 neurons, VO2 channel radius (length) is 

fixed at r (L) =10 (10) nm, and the two VO2 memristors contribute 2.3 fJ of switching energy in 

each spike. It is assumed that 80 % of the total neuron area is occupied by membrane capacitors. 

This ratio may vary with specific designs, but adjusting it will only cause a small lateral shift in 

the trend lines without affecting the slope and the main conclusions.  
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Supplementary Figure 3. Astable oscillator characteristics measured in a VO2 Pearson-

Anson relaxation oscillator. a, Two-terminal quasi-d.c. V I characteristics (force V, measure I) 

of the VO2 device X1 in circuit d (including Re) by sweeping the d.c. bias from 0 to 1.6 V and 

then back to 0. Re (370 ) is the metal wire resistance in the crossbar device. To enable astable 

oscillations, the load line (green), defined by the d.c. bias (Vdc) of 3 V and the load resistor (RL) 

of 10 k in circuit d, must intersect the V I curve in its negative resistance region connecting (2) 

and (4).  b, Waveform of the output voltage (Vout) in circuit d, showing sawtooth-shaped 

relaxation oscillations. c, Waveform of the current flowing through the VO2 device X1 

(monitored by an oscilloscope channel with 50  input resistance to ground), showing Mott 

transitions from (2) to (3) and from (4) to (5). The actual rise or fall time in (2) (3) and (4) (5) 

transitions are much shorter than the sample interval used (2 ns). A complete cycle of astable 

oscillation from (1) to (5) has four stages (see arrows). From (1) to (2): switch X1 remains open, 

capacitor C1 is charged till Vout reaches the switching threshold of X1. From (2) to (3): closing of 

X1 causes a surge in current, but Vout is held constant by C1. From (3) to (4): capacitor C1 is 

discharged till Vout reaches the minimum holding threshold for X1 to stay metallic. From (4) to 

(5): X1 is reopened. 
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Supplementary Figure 4. Structural and compositional characterizations of a 100nm-thick 

VO2 film grown on SiNx/Si substrate. a, Grazing incidence X-ray diffraction (GIXRD) 

spectrum acquired at 1.54059 Å Cu Kα1 wavelength. Indexed lines are the results of a phase-

identification analysis by using the whole pattern fitting method. The best match (at an R factor 

of 7.28 %) is found with a monoclinic VO2 phase (space group: P21/c (14) PDF# [98-001-

4290]). The relative intensities indicate some preferred orientation of the crystallites. b, High-

resolution X-ray photoemission spectroscopy (XPS) of the V2p spectral doublet (V2p1/2 and 

V2p3/2). The V2p3/2 peak is curve fitted in an attempt to quantify the oxidation states of V, 

showing a dominating V4+ oxidation state (64 %) with the rest of it being at V5+ state (36 %). 

Since XPS only detects the top few nm thickness of the film, the V5+ state was possibly due to 

native oxidation after the film was exposed to air. c, Rutherford backscattering spectrum (RBS) 

showing atomic concentrations of O at (674) % and V at (331) %,  or a O:V ratio of 2.03:1. 

The thickness in RBS is estimated by assuming a density of 7.151022 atoms cm-3. d, Secondary 

ion mass spectroscopy (SIMS) showing an average O:V ratio of 2.04:1 (in the depth of 40–120 

nm). 
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Supplementary Figure 5. Transmission electron microscopy and electron diffraction 

characterizations of a 100nm-thick VO2 film grown on SiNx/Si substrate. a, Cross-sectional 

bright-field transmission electron microscopy (BFTEM) image of the VO2 sample prepared by 

focused ion beam cutting. The polycrystalline nature of the VO2 film with columnar grain 

structures is clearly resolved. The brighter and darker contrasts seen across grain boundaries are 

caused by electron beam diffractions by lattice planes with a slight tilt from one grain to another. 

Scale bar: 50 nm. b, High-resolution (HRTEM) image of the VO2/SiNx interface. Scale bar: 4nm. 

c, BFTEM image of one particular grain (“grain 1”) selected for electron diffraction study. Scale 

bar: 20 nm. d, Selected area electron diffraction (SAED) pattern of grain 1 showing diffraction 

spots that can be matched nearly perfectly with the d-spacing of a few low-index lattice planes, 

(002), (100), and (011), from a monoclinic VO2 phase (space group: P21/c (14) PDF# [98-001-

4290]). Scale bar: 2 nm-1. 

  



7 
 

 
 

Supplementary Figure 6. Characteristics of electroform-free VO2 active memristor devices. 

a, Photo of an array of 576 VO2 crossbar devices (36 reticles and 16 devices in each reticle) 

fabricated on a 3-inch SiNx/Si substrate. b, Histograms of the switching threshold voltage 

measured from 288 100  100 nm2 VO2 devices (top) and 288 50  50 nm2 devices (bottom) 

fabricated on the same wafer. The mean values of switching thresholds are size-dependent and 

tunable by the VO2 film process conditions. c, Temperature dependence of device conductance G 

near zero bias (50 mV) measured in a heating cycle, showing a sharp Mott transition when 

temperature rises above 60 C. Thermally activated electron transport in the insulating state is 

shown by a least-square fit (R2 = 0.996) by ln(G/T2) vs. 1000/T (dashed line) with a single 

activation energy of (0.205  0.003) eV. d, Switching endurance data of > 26.6 million pulsed-

mode on/off switching cycles. All the switching events were measured without subsampling. The 

data show no sign of device degradation or drift in resistance values during the endurance test.  e, 

Histogram of the ROFF/RON resistance ratio in the endurance measurement of d. Red line is a 

Gaussian fit with R2 = 0.99, having a center of 155.65  0.15 and FWHM of 16.72  0.30. f, 

Four-terminal quasi d.c. I V characteristics (force V, measure I) of the device tested in d before 

and after the endurance test, showing no deterioration or drift in its switching characteristics. 
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Supplementary Figure 7. Wafer-scale uniform and electroform-free switching 

characteristics of VO2 devices. Plotted are 36 sets of four-terminal quasi-d.c. I V traces (force 

V, measure I) measured from VO2 crossbar devices, sampled one device per reticle from 36 

reticles (labeled by the wafer row and column numbers, from 48 to 53) in the same wafer. All the 

devices are identified as WaferSubsite = D1, meaning that they are all located at the same 

relative position inside each reticle (D1 is the first device at the bottom left corner in each reticle, 

as shown in Supplementary Figure 6a). For each device, the force V and measure I sweeps is 

repeated 10 times at the same setting. Majority of the as-grown VO2 devices, ~98 %, showed 

upfront resistive switching and NDR in the very first I V sweep without the need of 

electroforming. The uniformity of switching is demonstrated in both the run-to-run repeatability 

and the low device-to-device variation in switching thresholds (see Supplementary Figure 8). 
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Supplementary Figure 8. Statistical dispersions in switching threshold voltage Vth and 

device size d of 1152 VO2 nano-crossbar devices, as measured by coefficient of variation 

𝐶V ≡ 𝜎/𝜇 (ratio of the standard deviation 𝜎 to the mean 𝜇). The device size d, as defined by 

the electrode linewidth, is measured by a critical dimension scanning electron microscope 

(CDSEM) system. a, 𝐶V in switching threshold Vth vs. the mean device size 𝑑 and its inverse 

1/𝑑. b, 𝐶V in device size d vs. the mean device size 𝑑 and its inverse 1/𝑑. A total number of 

