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Multiple imputation in Cox regression when there are time-varying effects of exposures:

Supplementary materials

S1. Derivation of imputation models in MI-TVE-Approx

The focus is on a single explanatory variable X1 with missing data and a fully

observed covariate, X2. The hazard model of interest is

h(t|X1, X2) = h0(t) exp{fX1(t; βX1)X + fX2(t; βX2)X2}. In the context of Cox

regression, MI relies of obtaining draws of missing values of X1 from its distribution

given T,D,X2. The probability density function for the conditional distribution of X1,

which we denote by p(X1|T,D,X2), can be expressed as

p(X1|T,D,X2) = p(T,D|X1, X2)p(X1|X2)/p(T,D|X2). (S1)

The first term can be written as

p(T,D|X1, X2) = h(T |X1, X2)DS(T |X1, X2)hC(T |X1, X2)1−DSC(T |X1, X2) (S2)

where S(.) is the survivor function for the event of interest, hC(t|X1, X2) is the hazard

for censoring, and SC(.) is the survivor function corresponding to the censoring process.

We assume for now that any censoring occurs independently of X1 and so the third and

fourth terms of (S2) can be ignored in the workings which follow, since they do not

involve X1, and so can be subsumed into a constant of proportionality. Details on

handling censoring which depends on X1 are given in the Discussion section of the

paper. Under the hazard model of interest we have

log p(T,D|X1, X2) = D log h0(T ) +D{fX1(T, βX1)X1 + fX2(T, βX2)X2}

−
∫ T

0
h0(u)efX1(u,βX1)X1+fX2(u,βX2)X2du.

(S3)
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It follows that

log p(X1|T,D,X2) = log p(X1|X2) +DfX1(T, βX1)X1

−
∫ T

0
h0(u)efX1(u,βX1)X1+fX2(u,βX2)X2du+ q(T,D,X2)

(S4)

where q(T,D,X2) represents terms not involving X1.

In the situation with time varying effects the expression log p(X1|T,D,X2) is

complicated by the presence of efX1(u,βX1)X1+fX2(u,βX2)X2 in the integral. For some forms

for the TVE functions a closed form solution to the integral would be possible, however

a more general result is desirable. A linear approximation to efX1(u,βX1)X1+fX2(u,βX2)X2 is

therefore used. The linear approximation is:

efX1(u,βX1)X1+fX2(u,βX2)X2 ≈ efX1(ū,βX1)X1+fX2(ū,βX2)X2 + (u− ū){f ′X1(ū, βX1)X1

+f ′X2(u, βX2)X2}efX1(ū,βX1)X1+fX2(ū,βX2)X2

(S5)

where ū denotes the mean of the observed event times. The approximation is expected

to perform well when the TVEs are not too large, i.e. when the log hazard ratios at any

given time are not too large. Higher order approximations could be considered, and in

Section S3 we consider a stepwise approximation. In the results given below, we let

A(X1, X2) = fX1(ū, βX1)X1 + fX2(ū, βX2)X2,

B(X1, X2) = f ′X1(ū, βX1)X1 + f ′X2(ū, βX2)X2.

To proceed, it is necessary to make some assumptions about p(X1|X2). Next, we

consider the situations of binary X1 and Normally distributed X1.

S1.1 Binary X1

We assume a logistic model for X1 given X2:

logit p(X1 = 1|X2) = ζ0 + ζ1X2. (S6)
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First, suppose that X2 is also binary. Then, using the approximation in (S5), it can be

shown that

logit p(X1 = 1|T,D,X2) ≈ ζ0 + ζ1X2 +D × fX1(T ; βX1)

+H0(T ){A(0, X2)− A(1, X2) + ūA(1, X2)B(1, X2)− ūA(0, X2)B(0, X2)}

+H1(T ){A(0, X2)B(0, X2)− A(1, X2)B(1, X2)}

(S7)

where H0(T ) denotes the cumulative baseline hazard and H1(T ) =
∫ T

0 uh0(u)du.

