

Supporting Information

Enantioselective Lewis Acid Catalyzed *ortho* **Photocycloaddition of Olefins to Phenanthrene-9-carboxaldehydes**

Simone Stegbauer, Christian Jandl, and Thorsten Bach*

anie_201808919_sm_miscellaneous_information.pdf

Table of Content

1.	General Information	.S2
2.	Analytical Methods	.S4
3.	Synthesis of Irradiation Precursors	.S6
3.1	Phenanthrene-9-carboxaldehyde	.S6
3.2	Synthesis of Substituted Irradiation Precursors	.S7
3.3	[2+2] Photocycloaddition Reactions of Irradiation Precursors	\$38
4.	Additional Experiments for the Uncatalysed Photocycloaddition	\$75
5.	Additional Experiments for the Chiral Lewis Acid Screening	\$76
6.	Chiral HPLC Traces	\$77
7.	NMR Spectra of New Compounds	392
8.	Datasheet of Flurescent Light Sources	138
9.	UV/Vis Spectra	142
10.	Luminescence Measurements	144
11.	X-ray Crystallographic Details	145
12.	References	148

1. General Information

All air and moisture sensitive reactions were carried out in flame-dried glassware under a positive pressure of dry argon using standard *Schlenk* techniques.

Commercially available chemicals were used without further purification unless otherwise mentioned.

For moisture sensitive reactions, tetrahydrofuran (THF) and dichloromethane (CH₂Cl₂) were dried using a MBSPS 800 *MBraun* solvent purification system. The following columns were used:

THF: $2 \times MB$ -KOL-M type 2 (3 Å molecular sieve)

CH₂Cl₂:
$$2 \times$$
 MB-KOL-A type 2 (aluminum oxide)

Chloroform was distilled over activated basic aluminum oxide (*Merck*, aluminum oxide 90 active basic, 0.063-0.200 mm) and then stored over 4 Å activated molecular sieves prior to use. The following dry solvents are commercially available and were used without further purification:

Acetonitrile: Acros Organics, 99.9% extra dry, over molecular sieves.

N,N-Dimethylformamide: Acros Organics, 99.9% extra dry, over molecular sieves.

Ethanol: Acros Organics, 99.5% extra dry.

Methanol: Acros Organics, 99.8% extra dry, over molecular sieves.

Toluene: Acros Organics, 99.8% extra dry, over molecular sieves.

For photochemical reactions, dry dichloromethane was degassed by four freeze-pump-thaw cycles and stored over 4 Å activated molecular sieves. 2,3-Dimethyl-2-butene (\geq 99%, *Sigma Aldrich*) was degassed by four freeze-pump-thaw cycles and stored under argon before use. All other olefins were distilled, filtered over activated, basic aluminum oxide, degassed by four freeze-pump-thaw cycles and stored under argon prior to use.

Technical solvents for column chromatography (pentane, diethyl ether, ethylacetate) were used after simple distillation.

Flash column chromatography was performed on silica 60 (*Merck*, 230-400 mesh) with the indicated eluent mixtures (v/v).

Photochemical experiments at 366 nm were carried out in flame-dried *Duran* tubes (diameter = 1 cm) in a positive geometry setup (cylindrical array of 16 UV-A lamps, *Rayonet*, 8 W nominal power, $\lambda_{max} = 366$ nm) with the sample placed in the center of the illumination chamber.

Enantioselective reactions were carried out at -78 °C in a *Schlenk* tube (diameter = 1 cm) with a polished quartz rod as an optical fiber, which was roughened by sandblasting at one end. The roughed end has to be completely submerged in the solvent during the reaction, in order to guarantee optimal and reproducible irradiation conditions.^[1] The reactions were cooled by using an *Huber* TC100E immersion cooler with ethanol as coolant.

As cooling baths were used ice/water (0 °C), dry ice/ethanol (-78 °C).

2. Analytical Methods

Melting points (M.p.) were determined using a *Kofler* heating bar designed by *Ludwig Kofler* (*Reichert*) without correction or melting points were determined using a *Büchi* M-565 melting point apparatus, with range quoted to the nearest whole number.

Thin Layer Chromatography (TLC) was performed on silica coated glass plates (*Merck*, silica 60 F254) with detection by UV-light ($\lambda = 254$ nm) and/or by staining with a potassium permanganate solution [KMnO₄] followed by heat treatment.