1152 VO2 devices, with six different designed dimensions, are measured from two 3-inch wafer 

samples (wafer A: 7575 nm2, 150150 nm2, 300300 nm2, and 600600 nm2; wafer B: 5050 

nm2 and 100100 nm2). Each data point in wafer A is the result from 144 distinctive VO2 

devices with the same designed size. For each device, the force V and measure I sweeps is 

repeated 10 times at the same setting to obtain 20 switching events (including both positive and 

negative bias polarities). Each data point in wafer B is the result from 288 distinctive VO2 

devices in the same manner as in wafer A. At d < 150 nm, 𝐶V in device size starts to increase 

linearly with the inverse of device size due to the impact of edge roughness in ebeam 

lithography. In the worst-case, 𝐶V(𝑑) is ~5 % for 5050 nm2 devices. No such trend is observed 

in the relative variation of switching threshold, and all the 𝐶V(𝑉th) data are less than 13 %. 
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Supplementary Figure 9. Comparison of switching energy and switching time (speed) of 

Mott IMT in VO2 and NbO2 devices with channel radius of 5–35 nm. a, Calculated switching 

energy vs. channel radius for devices with a film thickness of 20 nm. In VO2, due to the much 

smaller temperature rise needed for IMT to occur (40 K vs. 800 K), the volumetric free energy 

cost for IMT in VO2 is only one-sixth of that for NbO2 at the same crystal volume, and is less 

than 1 fJ at channel radii smaller than 7 nm. For details, see Supplementary Table 1. b, 

Simulated switching time vs. channel radius for devices with a film thickness of 50 nm. SPICE 

simulations of a VO2-based Pearson-Anson relaxation oscillator (see the circuit in 

Supplementary Figure 3d) are used to estimate the switching time (speed) of Mott IMT from the 

rising edges of device current in each oscillation period16. The VO2 channel radius is varied 

while all the other VO2 model parameters are kept the same. Note that the switching speed is a 

material-dependent parameter, and is not affected by the values of RL and C1 passive components 

(RL from 5 k to 100 k and C1 of 22 pF were used). Simulations found that, at the same 

channel dimensions, Mott IMT switching in VO2 is 100 times faster than in NbO2, and is faster 

than 1 ps at channel radii smaller than 15 nm. 
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Supplementary Figure 10. All-or-nothing firing behavior in a tonic VO2 neuron circuit. a, 

Experimentally measured all-or-nothing behavior, showing no response at subthreshold input 

voltage pulses of 0.1 V and 0.15 V, and spiking at suprathreshold input voltage pulses of 0.25 V 

and 0.4 V. In the suprathreshold regime, the shape or amplitude of neuron spikes does not 

change with an increase in the input voltage pulse amplitude. b, Simulated all-or-nothing 

behavior of the same tonic VO2 neuron circuit. The pulse width in all the data shown is 10 µs.  
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Supplementary Figure 11. Refractory period behavior in a tonic VO2 neuron circuit. a, 

Experimentally measured refractory period behavior, showing a spiking in response to the first 

suprathreshold input voltage pulse, but no response to the second input voltage pulse if it 

occurred within the refractory period (panels 1 to 4 from the top). The neuron fires again if the 

second input voltage pulse is outside the refractory period (panels 5 to 7 from the top). From top 

to bottom, the periods of the input voltage pulse doublets are 20 µs, 40 µs, 60 µs, 80 µs, 100 µs, 

120 µs, and 150 µs, respectively. b, Simulated refractory period behavior of the same tonic VO2 

neuron circuit. The pulse width in all the data shown is 10 µs. 
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Supplementary Figure 12. Absolute and relative refractory periods experimentally 

observed in a tonic VO2 neuron circuit. a, Absolute refractory period behavior, showing that if 

a second input voltage pulse is applied within the absolute refractory period, regardless of its 

strength (in this example 1.5 V was used, an amplitude greater than the spike amplitude), the 

neuron will never fire a second action potential in response. b, Relative refractory period 

behavior, showing that if the second input voltage pulse applied within the relative refractory 

period has the same strength as the first input pulse (in this example 0.75 V) , the neuron will not 

fire a second action potential. c, Relative refractory period behavior, showing that if the second 

input voltage pulse applied within the relative refractory period is much stronger than the first 

input pulse (in this example 1.5 V vs. 0.75 V) , the neuron will respond to it and fire a second 

action potential. The pulse width in all the data shown is 8 µs. 
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Supplementary Figure 13. Tonic spiking behavior in a tonic VO2 neuron circuit. a, 

Experimentally measured tonic spiking behavior, showing that the neuron continues to fire a 

train of spikes in response to a d.c. input current. IRL1, the current flowing through RL1, was 

monitored by probing the voltage across it using two high-impedance (10 M) oscilloscope 

probes. The current jitters coinciding with the output spikes are likely caused by the reflection of 

action potentials toward the neuron input, i.e. “back actions”. b, Simulated tonic spiking 

behavior of the same tonic VO2 neuron circuit in response to a d.c. input current. c, Experimental 

phase plane of the K+ membrane potential VK (aka Vout) vs. the Na+ membrane potential VNa. In 

the phase plane representation, time-domain tonic spiking turns into a limit cycle attractor. d, 

Simulated phase plane of VK vs. VNa, showing a limit cycle attractor similar to the experimental 

data in a qualitative manner. The green and magenta dots in a d show the first and last plotted 

data points. 
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Supplementary Figure 14. Tunable tonic bursting behavior measured in a tonic VO2 

neuron circuit. a–j, Experimental tonic burst patterns measured with a fixed value of C2 

capacitor and an increasing value of C1 capacitor (C1 ≫ C2 in all the cases). As C1 becomes 

larger, both the number of spikes in each burst period and the burst period itself increase. k, 

Experimental C1 dependence of the number of spike in each burst period. Dashed line is a linear 

fit (with R2 = 0.98) which shows a linear trend that the number of spike per period = (1.10.5) + 

(0.490.03)C1 (nF). l, Experimental C1 dependence of the burst period. Dashed line is a linear fit 

(with R2 = 0.997) which shows a linear trend that the burst period (µs) = (17.760.33)C1 (nF). In 

all the data shown, C2 1 nF comes from the stray capacitance in the experimental setup. 
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Supplementary Figure 15. Spike frequency adaptation behavior in a tonic VO2 neuron 

circuit. a, Experimentally measured spike frequency adaptation in tonic burst under a sustained 

d.c. current stimulation. The spike frequency is relatively high at the onset of tonic bursting, and 

then it decreases over time, i.e., the neuron adapts. b, Simulated spike frequency adaptation 

behavior of the same tonic VO2 neuron circuit in response to a d.c. input current. c, Experimental 

phase plane of the K+ membrane potential VK (aka Vout) vs. the Na+ membrane potential VNa. A 

100-fold down-sampling followed by 5-point adjacent-averaging was applied to the raw 

oscilloscope data to smooth the curve. d, Simulated phase plane of VK vs. VNa, showing 

trajectories similar to the experimental data in a qualitative manner. The green and magenta dots 

in a d show the first and last plotted data points, respectively. 
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Supplementary Figure 16. Spike frequency adaptation behavior in a phasic VO2 neuron 

circuit. a, Experimentally measured spike frequency adaptation in phasic burst under a sustained 

d.c. current stimulation. The spike frequency is relatively high at the onset of stimulation, and 

then it decreases over time, i.e., the neuron adapts. b, Simulated spike frequency adaptation 

behavior of the same phasic VO2 neuron circuit in response to a d.c. input current. c, 

Experimental phase plane of the K+ membrane potential VK (aka Vout) vs. the Na+ membrane 

potential VNa. A 10-fold down-sampling followed by 5-point adjacent-averaging was applied to 

the raw oscilloscope data to smooth the curve. d, Simulated phase plane of VK vs. VNa, showing 

trajectories similar to the experimental data in a qualitative manner. The green and magenta dots 

in a d show the first and last plotted data points. 
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Supplementary Figure 17. Spike latency behavior in a tonic VO2 neuron circuit. a, 

Experimental spike latencies in responding to suprathreshold 10 µs input voltage (Vin) pulses. 