If X2 is continuous, we use a bivariate linear approximation to

efX1(u,βX1)X1+fX2(u,βX2)X2 , about ū and X̄2 (the sample mean of X2). It can be shown

that in this case

logit p(X1 = 1|t, d,X2) ≈ ζ0 + ζ1X2 + d× fX1(t; βX1)

+H0(t){−A(1, X̄2)− A(1, X̄2)fX2(ū; βX2)(X2 − X̄2)

+A(0, X̄2) + A(0, X̄2)fX2(ū; βX2)(X2 − X̄2)

+ūA(1, X̄2)B(1, X̄2)− ūA(0, X̄2)B(0, X̄2)}

+H1(t){A(0, X̄2)B(0, X̄2)− A(1, X̄2)B(1, X̄2)}

(S8)

It follows from the expressions in (S7) and (S8) that an approximate imputation

model for X1 is a logistic regression for X1 with main effects of X2, H0(T ), H1(T ), the

interaction between D and fX1(T ), and interactions of X2 with H0(T ) and H1(T ). If

the TVE function is fX1(t; βX1) = βX01 + βX11t, for example, the imputation model

should include D and the interaction between D and T . In the case of a restricted cubic

spline with L = 5 knots, the imputation model should include D and the interaction

between D and T and interactions of D with{
(T − ui)3

+ −
(

(T−uL−1)3
+(uL−ui)

(uL−uL−1)

)
+
(

(T−uL)3
+(uL−1−ui)

(uL−uL−1)

)}
for i = 1, 2, 3.

In the situation without TVEs, the above results reduce to those of White and

Royston (2009). The imputation models involve the baseline cumulative hazard H0(T )

and the additional integral term H1(T ). When there are no TVEs, the imputation

model includes only H0(T ) and White and Royston (2009) White and Royston (2009)
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suggested replacing this with the Nelson-Aalen estimate of the cumulative hazard,

Ĥ(T ) = ∑
t≤T

d(t)
n(t) , where d(t) is the number of events at time t and n(t) is the number

of individuals at risk at time t. This has been found to perform at least as well as a

more complex method using Breslow’s estimate for H0(T ) in simulation studies.

Following similar reasoning, we propose using the Nelson-Aalen-type estimator

Ĥ(1)(T ) = ∑
t≤T

td(t)
n(t) in place of H1(T ).

S1.2 Continuous X

To derive an imputation model for a continuous X1 we assume that, conditionally

on X2, X1 is normally distributed with mean ζ0 + ζ1X2 and variance σ2. The

derivations, which are not shown in detail here, use a quadratic (i.e. second order)

trivariate approximation for efX1(u,βX1)X1+fX2(u,βX2)X2 about ū, X̄1 and X̄2. It can be

shown that an approximate imputation model for X1 is a a linear regression of X1 with

main effects of X2, H0(T ), H1(T ), the interaction between D and fX1(T ), and

interactions of X2 with H0(T ) and H1(T ). That is, the imputation model contains the

same terms as for binary X1 described above. AS above, we propose replacing H0(T )

and H1(T ) with the estimates Ĥ(T ) and Ĥ(1) respectively.

S2. Extensions to MI-TVE-Approx and MI-TVE-SMC: handling missing

data in more than one covariate using full conditional specification (FCS)

In this section we describe extensions to MI-TVE-Approx and MI-TVE-SMC for

the situation with more than one covariate with missing data. Let

X = (X1, X2, . . . , Xp)′ denotes the vector of partially observed variables. The model of

interest is assumed to be of the form

h(t|X) = h0(t) exp
{∑

k

fXk
(t; βXk)Xk

}

Additional fully observed covariates can be incorporated in a straightforward manner.

For MI-TVE-approx, the FCS algorithm to generate a single imputed dataset is as

follows.
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1. Replace the missing values in X by arbitrary starting values, to create a complete

data set. In practice, one could replace missing values of Xk (k = 1, . . . , p) by the

mean of Xk among those individuals in whom Xk is observed. Set k = 1.