KMnO₄-staining solution: potassium permanganate (3.00 g), potassium carbonate (20.0 g) and 5% aqueous sodium hydroxide solution (5.00 mL) in water (300 mL).

Infrared Spectra (IR) were recorded on a *Perkin Elmer* Frontier IR-FTR spectrometer by ATR technique. The signal intensity is assigned using the following abbreviations: vs (very strong), s (strong), m (medium), w (weak).

Nuclear Magnetic Resonance Spectra were recorded at room temperature either on a *Bruker* AVHD-300, AVHD-400, AVHD-500 or an AV-500 cryo. ¹H NMR spectra were calibrated to the residual proton signal of chloroform-d₁ (δ = 7.26 ppm), dimethylsulfoxide-d₆ (δ = 2.50 ppm) or benzene-d₆ (δ = 7.16 ppm). ¹³C NMR spectra were referenced to the ¹³C triplet of CDCl₃ (δ = 77.16 ppm), to the ¹³C septet of DMSO-d₆ (δ = 39.5 ppm) or to the ¹³C triplet of C₆D₆ (δ = 128.06 ppm). ¹⁹F NMR spectra were referenced to the ¹⁹F signal of CCl₃F (δ = 0 ppm) as an internal standard. ¹¹B NMR spectra were used without reference. Apparent multiplets which occur as a result of coupling constant equality between magnetically non-equivalent protons are marked as virtual (*virt.*). Following abbreviations for single multiplicities were used: *br* – broad, s – singlet, d – doublet, t – triplet, q – quartet, m – multiplet. Assignment and multiplicity of the ¹³C NMR signals were determined by two-dimensional NMR experiments (COSY, HSQC, HMBC). The nomenclature in the case of diastereotopic methyl-groups at quaternary carbon atoms is as following: Methyl-groups oriented *anti* to the phenanthrene core are labeled as α and those oriented *syn* to the phenanthrene core as β.

Mass Spectra (MS) and High Resolution Mass Spectra (HRMS) were measured on a *Thermo Scientific* DFS-HRMS spectrometer (EI, 70 eV).

UV/Vis Spectra were measured on a *Perkin Elmer* Lambda 35 UV/Vis spectrometer. Spectra were recorded using a *Hellma* precision cell made of quartz *Suprasil* with a pathway of 1 mm. Solvents and concentrations are given for each spectrum.

Analytical High Performance Liquid Chromatography (HPLC) was performed (*Thermo Fisher, Dionex* Ultimate 3000, LPG 3400SD Pump, WPS3000SL Autosampler, DAD 3000 photodiode array detector) using different chiral stationary phases (*Daicel, Chemical Industries*) and UV detection ($\lambda = 215$).

Specific Rotation was determined using a *Bellingham+Stanley* ADP440+ polarimeter using a 0.5 cm cuvette at $\lambda = 589$ nm (Na-D-line) at room temperature. Specific rotation is reported as follows: $[\alpha]_D^T$ in 10⁻¹ grad cm² g⁻¹ (c was defined as g per 100 mL solvent).

CHN analysis were performed on an *Elementar* vario EL.

Luminescence Measurements were performed on Horiba Scientific FluoroMax-4 instrument (part number J810005 rev. C) using a SUPRASIL[®] quartz cuvette with a 1 mm light path to record emission spectra.

pH Values were determined by the use of *Merck* universal indicator paper.

3. Synthesis of Irradiation Precursors

3.1 Phenanthrene-9-carboxaldehyde (1a)

At – 78 °C was added *n*-butyllithium solution (5.60 mL, 2.5 M in *n*-hexane, 14.0 mmol, 1.00 eq.) to a solution of 9-bromophenanthrene (3.00 g, 11.7 mmol, 1.00 eq.) in tetrahydrofuran (125 mL). A solution of *N*,*N*-dimethylformamide (2.70 mL, 2.57 g, 35.1 mmol, 3.00 eq.) in tetrahydrofuran (50 mL) was added dropwise after one hour and the reaction mixture was warmed to room temperature. After three hours the reaction was quenched by the addition of saturated aqueous NH₄Cl solution (30 mL) and water (30 mL). The aqueous layer was extracted with diethyl ether (3 × 25 mL). The combined organic extracts were washed with brine (50 mL), dried over anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure. After column chromatography (silica, P/Et₂O = 100/1 → 25/1), 2.12 g aldehyde **1a** (10.3 mmol, 88%) was obtained as an off-white solid.