Spike delay is longer for a relatively weak input, and it diminishes as the input gets stronger. b, 

Simulated spike latencies of the same tonic VO2 neuron circuit. c, Dependences of measured and 

simulated spike latencies on the amplitude of the input pulse. Spike latency is arbitrarily defined 

as the delay between the onset of Vin and the peak time of spiking. Simulated spike latency  can 

be fitted (with R2 = 0.9995) by a logarithmic formula 𝜏 = 𝜏0 + 𝑏ln(𝐸 − 𝑉in), where 𝜏0 = (17.29 

 0.02) µs, 𝑏 = (3.20  0.07) µs/ln(V), and 𝐸 = (0.382  0.007) V. The logarithmic dependence 

of spike latency on the input amplitude can be accounted for by the logarithmic formula of the 

capacitor discharge time in a relaxation oscillator17.  
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Supplementary Figure 18. Subthreshold oscillation behavior measured in a tonic Class 2 

VO2 neuron circuit. a–c, Subthreshold oscillations in the neuron output, i.e., the K+ channel 

membrane potential, under a sustained d.c. current stimulation of 100 µA, 120 µA, and 140 µA, 

respectively. It is evident that the frequency of the oscillations increases with the input current 

level. d–f, Tonic spiking intermixed with occasional subthreshold oscillations (as demonstrated 

by the missing spikes) in the neuron output under a sustained d.c. current stimulation of 160 µA, 

180 µA, and 200 µA, respectively. The transition from subthreshold oscillations to tonic spiking 

is better observed by ramping up the current stimulation. See Figure 4b in the main text for 

details. 
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Supplementary Figure 19. Integrator behavior in a tonic Class 1 VO2 neuron circuit. a, 

Experimentally measured integrator behavior, showing that the neuron fires an action potential if 

a doublet of two subthreshold input voltage pulses are applied with sufficiently short interval 

between them The pulse interval for data in panel 1–5 starting from the top is 4 µs, 6 µs, 10 µs, 

11 µs, and 14 µs, respectively. The neuron does not spike if the two subthreshold input voltage 

pulses are too far apart from each other, i.e., the data in the bottom panel, with an interval of 16 

µs. b, Experimental integrator behavior of the same neuron circuit as in a, demonstrated by 

applying two doublets of subthreshold input voltage pulses in the same measurement. The 

neuron fires a spike in response to the first input pulse doublet with a shorter interval (5 µs), but 

does not fire in response to the second input pulse doublet with a longer interval (23 µs). c, 

Simulated integrator behavior of the same neuron circuit as in b. The pulse width and amplitude 

in all the data shown is 6 µs and 0.5 V, respectively. 
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Supplementary Figure 20. Bistability behavior measured in a tonic VO2 neuron circuit. a, 

The neuron is driven from the resting mode into a persistent tonic spiking mode (a self-

oscillation) by applying the first input pulse stimulation. A second input pulse arriving at an 

interval of 154 µs successfully switches the neuron from tonic spiking back to the resting mode. 

b, A second input pulse arriving at an interval of 155 µs fails to switch the neuron from tonic 

spiking back to the resting mode. In the measurements, 0.85 V and 15 µs wide voltage pulses 

sent from an arbitrary waveform generator (AWG) were converted into 85 µA input current 

pulses (Iin) using a stimulus isolator with a gain of 0.1 mA V-1. Input current was not monitored 

because the load resistor RL1 was set to be zero to enable bistability. The plotted Iin waveforms 

are calculated from the monitored AWG voltage waveforms. c, Probability (success rate) of the 

second input pulse switching off the self-oscillation vs. the pulse interval. Red line is a second-

order polynomial fit. Each data point represents the statistics from 8 to 10 such attempts. At an 

interval of 154 µs, the success rate is 100 %, or the neuron self-oscillation was switched off in 10 

out of 10 attempts. At an interval of 155 µs, the success rate dropped to 62.5 %, or 5 out of 8 

attempts. Despite the scattering of data points, it is evident that the success rate peaks at around 

154 µs interval, and it drops off as the interval is detuned away. This observation is consistent 

with the interpretation that the input must arrive at an appropriate phase of oscillation for it to 

switch the neuron from tonic spiking back to the resting mode. Large scattering in the success 

rates may be explained by the stochastic onset of tonic spiking, which shifts the phase of 

oscillation randomly with respect to the fixed intervals used in measurements. 
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Supplementary Figure 21. Inhibition-induced spiking (IIS) behavior in a tonic VO2 neuron 

circuit. a, Experimentally measured inhibition-induced spiking behavior, showing that the 

neuron is quiescent (at rest) when there is no input current, but fires a tonic spike train when it is 

hyperpolarized by an inhibitory (negative) input current of -90 µA. b, Simulated inhibition-

induced spiking behavior of the same tonic VO2 neuron circuit. In biology, many thalamo-

cortical neurons exhibit the IIS feature. The mechanism was attributed to inhibitory-input 

induced activation of the h-current and deactivation of the Ca2+ T-current18. 
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Supplementary Figure 22. Experimental inhibition-induced bursting (IIB) behaviors in 

tonic VO2 neuron circuits. The neuron is quiescent (at rest) when there is no input current, but 

fires irregular bursts of spikes when it is hyperpolarized by an inhibitory (negative) input current 

of -70 µA. Similar to the case of tonic bursting induced by excitatory (positive) inputs, IIB 

requires a much slower Na+ channel than the K+ channel, or C1 ≫ C2. a, IIB measured from a 

tonic VO2 neuron circuit with the discrete membrane capacitors set at C1 = 35 nF and C2 = 0 nF. 

b, IIB measured from another tonic VO2 neuron circuit with C1 = 21 nF and C2 = 0 nF. In the test 

setup, for each discrete capacitor there also exists a stray capacitance of ~1 nF, mostly 

contributed by the cables. Other circuit parameters can be found in Supplementary Table 2. 
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Supplementary Figure 23. Experimental excitation block behavior in a Class 2 tonic VO2 

neuron circuit. a, Experimentally measured excitation block behavior, showing that the neuron 

fires tonic spikes when the input current ramps above the spiking threshold at 25 µA. As the 

stimulus current further increases beyond 95 µA, the neuron suddenly ceases to spike and the 

output is locked to an elevated value (1.05 V). b, Experimental phase plane of the K+ membrane 

potential VK (aka Vout) vs. the Na+ membrane potential VNa for the data shown in a. The green 

and magenta dots in a and b show the onset of current ramp and the onset of excitation block. 

The VK VNa trajectory shows characteristics of a distorted letter ‘B’-shaped limit cycle attractor. 

Each loop of the trajectory corresponds to a complete cycle of action potential generation in a. 

Further increase of the stimulus current beyond 95 µA causes the disappearance of the limit 

cycle attractor and the locking of neuron state (the magenta dot). A 100-fold down-sampling 

followed by 16-point adjacent-averaging was applied to the raw oscilloscope data to smooth the 

curve. c, Experimental phase plane of VK vs. VNa for the time duration of the first tonic spike in a 

