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Genotyping protocol and quality control and imputation 

 

DNA for 4,649 individuals was extracted from saliva and buccal cheek swab samples and 

hybridized to HumanOmniExpressExome-8v1.2 genotyping arrays at the Institute of 

Psychiatry, Psychology and Neuroscience Genomics & Biomarker Core Facility. The raw 

image data from the array were normalized, pre-processed, and filtered in GenomeStudio 

according to Illumina Exome Chip SOP v1.4. 

(http://confluence.brc.iop.kcl.ac.uk:8090/display/PUB/Production+Version%3A+Illumina+E

xome+Chip+SOP+v1.4). In addition, prior to genotype calling, 869 multi-mapping SNPs and 

353 samples with callrate <.95 were removed. The ZCALL program  was used to augment the 

genotype calling for samples and SNPs that passed the initial QC.  

 

DNA from 3,665 samples was extracted from buccal cheek swabs and genotyped at 

Affymetrix, Santa Clara, California, USA. Samples were successfully hybridized to 

AffymetrixGeneChip 6.0 SNP genotyping arrays 

(http://www.affymetrix.com/support/technical/datasheets/genomewide_snp6_datasheet.pdf) 

using experimental protocols recommended by the manufacturer (Affymetrix Inc., Santa 

Clara, CA). The raw image data from the arrays were normalized and pre-processed at the 

Wellcome Trust Sanger Institute, Hinxton, UK for genotyping as part of the Wellcome Trust 

Case Control Consortium 2 (https://www.wtccc.org.uk/ccc2/) according to the manufacturer’s 



guidelines 

(http://www.affymetrix.com/support/downloads/manuals/genomewidesnp6_manual.pdf). 

Genotypes for the Affymetrix arrays were called using CHIAMO 

(https://mathgen.stats.ox.ac.uk/genetics_software/chiamo/chiamo.html).  

 

After initial quality control and genotype calling, the same quality control was performed on 

the samples genotyped on the Illumina and Affymetrix platforms separately using PLINK1,2, 

R3, and vcftools4.  

 

Samples were removed from subsequent analyses based on call rate (<0.99), suspected non-

European ancestry, heterozygosity, array signal intensity, and relatedness. SNPs were 

excluded if the minor allele frequency was <0.5%, if more than 1% of genotype data were 

missing, or if the Hardy Weinberg p-value was lower than 10-5. Non-autosomal markers and 

indels were removed. Association between the SNP and the platform, batch, or plate on which 

samples were genotyped was calculated; SNPs with an effect p-value less than 10-3 were 

excluded. A total sample of 6,710 samples, with 3,617 individuals and 600,034 SNPs 

genotyped on Illumina and 3,093 individuals and 525,859 SNPs genotyped on Affymetrix 

remained after quality control. 

 

Genotypes from the two platforms were separately imputed using the Haplotype Reference 

Consortium5 and Minimac3 1.0.136,7 available on the Michigan Imputation Server as 

reference data. A series of quality checks was performed before merging data from the two 

platforms’ imputation (e.g. platform effects, allele frequencies by imputation quality). For the 

present analyses, we limited our analyses to variants genotyped or imputed at info >.70 on 

both platforms, allele frequency difference between platforms smaller than 5%, and Hardy 

Weinberg p-value was greater than 10-5. Using these criteria, 7,581,516 genotyped and well-

imputed SNPs were retained for the analyses. 

 



We performed principal component analysis on a subset of 26,385 common (MAF>5%) 

autosomal HapMap3 SNPs 8, after stringent pruning to remove markers in linkage 

disequilibrium (r2 > 0.05) and excluding high linkage disequilibrium genomic regions to 

ensure that only genome-wide effects were detected. 

 

 

Polygenic score model 

 

Using summary statistics from EduYears GWA study9, we constructed polygenic scores as 

the weighted sums of the individual’s genotype across all SNPs. The scores are calculated as 

the weighted sums of individual i’s SNPs:  

GPSik represents the individual i’s polygenic score based on summary statistics from GWASk. 

b̂kj is an estimate of marker j’s effect size for discovery trait k, that is, the effect of having one 

more copy of the reference allele at SNPkj. gkji is individual i’s genotype at marker j for 

discovery trait k, coded as having 0,1, or 2 copies of the reference allele at marker kj. 

Conventionally, the b̂kj for SNPj is simply the GWAS k estimate for SNPjk. However, due to 

local linkage disequilibrium (LD) (i.e. correlation) between SNPs,  b̂kj captures any effects of 

the SNPkj and its correlates. Therefore, to correct for the multiple counting problem of 

effectively counting the effects of markers that are in LD with other markers multiple times, 

conventionally, markers are thinned down via the process of ‘clumping’ to a set of 

uncorrelated markers prior to polygenic score creation. In this study, to avoid a reduction in 

predictive accuracy and loss of information caused by the conventional approach of LD-based 

marker pruning and applying a P-value threshold to association statistics, we used LDpred10 

(version 0.9.09; https://github.com/bvilhjal/ldpred). LDpred is a Bayesian approach that infers 

the posterior mean effect size of each marker by adjusting the effect size from the discovery 

GWAS using a prior on effect size and information on the LD between the SNPs from a 



reference panel to obtain a posterior estimate of the causal effect for SNPjk independent of the 

effects of other SNPs. Hence, the LDpred GPS for individual i for GWAS k is the sum of i’s 

genotypes across all SNPs used in the analyses, weighted by the LDpred estimates of the 

genotype effects. The score represents an unbiased estimate of the true genetic burden for 

individual i for trait k10, albeit with low precision. 