TLC: $R_f = 0.44$ (P/Et₂O = 10/1) [UV].

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 7.68 (ddd, ³*J* = 8.1 Hz, ³*J* = 7.1 Hz, ⁴*J* = 1.1 Hz, 1 H, H-2), 7.71 – 7.77 (m, 2 H, H-6, H-7), 7.81 (ddd, ³*J* = 8.4 Hz, ³*J* = 7.1 Hz, ⁴*J* = 1.4 Hz, 1 H, H-3), 8.03 (d, ³*J* = 8.1 Hz, 1 H, H-1), 8.25 (s, 1 H, H-10), 8.64 – 8.77 (m, 2 H, H-4, H-5), 9.32 – 9.43 (m, 1 H, H-8), 10.38 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 122.9 (d, C-5*), 123.0 (d, C-4*), 126.1 (d, C-8), 127.4 (d, C-2), 127.8 (d, C-6**), 128.4 (d, C-7**), 128.4 (s, C-9), 130.3 (s, C-8a***), 130.3 (d, C-3), 130.5 (d, C-1), 130.6 (s, C-10a***), 130.8 (s, C-4b***), 133.1 (s, C-4a), 141.3 (d, C-10), 193.7 (d, CHO).

^{*, **, ***} assignment is interconvertible.

The analytical data obtained matched those reported in literature.^[2]

3.2 Synthesis of Substituted Irradiation Precursors

Mono- and disubstituted phenanthrene-9-carboxaldehydes were synthesized from the corresponding phenanthrene-9-carbonitriles by di-*iso*-butylaluminium hydride reduction. The phenanthrene-9-carbonitriles were accessible by a *Suzuki-Miyaura* coupling/aldol condensation cascade from substituted (2-formylphenyl)boronic acids and 2-(2-bromophenyl)acetonitrile derivatives (see scheme S1).

Y = Me, CF₃, F; X = Me, F, CI

Scheme S1: Retrosynthetic disconnection for preparation of substituted phenanthrene-9-carboxaldehydes.

In the following sections, a representative procedure for the synthesis of a 2-(2-bromophenyl)acetonitrile derivative and a substituted (2-formylphenyl)boronic acid is given. Subsequently, a representative procedure for the *Suzuki-Miyaura* coupling/aldol condensation cascade is described. All other phenanthrene-9-carbonitriles were prepared analogously.

Synthesis of 2-(2'-Bromo-3'-methylphenyl)acetonitrile

2-Bromo-1-(bromomethyl)-3-methylbenzene

2-Bromo-1,3-dimethylbenzene (2.00 g, 10.8 mmol, 1.00 eq.), *N*-bromosuccinimide (2.31 g, 13.0 mmol, 1.2 eq.) and dibenzoyl peroxide (131 mg, 540 μ mol, 5 mol%) were dissolved in chloroform (15 mL) and the solution was heated to reflux for 67 hours. After cooling to room temperature the reaction was quenched by addition of saturated aqueous Na₂S₂O₃ solution (10 mL). After separation of the layers, the aqueous layer was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed with brine (50 mL), dried over anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure. After column chromatography (silica, P), 1.61 g of the title compound (6.10 mmol, 56%) was obtained as a colourless oil.

TLC: $R_{\rm f} = 0.65$ (P) [UV, KMnO₄].

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 2.44 (s, 3 H, C-3-CH₃), 4.65 (s, 2 H, C-1-CH₂Br), 7.17 – 7.21 (m, 2 H, H-4, H-6), 7.28 – 7.31 (m, 1 H, H-5).

¹³C NMR (101 MHz, CDCl₃, 300 K): δ [ppm] = 24.0 (q, C-3-*C*H₃), 34.8 (t, C-1-*C*H₂Br), 127.2 (s, C-2), 127.4 (d, C-6), 128.9 (d, C-5), 131.1 (d, C-4), 137.5 (s, C-1), 139.6 (s, C-3).