(marked by green and magenta triangles). The loop of letter ‘B’-shaped trajectory is marked with 

arrows. In theory, excitation block is attributed to the conversion from a spiking limit cycle to a 

supercritical Andronov-Hopf bifurcation phenomenon and is explained in FitzHugh-Nagumo 

model by the phase plane approach, which shows a stimulus-induced shift of the equilibrium 

through stable-unstable-stable branches of the ‘N’-shaped nullcline19. 
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Supplementary Figure 24. Experimental resonator behavior in a phasic VO2 neuron (a) as 

compared with integrator behavior in a tonic VO2 neuron (b). a, The phasic neuron circuit 

with a capacitively-coupled input. b, Oscilloscope-captured phasic neuron response to a 

subthreshold (0.6 V) frequency-sweeping sinusoidal voltage input (ZAP sweep20), showing a 

pass band centered around ~17 kHz. c, Sporadic spikes occur near ~17 kHz as the ZAP sweep 

amplitude increased to 0.7 V. d, Intensified spiking near ~17 kHz as the ZAP sweep amplitude 

further increased to 0.9 V. e, The tonic neuron circuit with all the circuit elements the same as 

the phasic neuron in a, except for the missing Cin capacitor. f–g, Frequency-domain response of 

the tonic neuron to ZAP sweeps with an amplitude of 0.6 V, 0.7 V, 0.9 V, respectively. The 

integrator nature is reflected by the low-pass filter characteristics of the neuron response. 
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Supplementary Figure 25. Phasic spiking (Class 3 excitable) behavior in a phasic VO2 

neuron circuit. a, Experimentally measured phasic spiking behavior, showing that the neuron 

fires only a single spike at the onset of a d.c. input current, and then it remains quiescent even in 

the presence of the input current. The plotted input current (Iin) waveform is calculated from the 

monitored AWG voltage waveform, because in the phasic neuron circuit the load resistor RL1 is 

replaced with a capacitor Cin.  b, Simulated phasic spiking behavior of the same phasic VO2 

neuron circuit. 
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Supplementary Figure 26. Phasic bursting behavior in a phasic VO2 neuron circuit. a, 

Experimentally measured phasic bursting behavior, showing that the neuron fires only a single 

period of burst spikes at the onset of a d.c. input current, and then it remains quiescent even in 

the presence of the input current. The plotted input current (Iin) waveform is calculated from the 

monitored AWG voltage waveform, because the load resistor RL1 is replaced with a capacitor Cin 

in the phasic neuron circuit. b, Simulated phasic bursting behavior of the same phasic VO2 

neuron circuit. 
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Supplementary Figure 27. Rebound spike behavior in a phasic VO2 neuron circuit. a, 

Experimentally measured rebound spike behavior, showing that when the neuron receives and 

then is released from an inhibitory (negative) input, it fires a post-inhibitory (rebound) spike, in 

response to the release (the rise edge) of the inhibitory input waveform). b, Simulated rebound 

spike behavior of the same phasic VO2 neuron circuit. In the case of excitatory input, a phasic 

spike is fired at the rise edge of the input current (see Supplementary Fig. 25). In the case of 

inhibitory input, a rebound spike is fired also at the rise edge of the input current. Equipped with 

a capacitively-coupled input, the phasic neuron essentially acts as a rise-edge detector. 
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Supplementary Figure 28. Experimental all-or-nothing characteristics in the rebound spike 

behavior of a phasic VO2 neuron circuit. Similar to the all-or-nothing response to an excitatory 

stimulus, for an inhibitory input, there also exists a threshold in its amplitude for a rebound spike 

to be fired when the input is released. a, The lack of response to a subthreshold inhibitory input 

pulse (-0.4 V), which is not strong enough for the neuron to fire a rebound spike at the rise edge 

of the input. It is noticed that the Na+ channel membrane potential surges up at the rise edge of 

the input, but it still stays below zero and therefore does not trigger the Na+ channel to open. b–c, 

A rebound spike is fired in response to a suprathreshold inhibitory input pulse of -0.5 V and -0.6 

V, respectively. In both cases, the Na+ channel membrane potential surges above zero at the rise 

edge of the input, triggering the coordinated opening or closing of the Na+ and K+ channels and 

an action potential generation. d, a close-up view of the greyed-out area in c, showing more 

details in the time evolution of the input Vin, the Na+ channel membrane potential VNa, and the K+ 

channel membrane potential (the neuron output) Vout. 
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Supplementary Figure 29. Experimental input-duration threshold characteristics in the 

rebound spike behavior of a phasic VO2 neuron circuit. a, From top to bottom, a rebound 

spike is fired in response to a suprathreshold inhibitory input pulse of -0.5 V with a duration of 

30 µs, 20 µs, 10 µs, and 5 µs, respectively, but the neuron does not fire if the duration is further 

shortened to 4 µs (the bottom panel). b, a close-up view of the case for 5 µs inhibitory input in a, 

showing that the Na+ channel membrane potential VNa surges above zero at the rise edge of the 

input (arrow), triggering a rebound spike. c, a close-up view of the case for 4 µs inhibitory input 

in a, showing that the Na+ channel membrane potential VNa surges but stays below zero at the 

rise edge of the input, and is thus incapable of triggering the rebound spike. 
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Supplementary Figure 30. Rebound burst behavior in a phasic VO2 neuron circuit. a, 

Experimentally measured rebound burst behavior, showing that when the neuron receives and 

then is released from an inhibitory (negative) input, it fires a post-inhibitory (rebound) burst of 

spikes, in response to the release (the rise edge) of the inhibitory input waveform). b, Simulated 

rebound burst behavior of the same phasic VO2 neuron circuit. 
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Supplementary Figure 31. Threshold variability behavior in a phasic VO2 neuron circuit. a, 

Experimental threshold variability, showing that the neuron does not fire when it receives a brief 

subthreshold excitatory or inhibitory input pulse, but it fires a spike if the inhibitory input pulse 

is followed by an excitatory pulse (both are subthreshold) as long as the interval is short enough. 

The preceding inhibitory pulse lowers the threshold and makes the neuron more excitable. b, 

Simulated threshold variability of the same phasic VO2 neuron circuit. Combining the rise edges 

of the inhibitory and excitatory pulses into one effective rise edge, threshold variability is caused 

by the same mechanism as the threshold seen in rebound spike (See Supplementary Fig. 28). 
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Supplementary Figure 32. Experimental depolarizing after-potential behavior of a phasic 

VO2 neuron circuit. a, Single phasic spikes fired at the onset of d.c. input currents of 200 µA, 

300 µA, and 450 µA levels. At relatively weaker input currents, the neuron membrane potential 

develops the commonly seen hyperpolarizing after-potential (HAP) that goes below the resting 

level. As the input strengthens, the HAP gradually weakens and morphs into a depolarizing after-

potential (DAP) that goes above the resting level. b, Once a DAP is developed, the neuron has 

shortened refractory period and becomes superexcitable. A slightly stronger input, from 450 µA 

to 500 µA, causes the neuron to fire a second spike. The second spike is triggered by Na+ 

channel reactivation when the relative refractory period is nullified by the formation of DAP. 
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Supplementary Figure 33. Accommodation behavior in a phasic VO2 neuron circuit. a, 

Experimental accommodation behavior, showing that a slowly ramped input current does not 

trigger the neuron to fire. In other words, the neuron accommodates the input change and 

becomes less excitable. A sharply ramped current, however, triggers a spike. All the current 

ramps have the same maximum amplitude of 150 µA. b, Simulated accommodation behavior of 

the same phasic VO2 neuron circuit. 

  



35 
 

 
 

Supplementary Figure 34. Mixed-mode spiking behavior of a mixed-mode VO2 neuron 

circuit. a, A phasic neuron with a capacitive coupling (Cin) to dendritic inputs. b, A tonic neuron 

with a resistive coupling (RL1) to dendritic inputs. c, A mixed-mode neuron with both capacitive 

and resistive couplings (Cin in parallel with RL1) to dendritic inputs. Except for the difference in 

input impedance, the tested neuron circuits in a–c are identical, including the VO2 devices and 

d.c. biases used. d, Phasic bursting measured from the phasic neuron circuit in a. e, Tonic 

spiking measured from the tonic neuron circuit in b. f, Mixed-mode spiking, i.e., phasic bursting 

followed by tonic spiking, measured from the mixed-mode neuron circuit in c. g, Simulated 

phasic bursting of the phasic neuron circuit in a. h, Simulated tonic spiking of the tonic neuron 

circuit in b. i, Simulated mixed-mode spiking of the mixed-mode neuron circuit in c. 
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Supplementary Figure 35. Experimental recurrence plots (Poincaré plots) of spike 

amplitudes in a tonic VO2 neuron circuit (from the same data as Fig. 6). a f, Scatter 

recurrence plots of adjacent spike amplitudes at input white noise (peak-to-peak) levels of 5 

µApp, 10 µApp, 15 µApp, 25 µApp, 50 µApp, and 75 µApp, respectively, showing that 

irregularities develop in both the spike timing (See Fig. 6) and the spike amplitude as the input 

stimulus becomes noisier. g, Dependences of the mean spike amplitude and the skewness in its 

distribution on the input noise level, showing similar trends of initially a fast decrease with the 

input noise, then a partial recovery if the input noise level is higher than ~20 µApp. 
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Supplementary Figure 36. Simulated dynamic power scaling of a VO2 neuron. a, Simulated 

dynamic spike energy of a tonic VO2 model neuron circuit vs. membrane capacitances, showing 

a nearly linear scaling with the capacitor values that also determine the neuron area. This is 

because the energy dissipated in a spike comes from the coordinated discharging of the two 

membrane capacitors. The dynamic spike energy is calculated by first summing the total power 

supplied by the -ENa and +EK voltage sources, then integrating over time (see example in b–d). 