As recommended by the LDpred developers10, we used the target sample genotype data as the 

LD reference panel. LDpred models a prior probability for the fraction of markers assumed to 

be causal using a Gaussian mixture weight. We created LDpred scores for the following prior 

probabilities of fraction of causal markers: 0.01, 0.1,1.0. 

  

To account for population stratification, we adjusted the polygenic predictors by the first 10 

principal components generated from genotype data prior to the analyses. We used the top 10 

PCs as well as genotyping array and plate to create a N*P matrix Z of eigenvectors across 

the P selected principal components. We then regressed the genetic polygenic predictor onto 

the eigenvectors as S = µ + Zβ + e, where µ is the mean and β is a P×1vector of the regression 

coefficients, and e is the residual error. 

 

Measures of general cognitive ability (g) 

 

General cognitive ability (‘g’; intelligence) was assessed in TEDS at ages 7, 9, 10, 12, 14, 

and 16. For the present analyses we created a longitudinal composite measure of ‘g’ as a 

mean of these six assessments. At age 7, ‘g’ was calculated as a mean of conceptual 

grouping11, a WISC similarities test12, a WISC vocabulary test12, and a WISC picture 

completion test12 all collected over telephone testing. At age 9, ‘g’ was calculated as a 

mean of a shapes test13, a WISC vocabulary test14, a WISC general knowledge task14, and a 

puzzle test13 ; all tests were administered in booklets sent to the twins by post. At age 10, 

‘g’ was calculated as a mean of the Ravens Standard Progressive Matrices15,  a WISC 

vocabulary14,  WISC picture completion12, and a WISC general knowledge test14; at age 10 



and subsequent assessments, all ‘g’ data were obtained by internet testing. At age 12, ‘g’ 

was calculated as a mean of the Ravens Progressive Matrices15,  a WISC picture 

completion12, a WISC vocabulary14, and a WISC general knowledge test14. At age 14, ‘g’ 

was calculated as a mean of the Raven’s Progressive Matrices15 and a WISC vocabulary14. 

At age 16, ‘g’ was calculated as a mean of Mill Hill Vocabulary test16 and Raven’s 

Progressive Matrces15.  

 
 
 
References 
 
 
1  Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation 

PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015; 4: 7. 
2  Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. 

PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage 
Analyses. Am J Hum Genet 2007; 81: 559–575. 

3  R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing: Vienna, Austria, 2016. 

4  Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. The 
variant call format and VCFtools. Bioinformatics 2011; 27: 2156–2158. 

5  McCarthy S, Das S, Kretzschmar W, Durbin R, Abecasis G, Marchini J. A reference 
panel of 64,976 haplotypes for genotype imputation. 2015 doi:10.1101/035170. 

6  Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate 
genotype imputation in genome-wide association studies through pre-phasing. Nat 
Genet 2012; 44: 955–959. 

7  Fuchsberger C, Abecasis GR, Hinds DA. Minimac2: Faster genotype imputation. 
Bioinformatics 2015; 31: 782–784. 

8  Consortium TIH 3. Integrating common and rare genetic variation in diverse human 
populations. Nature 2010; 467: 52–58. 

9  Okbay A, Beauchamp JP, Fontana M, Lee JJ, Pers T., Rietveld CA et al. Genome-
wide association study identifies 74 loci associated with educational attainment. 
Nature 2016; 533: 539–542. 

10  Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S et al. 
Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J 
Hum Genet 2015; 97: 576–592. 

11  McCarthy D. McCarthy Scales of Children’s Abilities. New York: The Psychological 
Corporation., 1972. 

12  Wechsler D. Wechsler Intelligence Scale for Children (3rd Ed. UK). The 
Psychological Corporation, 1992. 

13  Smith P, Fernandes C, Strand S. Cognitive Abilities Test 3 (CAT3). Windsor: 
nferNELSON., 2001. 

14  Kaplan E, Fein D, Kramer J, Delis D, Morris R. WISC-III As a Process Instrument 
(WISC-III-PI). New York: The Psychological Corporation., 1999. 

15  Raven J, Raven JC, Court J. Manual for Raven’s Progressive Matrices and 
Vocabulary Scales. Oxford: Oxford University Press, 1996. 

16  Raven JC, Raven J, Court JH. The Mill Hill Vocabulary Scale. Oxford:OPP, 1998. 
 
 



 
 