2. If Xk is a continuous variable, fit the imputation model

Xk = α0+α′1X−k+αT2 DfXk(T )+α3Ĥ(T )+α4Ĥ
(1)(T )+α′5X−kĤ(T )+α′6X−kĤ(1)(T )+ε,

with residual error variance σ2
ε , to the subset of individuals for whom Xk is

observed, using the current values of X−k. If Xk is a binary variable, the

imputation model is the logistic regression

logit Pr(Xk = 1|T,D,X−k) = α0 + α′1X−k + αT2DfXk(T ) + α3Ĥ(T )

+α4Ĥ
(1)(T ) + α′5X−kĤ(T ) + α′6X−kĤ

(1)(T ).

Take a random draw (α∗0, α∗1, α∗2, α∗3, α∗4, α∗5, α∗6, σ2∗
ε ) (if Xk is continuous) or

(α∗0, α∗1, α∗2, α∗3, α∗4, α∗5, α∗6) (if Xk is binary) from the approximate posterior

distribution of the parameters in this model.

3. If Xk is continuous, then for each individual with missing Xk in the original data

set, replace the current value of Xk with a sample from a normal distribution with

mean

α∗0 + α′∗1 X−k + α′∗2 DfX1(T ) + α∗3Ĥ(T ) + α∗4Ĥ
(1)(T ) + α′∗5 X−kĤ(T ) + α′∗6 X−kĤ

(1)(T )

and variance σ2∗
ε . If Xk is binary, sample instead from a Bernoulli distribution

with the same mean.

4. If k < p, set k = k + 1 and return to step 2.

Repeat steps 2–4 until the sampled values of X converge in distribution. At this point,

use these sampled values as the imputed values for the single imputed dataset. Repeat

the whole process M times to generate M imputed datasets.

For MI-TVE-SMC with p partially observed variables, the algorithm to generate

one imputed data set is as follows.
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1. Replace the missing missing values in X with arbitrary starting values, to create a

complete dataset. Set k = 1.

2. Fit the Cox regression model of interest, including the TVEs, to the current

complete data set to obtain estimates β̂Xk (k = 1, . . . , p) and their estimated

variance Σ̂. Draw values β∗Xk (k = 1, . . . , p) from a joint normal distribution with

mean (β̂X1, . . . , β̂Xp) and variance Σ̂.

3. Calculate Breslow’s estimate, denoted H∗0 (t), of the baseline cumulative hazard

H0(t) using the parameter values β∗Xk (k = 1, . . . , p) and the current imputations

of X.

4. Fit a regression model (e.g. linear or logistic, as appropriate) of Xk on X−k to the

current complete data set. Draw a value γ∗Xk from the approximate joint posterior

distribution of the parameters γXk in this model.

5. For each individual for whom Xk is missing, (a) draw a value X∗k from the

distribution p(Xk|X−k; γ∗Xk) and let X∗ denote X with Xk replaced by its

proposed value X∗k , (b) draw a value U from a uniform distribution on [0, 1], and

(c) accept the proposal X∗k if


U ≤ exp

[
−
∑
j:tj≤T ∆H(m)

0 (tj) exp
{∑

k fXk
(
tj ; β

(m)
Xk

)
X∗k

}]
if D = 0

U ≤ ∆H(m)
0 (T ) exp

{
1 + fXk

(
T ; β

(m)
Xk

)
X∗k −

∑
j:tj≤T ∆H(m)

0 (tj)e
fXk

(
tj ;β(m)

Xk

)
X∗

k

}
if D = 1

If X∗k is not accepted, then discard it and repeat (a), (b) and (c).

6. If k < p, let k = k + 1 and return to step 2.

Repeat steps 2–6 until the sampled values of X converge in distribution. At this

point, use these sampled values as the imputed values for the single imputed dataset.