For simplicity, C1 = C2 was assumed in the simulations. Two sets of VO2 channel dimensions of 

r/L = 10/10 nm and r/L = 36/50 nm are compared. Here r is the VO2 channel radius, L is the 

channel length (film thickness). The results show that the impact of the VO2 channel dimensions 

on the neuron dynamic spike energy is relatively small. By aggressively shrinking the VO2 

volume by a factor of 18, from r/L = 36/50 nm to r/L  = 10/10 nm, the spike energy is only 

reduced by 24 %. The top x axes show the calculated total capacitor area at capacitance density 

of 1 fF μm-2 (blue) and 43 fF μm-2 (magenta), respectively. A dynamic spike energy use <0.1 

pJ/spike (green arrow) can be achieved at a total capacitor area of ~1 μm2 by using 20 fF 

membrane capacitors, which can be realized by today’s integrated high-κ metal-insulator-metal 

(MIM) capacitors with a record-high capacitance density21 of 43 fF µm-2 (typical MIM 

capacitance density of high-κ dielectrics is in the range of 15–20 fF µm-2). Note that at a given 

capacitor area, lower capacitance value (by using lower capacitance density) will result in a 

lower spiking energy and hence a better EE. This is clearly shown in the EE–area scaling trend 

lines of VO2 neurons (See Supplementary Fig. 2). b, Time dependent neuron spike waveform at 

C1, C2 = 10 fF and r/L  = 10/10 nm (the circled red dot in a). c, Time dependent total dynamic 

power supplied by the -ENa and +EK voltage sources. d, Time dependent dynamic energy 

consumption, calculated by integrating the total dynamic power simulated in c over time. 
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Supplementary Figure 37. Simulated dynamic and static power scaling of a VO2 neuron 

over its spike rate. Left axis shows simulated dynamic and static power consumptions of a tonic 

VO2 model neuron, and the right axis shows the percentage of static power in the total power 

consumption. Static power is dissipated by the neuron membrane leakage current in the resting 

state, i.e., leakage current drawn by d.c. biased VO2 devices due to the finite resistivity of the 

insulating phase (~1 cm). With Vth as the switching threshold voltage, the upper bound (UB) 

and lower bound (LB) of static power are calculated at d.c. bias Vdc = Vth and Vth/2, respectively. 

Since the neuron only spikes if (Vin + Vdc)  Vth, the signal gain, capped by Vdc/Vin, is always 

smaller than Vdc/(Vth – Vdc). The gain will becomes less than 1 if Vdc is less than Vth/2. While 

static power dissipation is independent of the spike rate, dynamic power dissipation is 

proportional to the spike rate. Therefore at low spike rates, static power may dominate the total 

power consumption. At sufficiently high spike rates, the static power makes only an insignificant 

contribution to the total power consumption, and is not expected to be of major concern for 

system level energy efficiency. The LB and UB of static power is less than 10 % of the total 

power at a spike rate higher than 100 MHz and 400 MHz, respectively, and the overall energy 

use is better than 0.11 pJ/spike. At 100 MHz spike rate, the single neuron total power 

consumption is 11 µW (LB) to 14 µW (UB). The SPICE simulation assumes a VO2 channel of 

r/L = 10/10 nm, and the VO2 model neuron has an energy use of 0.1 pJ/spike at C1, C2 = 38.3 fF 

(see the red dashed line in Supplementary Fig. 36a for details). 
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Supplementary Figure 38. Simulated potentiation and depression of a TaOx memristor 

synapse by a VO2 tonic neuron. a, Circuit diagram of the simulated depression (reset) of a 

TaOx memristor with its top electrode connected to the output of a VO2 tonic neuron circuit (the 

amplifier symbol). The VO2 neuron fires a spike train in response to a square wave current input. 

b, Evolution of the TaOx device resistance over time in circuit a, showing that each step in 

resistance rise is caused by a presynaptic VO2 neuron spike. c, Circuit diagram of the simulated 

potentiation (set) of a TaOx memristor with its bottom electrode connected to the VO2 neuron 

output. d, Evolution of the TaOx device resistance over time in circuit c, showing that each step 

in resistance drop is caused by a presynaptic VO2 neuron spike. The TaOx memristor SPICE 

model is from Ref. 22. 
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Supplementary Figure 39. Schematic top view and side cross-section view (not to scale) of 

possible process steps to manufacture an integrated active memristor neuron circuit. The 

complete integrated circuit only requires up to three layers of interconnect metals (M(n) to 

M(n+2)). The structures made in each process steps are: a, Bottom electrodes (BE) of memristors 

at M(n). b, Active memristor device stack that include metallic diffusion barriers. c, Inter-metal 

dielectric. d, Top electrodes (TE) of memristors (also as bottom electrodes of capacitors) at 

M(n+1). e, Dielectric passivation and contact openings of the TE. f, Thin-film resistors (also as 

the bottom contact layer for capacitors). g, Dielectric for capacitors. h, Top contact layer for 

capacitors. i, Inter-metal dielectric. j-k, Contact pads at M(n+2) by a dual-damascene process. 

Other methods, e.g. single damascene, can also be used. 
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Supplementary Tables 

 

Supplementary Table 1. Comparison of volumetric free energy cost for Mott phase 

transitions in NbO2 and VO2 materials. Values for NbO2 are from Table 1 in Ref. 16 (and 

references therein). At the same volume, the free energy cost for NbO2 phase transition is 6.1 

times that for VO2. The total volumetric enthalpy change in a VO2 nano-crossbar device with 

channel radius r = 10 nm and length L = 10 nm is merely 1.15 fJ. 

 

Material NbO2 VO2 

Mott transition critical 

temperature T
C
 1080 K 340 K 

Temperature rise T 800 K 43 K 

Volumetric heat capacity c
p
 2.6106 J m

-3
 K

-1
 3.3106 J m

-3
 K

-1
 

Volumetric enthalpy change of 

IMT h
tr
 1.6108 J m

-3
 2.35108 J m

-3
 

Total volumetric enthalpy change 2.24109 J m
-3

 3.67108 J m
-3

 

Factor of improvement – 6.1 
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Supplementary Table 2. Experimental circuit parameters used in neuron spiking tests. The 

VO2 nano-crossbar devices X1 and X2 with the same nominal size of 100  100 nm2 and film 

thickness of 100 nm are randomly selected from the same wafer. C1 and C2 values in the table 

are the values of discrete capacitors connected through coaxial cables to VO2 devices. In 

simulations, stray capacitances in the setup, typically in the range of ~1 nF, are added to C1 and 

C2 values. 

 

Spiking behavior 
Figure 

No. 