The analytical data obtained matched those reported in literature.^[3]

2-(2'-Bromo-3'-methylphenyl)acetonitrile

Trimethylsilyl cyanide (2.02 mL, 1.60 g, 16.2 mmol, 1.50 eq.) and subsequently tetra-*n*-butylammonium fluoride solution (16.2 mL, 1.0 M in tetrahydrofuran, 16.2 mmol) was added to a solution of 2-bromo-1-(bromomethyl)-3-methylbenzene (2.84 g, 10.8 mmol, 1.00 eq.) in acetonitrile (20 mL) at 0 °C. The solution was slowly warmed up to room temperature and after 25 hours all volatiles were removed under reduced pressure. The crude product was purified by column chromatography (silica, P/Et₂O = 100/1 \rightarrow 10/1), obtaining 2.00 g of the title compound (9.52 mmol, 88%) as a colourless solid.

M.p.: 93 °C.

TLC: $R_f = 0.25$ (P/Et₂O = 25/1) [UV, KMnO₄].

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 2.44 (s, 3 H, C-3'-CH₃), 3.87 (s, 2 H, H-2), 7.23 – 7.27* (m, 2 H, H-4', H-6'), 7.35 – 7.37 (m, 1 H, H-5').

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 23.9 (q, C-3'-CH₃), 25.8 (t, C-2), 117.4 (s, C-1), 126.3 (s, C-2'), 127.2 (d, C-5'), 127.7 (d, C-6'), 130.4 (s, C-1'), 130.8 (d, C-4'), 139.6 (s, C-3').

* partially overlaid with residual proton signal of chloroform.

The analytical data obtained matched those reported in literature.^[4]

2-(2-Bromo-4-fluorophenyl)acetonitrile, 2-[2-bromo-4-(trifluoromethyl)phenyl]acetonitrile and 2-(2-bromophenyl)acetonitrile were commercially available and used without further purification.

Synthesis of Substituted (2-Formylphenyl)boronic acids

2-Bromo-N-methoxy-N,4-dimethylbenzamide

Oxalyl chloride (2.39 mL, 3.54 g, 27.9 mmol, 1.20 eq.) was added dropwise to a solution of 2bromo-4-methylbenzoic acid (5.00 g, 23.3 mmol, 1.00 eq.) in dichloromethane (155 mL) at 0 °C. After addition of catalytically amounts of *N*,*N*-dimethylformamide (5 drops) the mixture was warmed to room temperature. After three hours all volatiles were removed under reduced pressure and the residue was taken up in dichloromethane (155 mL) and cooled to 0 °C. *N*,*O*dimethylhydroxylamine hydrochloride (2.72 g, 27.9 mmol, 1.20 eq.) and triethylamine (9.72 mL, 7.06 g, 69.8 mmol, 3.00 eq.) was added and the suspension was warmed to room temperature. After 90 minutes the reaction was quenched by the addition of saturated aqueous NaHCO₃ solution (200 mL). The aqueous layer was extracted with dichloromethane (3 × 150 mL). The combined organic extracts were washed with brine (200 mL), dried over anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure. After column chromatography (silica, P/EtOAc = 4/1 \rightarrow 1/1), 5.90 g of the title compound (22.8 mmol, 98%) was obtained as a pale yellow oil.

TLC: $R_f = 0.47$ (P/EtOAc = 2/1) [UV, KMnO₄].

Ratio of rotamers: $R1/R2 \approx 73/27$.

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 2.35 (s, 3 H, C-4-CH₃), 3.12 [*br* s, 0.81 H, O-CH₃(R2)], 3.37 [s, 2.19 H, O-CH₃(R1)], 3.47 [s, 2.19 H, N-CH₃(R1)], 3.89 [*br* s, 0.81 H, N-CH₃(R2)], 7.14 (d, ${}^{3}J$ = 7.2 Hz, 1 H, H-5), 7.20 (d, ${}^{3}J$ = 7.2 Hz, 1 H, H-6), 7.40 (s, 1 H, H-3). ¹³C **NMR** (75 MHz, CDCl₃, 298 K): δ [ppm] = 21.0 (q, C-4-CH₃), 32.3 (q, N-CH₃), 61.0 (q, O-CH₃), 119.4 (s, C-2), 127.5 (d, C-6), 127.7 (d, C-5), 132.9 (d, C-3), 134.4 (s, C-1), 140.8 (s, C-4), 169.9 (s, CO). The analytical data obtained matched those reported in literature.^[5]