Repeat the whole process M times to generate M imputed datasets.
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S3. Using a step-function form for the time-varying effect

A simple approach to investigating the TVE of a covariate is to assume a step

function form for fX(t; β), such that the hazard ratio is assumed constant within a

series of time periods (see for example Gore, Pocock, and Kerr (1984)). In the case,

focusing on our situation with a partially observed covariate X1 and a fully observed

covariate X2, the hazard function is

h(t|X1, X2) = h0(t) exp


K∑
j=1

βX1jIjX1 +
K∑
j=1

βX2jIjX2

 (S9)

where there are K time periods (0, s1], (s1, s2], . . . , (sK−1, sK ] and Ik = I(sk−1 < t ≤ sk)

is an indicator taking value 1 if t lies in the interval from sk−1 to sk (k = 1, . . . , K) and

0 otherwise. A step function is unlikely to represent the true underlying time-varying

effect and more realistic models are based on splines or other flexible functional forms,

which are the main focus of the paper. However, because a step-function is sometimes

used, we present some brief details here. By following similar workings as shown in

Section S1, it can be shown that a suitable imputation model for X1 is a logistic

regression (for binary X1) or linear regression (for continuous X1) on X2, DIk

(k = 1, . . . , K), H∗k (k = 1, . . . , KT ), H∗T , X2H
∗
k (k = 1, . . . , KT ) and X2H

∗
T , where

H∗k =
∫ sk
sk−1

h0(u)du, H∗T =
∫ T
sT
h0(u)du, KT is the number of complete time periods

which have passed prior to T , and sT is the upper limit of the last complete time period

prior to T . We propose replacing H∗k and H∗T by their estimates Ĥ∗k = ∑
sk−1<t≤sk

d(t)
n(t)

and Ĥ∗T = ∑
sT<t≤T

d(t)
n(t) . A feature of the imputation model for TVEs based on a step

function is that we do not require a linear (or other) approximation to evaluate the

integral in S4.

S4. Simulation study: Details on missing data generation

In the main simulation, non-monotone missing data were generated in X1 and X2

according to a MAR mechanism in which the probability of missingness in X1 depends

on observed values of X2, and vice versa. To achieve this, the cohort was divided
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randomly into three groups of approximately equal size. In group 1, X2 is fully observed

and X1 was set to be missing with probability e0.4+0.5X2/(1 + e0.4+0.5X2). In group 2, X1

is fully observed and X2 was set to be missing with probability e0.4+0.5X1/(1 + e0.4+0.5X1).

In group 3, X1 and X2 were both missing completely at random with probability 0.3.

In additional simulations (Section 5.5), the probability of missingness in X1 and

X2 additionally depends on the event indicator D. The procedure described above was

modified such that in group 1 the probability of missingness in X1 was

e−0.4+0.5X2+0.5D+0.5X2D/(1 + e−0.4+0.5X2+0.5D+0.5X2D), in group 2 probability of

missingness in X2 was e−0.4+0.5X1+0.5D+0.5X1D/(1 + e−0.4+0.5X1+0.5D+0.5X1D), and in group

3 X1 and X2 were both missing with probability e−0.4+0.5D/(1 + e−0.4+0.5D).

The values used in these missing data generation procedures were selected so that

X1 is missing for approximately 30% of individuals and X2 is missing for approximately

30% of individuals, resulting in approximately 50% of individuals missing at least one of

the measurements.

In an additional simulation (Section 5.5) a lower proportion with missing data was

considered. For this, in group 1, X2 is fully observed and X1 was set to be missing with

probability e−1.2+0.5X2/(1 + e−1.2+0.5X2). In group 2, X1 is fully observed and X2 was set

to be missing with probability e−1.2+0.5X1/(1 + e−1.2+0.5X1). In group 3, X1 and X2 were

both missing completely at random with probability 0.1.

S5. Simulation study: Justification of number of simulated data sets

The performance measures described in Section 5.3 were used to determine the

number of repetitions under each scenario. We are primarily interested in bias, and

assume that the variance of bias at any given t is 0.1. Then the Monte Carlo standard

error for the bias is

MCSE =
√

Var
reps . (S10)

Aiming for MCSE of 0.015 on estimated bias, we require 445 repetitions, and rounded

up to 500.