R
L1

 

(kΩ) 

R
L2

 

(kΩ) 

C
1
 

(nF) 

C
2
 

(nF) 

C
in

 

(nF) 

–ENa 

(V) 

+EK 

(V) 

X
1
 

(ID) 

X
2
 

(ID) 

All-or-nothing S10  6 6 2 2 – -1.35 1.35 5251-13 5251-9 

Refractory period S11 5 5 5 5 – -1.6 1.6 5050-15 5050-7 

Absolute & 

relative refractory 

periods 

S12 6 6 4 1 – -1.45 1.45 5352-1 5252-13 

Tonic spike S13 5 5 5 2 – -1.5 1.5 5151-7 5151-3 

Tonic burst S14 10 10 5–30 0 – -1.85 1.85 5051-9 5051-5 

Class 1 excitable 5c 5 5 5 5 – -1.5 1.5 5151-7 5151-3 

Class 2 excitable 5b 5 5 1 5 – -1.5 1.5 5151-7 5151-3 

Spike frequency 

adaptation (tonic) 
S15 10 10 200 2 – -1.4 1.4 5251-13 5251-9 

Spike frequency 

adaptation (phasic) 
S16 – 9 4 1.2 9 -1.6 1.6 5351-11 5351-7 

Spike latency S17 6 6 10 3 – -1.5 1.5 5352-1 5252-13 

Subthreshold 

oscillation 
S18 5 5 2 3 – -1.4 1.4 5350-11 5350-7 

Integrator S19 6 6 8.5 2 – -1.4 1.4 5251-13 5251-9 

Bistability S20 0 7 1.5 2 – -1.58 1.58 5352-1 5252-13 

Inhibition-induced 

spike 
S21 6 6 6 2 – -1.4 1.4 5251-13 5251-9 

Inhibition-induced 

burst 

S22a 6 6 35 0 – -1.4 1.4 5251-13 5251-9 

S22b 7 7 21 0 – -1.5 1.5 5049-3 4949-15 

Excitation block S23 6 6 0 2 – -1.4 1.4 5251-13 5251-9 

Resonator S24 5 7 5 0 5 -1.5 1.5 5250-13 5250-9 

Phasic spike S25 – 7 1 2 0.3 -1.6 1.6 5352-1 5252-13 

Phasic burst S26 – 7 4 0 0.3 -1.6 1.6 5352-1 5252-13 

(Continued on next page) 
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Spiking behavior 
Figure 

No. 

R
L1

 

(kΩ) 

R
L2

 

(kΩ) 

C
1
 

(nF) 

C
2
 

(nF) 

C
in

 

(nF) 

–ENa 

(V) 

+EK 

(V) 

X
1
 

(ID) 

X
2
 

(ID) 

Rebound spike S27–S29 – 5.9 0 1 0.3 -1.5 1.5 5352-1 5252-13 

Rebound burst S30 – 5.9 0 0.5 0.3 -1.5 1.5 5352-1 5252-13 

Threshold 

variability 
S31 – 5.9 0 0.5 0.3 -1.5 1.5 5352-1 5252-13 

Depolarizing after-

potential 
S32 – 6 0.9 2 0.3 -1.3 1.3 5352-1 5252-13 

Accommodation S33 – 7 1 0 0.3 -1.68 1.68 5352-1 5252-13 

Mixed mode S34 240 9 4 1.2 1 -1.6 1.6 5351-11 5351-7 

Skipping S35 7 7 1 1 – -1.5 1.5 5149-11 5149-7 
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Supplementary Table 3. VO2 material and structural parameters used in SPICE model 

simulations. In most cases, the Mott physics-based analytical compact SPICE model can 

faithfully reproduce experimental VO2 device switching dynamics and neuron spiking behaviors 

(See all the simulated spiking patterns in Supplementary Figures). The model uses published 

VO2 material properties. All the simulated neuron behaviors used the same VO2 device model 

with a cylindrical-shaped VO2 conduction channel of 56 nm in radius and 100 nm in length to 

match the actual VO2 crystal volume in 100  100 nm2 sized and 100 nm-thick nano-crossbar 

devices used in the experiments, and only varied the values of R, C elements. Series electrode 

resistance of 150–500 Ω, and parallel VO2 channel leakage resistance of 13 kΩ to 17 kΩ were 

included in simulations to take into account their effects on the voltage drop across the 

memristors and the standby current in the insulating phase. ‘Exp.’ stands for experimentally 

determined. 

 

Memristor Model Property Symbol Model Value Unit Reference 

 Volumetric heat capacity c
p
 3.30106 J m

-3
 K

-1
 23 

 Volumetric enthalpy change of IMT h
tr
 2.35108 J m

-3
 24 

 Thermal conductivity of insulating phase κ 3.5 W m
-1

 K
-1

 23 

 Metallic phase electrical resistivity 
met

 310-6 Ωm 23,24 

 Insulating phase electrical resistivity 
ins

 110-2 Ωm 24 

 Temperature rise T 43 K 24 

 Conduction channel radius r
ch

 56 nm Exp. 

 Conduction channel length L
ch

 100 nm Exp. 

 Series electrode resistance R
e
 150 to 500 Ω Exp. 

 Parallel  leakage resistance Rshunt 13k to 17k Ω Exp. 
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Supplementary Table 4. Biological fidelity and computational cost of neuron models in 

comparison with experimentally demonstrated biological fidelity of VO2 neurons. The 

neurocomputational properties of neuron models are adopted and augmented from Fig. 2 in Ref. 

18. “# of FLOPS” is the approximate number of floating point operations needed to simulate the 

neuron model for a 1 ms duration using a digital computer. (+), (-) and empty square represents 

possessed, missing, and unconfirmed properties of the model. For VO2 neurons, the only 

property that remains unconfirmed is chaos. 
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Supplementary Notes 

 

Supplementary Note 1: VO2 active memristor relaxation oscillator 

 

VO2 is well-known for its first-order thermodynamically-driven Mott insulator-to-metal (IMT) 

phase transition with a critical temperature TC near 67 C25. Joule heating produced by electrical 

current through a metal/VO2/metal device generates Mott IMT-induced volatile hysteretic 

resistive switching and an NDR regime, which forms the basis to construct oscillators, 

amplifiers, and impulse circuits (neurons). Mott memristors, a type of active memristors based 

on Mott IMT, were previously realized by producing crystalline NbO2 in an electroforming 

process from amorphous Nb2O5 films26. Electroformed devices suffer from large device 

variability that is undesirable for integration. In our case, electroform-free VO2 active memristor 

nano-crossbar devices with typical device yield of 98–100 %, low-voltage (down to ~0.5 V), 

high-endurance, and low device variability (<13 % coefficient of variation in switching threshold 

voltage) are fabricated on CMOS-compatible 3-inch SiNx-coated silicon substrates (See 

Methods). Pearson-Anson (PA) relaxation oscillator is the prototype electronic circuit analogue 

for voltage-gated Na+ or K+ nerve membrane ion channels. Other ion channels, e.g. Cl– or Ca2+, 

can also be emulated in a similar manner. If two such relaxation oscillators are coupled with 

proper impedance, the overall circuit can generate an action potential26-28. Supplementary Fig. 3 

shows the circuit diagram and astable oscillator characteristics measured in a VO2 relaxation 

oscillator. A one-to-one correspondence can be identified between the quasi d.c. V–I trace (force 

V, measure I) of the VO2 device (without the capacitor) and the V–time and I–time waveforms of 

the astable oscillations under an external d.c. bias Vdc
17. For astable oscillation to occur, the load 

line, defined by Vdc and the load resistor RL, must intersect the V–I curve in its NDR regime. A 

complete cycle of astable oscillation, from point (1) to (5), has four stages as explained by figure 

caption. The actual switching time scale of VO2 is much faster than the rise time of the 

oscilloscope and cannot be measured. Values ranging from 100 fs to 5 ps have been measured by 

pump-probe methods29,30. 

 

Although many transition metal oxides exhibit Mott IMT, TC in many of these materials are well 

below 300 K (room temperature). Mott insulators with TC > 300 K, e.g. VO2, Ti2O3, Ti3O5, 

NbO2, SmNiO3, LaCoO3, are more suitable for electronic applications31. NbO2 is a demonstrated 

material for spiking neurons26. However, its TC of 1080 K requires a large local temperature rise 

of 800 K to operate, which negatively impacts both power consumption and device longevity31 

(See Supplementary Table 1 for volumetric free energy cost of Mott IMT in NbO2 and VO2). We 

applied SPICE simulations of a VO2-based relaxation oscillator to estimate the switching energy 

and switching time (speed) of Mott IMT26. The switching time of the phase transition is 

estimated from the rising edges of device current in each oscillation period. The VO2 channel 

radius is varied while all the other model parameters, including the channel length (50 nm), are 

fixed. As shown in Supplementary Fig. 9, at the same channel dimensions, simulated Mott IMT 

switching in VO2 is 100 times faster than in NbO2, and only consumes about one-sixth (16 %) of 

the energy. Note that the switching speed is a material-dependent parameter, and is not affected 

by the values of R, C passive elements. <1 fJ switching energy and <1 ps switching speed can be 

achieved at VO2 channel radius of 7–15 nm, dimensions feasible for advanced-node lithography. 
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Supplementary Note 2: Device modeling of VO2 active memristors 

 

We use the same analytical mathematical equations developed by the authors of Ref. 16 to model 

the dynamics of VO2 active memristors. The VO2 model parameters are summarized in 

Supplementary Table 3. The main equations are relisted below: 

 

 

 

 

Supplementary Eq. (1) is the instantaneous Ohm’s law relationship between current and voltage, 

wherein the VO2 channel resistance 𝑅𝑐ℎ(𝑢) is determined by a single state variable 𝑢 ≜
𝑟met/𝑟ch, i.e. the normalized radius of the metallic cylindrical conducting channel heated above 

the TC of Mott transition. Supplementary Eq. (2) is the first-order differential equation that drives 

the state dynamics. Supplementary Eqs. (3) (5) are equations for three auxiliary functions, 

including Supplementary Eq. (3) for the state-dependent resistance 𝑅ch(𝑢), Supplementary Eq. 

(4) for the state-dependent thermal conductance 𝛤th(𝑢), and Supplementary Eq. (5) for the 

differential change of enthalpy 𝑑𝛥𝐻/𝑑𝑢 with respect to the state 𝑢. 

 

The SPICE compact model of VO2 devices is constructed in a similar manner as outlined in the 

supplementary materials of Ref. 16. All the SPICE simulations were performed on a personal 

computer using the LTspice IV software. 
  

𝑣 = 𝑅ch(𝑢) ∙ 𝑖                                                                                     (1) 

𝑑𝑢

𝑑𝑡
= (

𝑑𝛥𝐻

𝑑𝑢
)
−1

∙ (𝑖2𝑅ch(𝑢) − 𝛤th(𝑢)𝛥𝑇)                                (2) 

𝑅ch(𝑢) =
𝜌ins𝐿ch

π𝑟ch
2 [1 + (

𝜌ins
𝜌met

− 1)𝑢2]
−1

                               (3) 

𝛤th(𝑢) = 2π𝐿ch𝜅 (ln
1

𝑢
)
−1

                                                       (4) 

𝑑𝛥𝐻

𝑑𝑢
(𝑢) = 𝜋𝐿ch𝑟ch

2 [𝑐𝑝𝛥𝑇
1 − 𝑢2 + 2𝑢2ln𝑢

2𝑢(ln𝑢)2
+ 2𝛥ℎtr𝑢]        (5) 
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Supplementary Note 3: Dynamics equations of an active memristor neuron circuit 

 

Starting with the active memristor device model equations from Ref. 16, after applying 

Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL), we derived the four coupled 

first-order ordinary differential equations (ODEs) that drive the dynamics of a model tonic active 

memristor neuron circuit (See Supplementary Fig. 40). Similar procedure can be applied to 

derive the model equations for phasic neuron circuits, which are not included here. The reference 

convention is that the potential inside the nerve cell is fixed at the ground level. A positive 

current flows toward the ground, and a positive voltage will produce a current flowing toward 

the ground. Following the convention in biological neuron models, the d.c. biases –ENa and +EK 

applied on the two active memristors X1 and X2 are rewritten as electromotive forces E1 and E2 

(amplitudes only). Their polarities are taken care of when incorporated into equations. For 

simplicity, we temporarily assume that there is no external load that draws a current at the cell 

output, and only consider the situation of current clamp, i.e. an external input current I is fed into 

the cell. The case for voltage clamp can be derived in a similar manner.  

 

To simplify the expressions, let’s define ℋ(𝑢) ≜ (𝑑𝛥𝐻/𝑑𝑢)−1for the differential change of 

enthalpy, 𝑄(𝑢) ≜ 𝛤th(𝑢)𝛥𝑇 for the heat flux, and remove the subscript ‘ch’ of channel resistance 

in 𝑅ch(𝑢). The model equations for the two active memristors are rewritten as: 

 

 

 

 

 

Currents flowing through the two membrane capacitors C1 and C2 are: 

 

𝐼𝐶1 = 𝐶1
𝑑(𝑣1 − 𝐸1)

𝑑𝑡
= 𝐶1

𝑑𝑣1
𝑑𝑡

                                                    (10) 

 

𝐼𝐶2 = 𝐶2
𝑑(𝑣2 + 𝐸2)

𝑑𝑡
= 𝐶2

𝑑𝑣2
𝑑𝑡

                                                    (11) 

 

Applying KCL at the joint connecting RL1, C1, X1 and RL2, the external input current is 

 

𝐼 = 𝐼𝐶1 + 𝑖1 + 𝐼𝐶2 + 𝑖2                                                                 (12) 

 

Substituting IC1, i1, IC2 and i2 with Supplementary Eqs. (10), (6), (11) and (8), we have 
 

𝑣1 = 𝑅(𝑢1) ∙ 𝑖1                                                                                     (6) 

𝑑𝑢1
𝑑𝑡

= ℋ(𝑢1) ∙ (𝑖1
2𝑅(𝑢1) − 𝑄(𝑢1))                                             (7) 

𝑣2 = 𝑅(𝑢2) ∙ 𝑖2                                                                                     (8) 

𝑑𝑢2
𝑑𝑡

= ℋ(𝑢2) ∙ (𝑖2
2𝑅(𝑢2) − 𝑄(𝑢2))                                             (9) 
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Supplementary Figure 40. Circuit diagram of a tonic memristor neuron circuit with 

legends of voltages and currents to assist modeling. 
 

𝐼 = 𝐶1
𝑑𝑣1
𝑑𝑡

+
𝑣1

𝑅(𝑢1)
+ 𝐶2

𝑑𝑣2
𝑑𝑡

+
𝑣2

𝑅(𝑢2)
                                           (13) 

 

Applying KVL at the joint connecting RL1, C1, X1 and RL2, 

 

𝑣1 − 𝐸1 = (𝐶2
𝑑𝑣2
𝑑𝑡

+
𝑣2

𝑅(𝑢2)
) 𝑅L2 + 𝑣2 + 𝐸2                                   (14) 

 

Supplementary Eq. (14) is then rewritten in the form of a first-order ODE: 

 
𝑑𝑣2
𝑑𝑡

=
1

𝑅L2𝐶2
[𝑣1 − (1 +

𝑅L2
𝑅(𝑢2)

) 𝑣2 − 𝐸1 − 𝐸2]                              (15) 

 

Substituting 𝑑𝑣2/𝑑𝑡 in Supplementary Eq. (13) with the formula of Supplementary Eq. (15), 

Supplementary Eq. (13) can be rewritten in the form of a first-order ODE: 

 
𝑑𝑣1
𝑑𝑡

=
1

𝐶1
{𝐼 −

𝑣1
𝑅(𝑢1)

− 𝐶2
𝑑𝑣2
𝑑𝑡

−
𝑣2

𝑅(𝑢2)
}

=
1

𝐶1
{𝐼 −

𝑣1
𝑅(𝑢1)