Secondary interest is in rejection fractions and coverage, for which the summary of
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a simulation run is binary. Here, for rejection fraction π the MCSE is

MCSE =
√
π(1− π)
reps . (S11)

The MCSE is maximised at π = 0.5, for which 500 repetitions returns MCSE of 2.2% ,

which we find acceptable. If tests have approximately the correct size, then at π = 0.05,

MCSE = 1%
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Table S1
Coverage of the estimated TVE curve at three time points (1, 5, 9) for covariates X1
and X2 in the setting with binary covariates X1 and X2.

Covariate X1 Covariate X2
1 5 9 1 5 9

Scenario 1
Complete-data 96 100 100 95 100 100
Complete-case 98 100 100 95 100 100

MI-Approx 99 100 100 98 100 100
MI-SMC 99 100 100 98 100 100

MI-TVE-Approx 96 100 100 96 100 100
MI-TVE-SMC 96 100 100 95 100 100

Scenario 2
Complete-data 95 100 100 96 100 100
Complete-case 98 100 100 95 100 100

MI-Approx 95 100 100 98 100 100
MI-SMC 93 100 100 98 100 100

MI-TVE-Approx 96 100 100 95 100 100
MI-TVE-SMC 94 100 100 94 100 100

Scenario 3
Complete-data 94 100 100 95 100 100
Complete-case 95 100 100 96 100 100

MI-Approx 98 100 100 98 100 100
MI-SMC 98 100 100 98 100 100

MI-TVE-Approx 95 100 100 96 100 100
MI-TVE-SMC 95 100 100 95 100 100

Scenario 4
Complete-data 96 100 100 97 100 100
Complete-case 96 100 100 96 100 100

MI-Approx 99 100 100 99 100 100
MI-SMC 99 100 100 99 100 100

MI-TVE-Approx 98 100 100 98 100 100
MI-TVE-SMC 97 100 100 97 100 100

Scenario 5
Complete-data 95 100 100 95 100 100
Complete-case 96 100 100 95 100 100

MI-Approx 99 100 100 98 100 100
MI-SMC 99 100 100 98 100 100

MI-TVE-Approx 95 100 100 95 100 100
MI-TVE-SMC 95 100 100 96 100 100
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Table S2
Coverage of the estimated TVE curve at three time points (1, 5, 9) for covariates X1
and X2 in the setting with continuous covariates X1 and X2.

Covariate X1 Covariate X2
1 5 9 1 5 9

Scenario 1
Complete-data 96 100 100 96 100 100
Complete-case 95 100 100 97 100 100

MI-Approx 99 100 100 99 100 100
MI-SMC 99 100 100 99 100 100

MI-TVE-Approx 96 100 100 96 100 100
MI-TVE-SMC 97 100 100 96 100 100

Scenario 2
Complete-data 94 100 100 94 100 100
Complete-case 96 100 100 96 100 100

MI-Approx 92 100 100 97 100 100
MI-SMC 86 100 100 97 100 100

MI-TVE-Approx 95 100 100 95 100 100
MI-TVE-SMC 95 100 100 95 100 100

Scenario 3
Complete-data 94 100 100 96 100 100
Complete-case 95 100 100 95 100 100

MI-Approx 99 100 100 98 100 100
MI-SMC 98 100 100 99 100 100

MI-TVE-Approx 93 100 100 96 100 100
MI-TVE-SMC 95 100 100 96 100 100

Scenario 4
Complete-data 100 100 100 100 100 100
Complete-case 100 100 100 100 100 100

MI-Approx 100 100 100 100 100 100
MI-SMC 100 100 100 100 100 100

MI-TVE-Approx 100 100 100 100 100 100
MI-TVE-SMC 100 100 100 100 100 100

Scenario 5
Complete-data 98 100 100 99 100 100
Complete-case 99 100 100 98 100 100

MI-Approx 100 100 100 100 100 100
MI-SMC 100 100 100 100 100 100

MI-TVE-Approx 99 100 100 99 100 100
MI-TVE-SMC 97 100 100 98 100 100
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Figure S1 . Bias in the estimated TVE curve at three time points for covariate X1 in the
setting with binary covariates X1 (black) and X2 (grey). The point indicates the bias
and the bar indicates the 95% confidence interval.