−
1

𝑅L2
[𝑣1 − (1 +

𝑅L2
𝑅(𝑢2)

) 𝑣2 − 𝐸1 − 𝐸2] −
𝑣2

𝑅(𝑢2)
}

=
1

𝐶1
{𝐼 − (

1

𝑅(𝑢1)
+

1

𝑅L2
) 𝑣1 + (

1

𝑅L2
+

1

𝑅(𝑢2)
) 𝑣2 +

𝐸1 + 𝐸2
𝑅L2

−
𝑣2

𝑅(𝑢2)
}

=
1

𝐶1
{𝐼 − (

1

𝑅(𝑢1)
+

1

𝑅L2
) 𝑣1 + (

1

𝑅L2
) 𝑣2 +

𝐸1 + 𝐸2
𝑅L2

} 

 

Multiplying both sides by RL2, it becomes: 
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𝑑𝑣1
𝑑𝑡

=
1

𝑅L2𝐶1
[𝐼 ∙ 𝑅L2 − (1 +

𝑅L2
𝑅(𝑢1)

) 𝑣1 + 𝑣2 + 𝐸1 + 𝐸2]                (16) 

 

Supplementary Eqs. (7), (9), (15) and (16) are the four coupled first-order ODEs that solve the 

four state variables(𝑢1, 𝑣1, 𝑢2, 𝑣2) which drive the dynamics of the neuron circuit. They are 

grouped together as below 

 

{
 
 

 
 𝑣1

′ =
1

𝑅L2𝐶1
[𝐼 ∙ 𝑅L2 − (1 +

𝑅L2

𝑅(𝑢1)
) 𝑣1 + 𝑣2 + 𝐸1 + 𝐸2]

𝑣2
′ =

1

𝑅L2𝐶2
[𝑣1 − (1 +

𝑅L2

𝑅(𝑢2)
) 𝑣2 − 𝐸1 − 𝐸2]

𝑢1
′ = ℋ(𝑢1) ∙ (𝑖1

2𝑅(𝑢1) − 𝑄(𝑢1))

𝑢2
′ = ℋ(𝑢2) ∙ (𝑖2

2𝑅(𝑢2) − 𝑄(𝑢2))

  

 

Experimentally it’s more convenient to probe the Na+ and K+ channel membrane potentials 

𝑉Na = 𝑣1 − 𝐸1 and 𝑉K = 𝑣2 + 𝐸2. Substituting 𝑣1 with 𝑉Na and 𝑣2 with 𝑉K in the above 

equations, the dynamics equations can be recasted as 

 

{
 
 
 
 

 
 
 
 𝑉Na

′ =
1

𝐶1
∙ [𝐼 − (

1

𝑅L2
+

1

𝑅(𝑢1)
) 𝑉Na +

1

𝑅L2
𝑉K −

1

𝑅(𝑢1)
𝐸1]                   (17)

𝑉K
′ =

1

𝐶2
∙ [
1

𝑅L2
𝑉Na − (

1

𝑅L2
+

1

𝑅(𝑢2)
) 𝑉K +

1

𝑅(𝑢2)
𝐸2]                            (18)

𝑢1
′ = ℋ(𝑢1) ∙ [

(𝑉Na + 𝐸1)
2

𝑅(𝑢1)
− 𝑄(𝑢1)]                                                        (19)

𝑢2
′ = ℋ(𝑢2) ∙ [

(𝑉K − 𝐸2)
2

𝑅(𝑢2)
− 𝑄(𝑢2)]                                                         (20)

 

 

We noted that the dynamic equations (17) and (18) have been presented in Ref. 32. However, in 

that reference, the dynamic equations of state variables u1 and u2 are not used for reduced-

dimension VNa VK nullcline analysis, instead a hard switching between two preset resistance 

values RON and ROFF were assumed. Such an overly-simplified approach unavoidably will miss 

some important aspects of the nonlinear dynamics of Supplementary Eqs. (7) and (9). Applying 

Ohm’s law, we rewrite Supplementary Eqs. (7) and (9) as Supplementary Eqs. (19) and (20), 

wherein the channel currents 𝑖1 and 𝑖2 are replaced by the corresponding membrane potentials 

𝑉Na and 𝑉K. 
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Supplementary Note 4: Dynamic and static power scaling of VO2 neurons 

 

We use SPICE simulations to analyze the dynamic and static power scaling of tonic VO2 neurons 

(See Supplementary Figs. 37 and 38). The dynamic spike energy is calculated by first summing 

the total power supplied by the d.c. voltage sources, then integrating over time through the 

course of a spike. 

 

In Supplementary Fig. 36, the dynamic spiking energy scales almost linearly with the 

capacitance of membrane capacitors, with a power-law fitted slope of 0.96 at r/L = 10/10 nm and 

0.924 at r/L = 36/50 nm, respectively. The neuron area also scales linearly with the membrane 

capacitance as capacitor elements dominate the circuit area. It is therefore desirable to make 

smaller neurons to achieve higher (dynamic) spiking energy efficiency (EE) (See Supplementary 

Fig. 2). Note that area scaling of membrane capacitors is not a limiting factor for the neuron area 

scaling, because memristor neurons do not require a minimum value of membrane capacitors to 

operate, and therefore there is no size constraint posted by the requirement on certain membrane 

capacitance value. Another observation is that since VO2 switching energy is extremely low (See 

Supplementary Table 1), only 1.15 fJ/device at r/L = 10/10 nm, aggressive VO2 device scaling is 

not needed: an 18-fold volume reduction, from r/L = 36/50 nm to 10/10 nm, only reduces the 

neuron spike energy by ~24 %. 

 

If only considering dynamic power consumption for the case of r/L = 36/50 nm, <0.1 pJ/spike 

energy use can be achieved at a total capacitor area of ~1 μm2 by using 20 fF membrane 

capacitors (see green arrow in Supplementary Fig. 36a), which can be realized by today’s 

integrated high-κ metal-insulator-metal (MIM) capacitors with a record-high capacitance 

density21 of 43 fF µm-2 (typical MIM capacitance density of high-κ dielectrics is in the range of 

15–20 fF µm-2). However, using high-κ dielectric to boost the capacitance density is not a good 

strategy to achieve higher EE. At a given capacitor area, lower capacitance value (by using lower 

capacitance density) will result in a lower spiking energy and hence a better EE. This is clearly 

shown in the EE-area scaling trend lines of VO2 neurons (See Supplementary Fig. 2) stimulated 

at capacitance density of 1, 10, and 43 fF μm-2. At the same neuron (and capacitor) area, lower 

capacitance density translates into lower dynamic spiking energy and hence higher EE. At 1 fF 

μm-2 capacitance density, VO2 neurons show superior EE-area scaling than the best-case HH 

cells at neuron sizes smaller than 70 μm2, and can surpass the estimated human brain EE of 

1.81014 spike/J (or 5.6 fJ/spike energy use) at neuron sizes smaller than 3 μm2. 

 

The static power consumption is dissipated by standby current through d.c. biased VO2 devices 

due to the finite resistivity of the insulating phase (~1 Ωcm)24. At low firing rates, static power 

may dominate the total power consumption. Since the dynamic power is proportional to the 

firing rate, while the static power remains a constant, the percentage of static power in total 

power decreases with firing rate. The lower and higher bounds of static power, estimated at d.c. 

bias of Vth and Vth/2 (Vth is the switching threshold) respectively, is <10 % of the total power at a 

firing rate higher than 100 MHz and 400 MHz, respectively, and the overall energy use is lower 

than 0.11 pJ/spike. We have not considered the possibility that the insulating-phase resistivity of 

VO2 can be improved. Note that the neuron EE is not the only factor that determines the network 

power consumption. The firing rate, the synapse resistance, and the synapse/neuron ratio also 

need to be considered.  
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