●

●

●

●

●

●

Time 1

MI−TVE−SMC

MI−TVE−Approx

MI−SMC

MI−Approx

Complete−case

Complete−data

−0.4 0 0.4

●

●

●

●

●

●

Scenario 1

●

●

●

●

●

●

Time 5

−0.4 0 0.4

●

●

●

●

●

●

●

●

●

●

●

●

Time 9

−0.4 0 0.4

●

●

●

●

●

●

●

●

●

●

●

●

Time 1

MI−TVE−SMC

MI−TVE−Approx

MI−SMC

MI−Approx

Complete−case

Complete−data

−0.4 0 0.4

●

●

●

●

●

●

Scenario 2

●

●

●

●

●

●

Time 5

−0.4 0 0.4

●

●

●

●

●

●

●

●

●

●

●

●

Time 9

−0.4 0 0.4

●

●

●

●

●

●

●

●

●

●

●

●

Time 1

MI−TVE−SMC

MI−TVE−Approx

MI−SMC

MI−Approx

Complete−case

Complete−data

−0.4 0 0.4

●

●

●

●

●

●

Scenario 3

●

●

●

●

●

●

Time 5

−0.4 0 0.4

●

●

●

●

●

●

●

●

●

●

●

●

Time 9

−0.4 0 0.4

●

●

●

●

●

●

●

●

●

●

●

●

Time 1

MI−TVE−SMC

MI−TVE−Approx

MI−SMC

MI−Approx

Complete−case

Complete−data

−0.4 0 0.4

●

●

●

●

●

●

Scenario 4

●

●

●

●

●

●

Time 5

−0.4 0 0.4

●

●

●

●

●

●

●

●

●

●

●

●

Time 9

−0.4 0 0.4

●

●

●

●

●

●

●

●

●

●

●

●

Time 1

MI−TVE−SMC

MI−TVE−Approx

MI−SMC

MI−Approx

Complete−case

Complete−data

−0.4 0 0.4

●

●

●

●

●

●

Scenario 5

●

●

●

●

●

●

Time 5

−0.4 0 0.4

●

●

●

●

●

●

●

●

●

●

●

●

Time 9

−0.4 0 0.4

●

●

●

●

●

●



SUPPLEMENTARY MATERIALS 15

Figure S2 . Bias in the estimated TVE curve at three time points for covariate X1 in the
setting with continuous covariates X1 (black) and X2 (grey). The point indicates the
bias and the bar indicates the 95% confidence interval.
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Figure S3 . Curve-wise estimates of TVEs for covariate X2 in the setting with binary
covariates X1 and X2. The dotted black line indicates the true curve. The curves are all
approximately flat because X2 always has a non-TVE.
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Figure S4 . Curve-wise estimates of TVEs for covariate X2 in the setting with
continuous covariates X1 and X2. The dotted black line indicates the true curve. The
curves are all approximately flat because X2 always has a non-TVE.
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Figure S5 . Curve-wise root mean squared error (RMSE) for covariate X1 in the setting
with binary covariates X1 and X2.
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Figure S6 . Curve-wise root mean squared error (RMSE) for covariate X1 in the setting
with continuous covariates X1 and X2.
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Figure S7 . Example estimated TVE curves for covariate X1 from 100 simulated data
sets. Results are shown for the setting with binary covariates X1 and X2. The left-hand
plots are from the complete data analysis and the right-hand plots are from the
MI-TVE-SMC analyses.
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Figure S8 . Example estimated TVE curves for covariate X1 from 100 simulated data
sets. Results are shown for the setting with continuous covariates X1 and X2. The
left-hand plots are from the complete data analysis and the right-hand plots are from
the MI-TVE-SMC analyses.
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Figure S9 . Results from the Rotterdam Breast Cancer Study. Plots showing estimated
log hazard ratios as a function of time. The time-varying effects for all covariate were
modelled using a restricted cubic spline with 5 knots. Results are shown up to time 10.
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