2-Bromo-4-methylbenzaldehyde

At -78 °C di-*iso*-butylaluminium hydride solution (28.6 mL, 1.0 M in dichloromethane, 28.6 mmol, 1.30 eq.) was added to a solution of 2-bromo-*N*-methoxy-*N*,4-dimethylbenzamide (5.67 g, 22.0 mmol, 1.00 eq.) in tetrahydrofuran (40 mL). After one hour the reaction was quenched by addition of methanol (5 mL) and saturated aqueous *Rochelle* salt (Na/K tartrate) solution (200 mL) and the mixture was vigorously stirred at room temperature for 5 h. After separation of the layers the aqueous layer was extracted with ethyl acetate (3 × 100 mL). The combined organic extracts were washed with brine (200 mL), dried over anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure. After column chromatography (silica, P/Et₂O = 50/1), 4.23 g of the title compound (21.3 mmol, 97%) was obtained as a colourless solid.

TLC: $R_f = 0.65$ (P/Et₂O = 10/1) [UV, KMnO₄].

¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 2.40 (s, 3 H, C-4-CH₃), 7.22 (d, ³J = 7.9 Hz, 1 H, H-5), 7.47 (d, ⁴J = 0.9 Hz, 1 H, H-3), 7.81 (d, ³J = 7.9 Hz, 1 H, H-6), 10.30 (s, 1 H, CHO).
¹³C NMR (75 MHz, CDCl₃, 298 K): δ [ppm] = 20.6 (q, C-4-CH₃), 127.8 (s, C-2), 129.5 (d, C-5), 130.0 (d, C-6), 133.6 (d, C-3), 134.2 (s, C-1), 145.8 (s, C-4), 191.2 (s, CHO).

The analytical data obtained matched those reported in literature.^[6]

2-Bromo-1-(dimethoxymethyl)-4-methylbenzene

p-Toluenesulfonic acid (790 mg, 4.15 mmol, 20 mol%) and trimethyl orthoformate (4.54 mL, 4.41 g, 41.5 mmol, 2.00 eq.) were added to a solution of 2-bromo-4-methylbenzaldehyde (4.13 g, 20.8 mmol, 1.00 eq.) in methanol (50 mL). After stirring the reaction mixture for 20 hours under reflux, the reaction was quenched by dropwise addition of saturated aqueous NaHCO₃ solution (40 mL) and water (50 mL). The aqueous layer was extracted with dichloromethane (3 × 80 mL), the combined organic layers were washed with brine (150 mL), dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. After column chromatography (silica, P/Et₂O = 100/1 \rightarrow 10:1), 3.80 g of the title compound (15.5 mmol, 75%) was obtained as a colourless oil.

TLC: $R_{\rm f} = 0.50$ (P/Et₂O = 10/1) [UV, KMnO₄].

¹**H NMR** (500 MHz, CDCl₃, 300 K): δ [ppm] = 2.32 (s, 3 H, C-4-CH₃), 3.37 (s, 6 H, O-CH₃), 5.53 (s, 1 H, C-1-CH), 7.13 (d, ³*J* = 7.9 Hz, 1 H, H-5), 7.39 (s, 1 H, H-3), 7.47 (d, ³*J* = 7.9 Hz, 1 H, H-6).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.0 (q, C-4-*C*H₃), 53.9 (q, O-CH₃), 103.0 (d, C-1-*C*H), 122.8 (s, C-1), 128.1 (d, C-5, C-6), 133.4 (d, C-3), 133.9 (s, C-2), 140.5 (s, C-4). The compound has been previously reported in the literature.^[7]

(2-Formyl-5-methylphenyl)boronic acid

N-Butyllithium solution (8.83 mL, 2.5 M in *n*-hexane, 22.1 mmol, 1.50 eq.) was added dropwise to a solution of 2-bromo-1-(dimethoxymethyl)-4-methylbenzene (3.61 g, 14.7 mmol, 1.00 eq.) in tetrahydrofuran (80 mL) at -78 °C. After 1.5 hours triethyl borate (5.01 mL, 4.30 g, 29.4 mmol, 2.00 eq.) was added, the mixture was warmed to 0 °C and stirred for 30 minutes, before warming up to room temperature. After further 3 hours the solution was cooled to 0 °C and aqueous 1 M hydrogen chloride solution was added dropwise adjusting the pH value of 3. The mixture was slowly warmed to room temperature and stirred for further 14 hours. The aqueous layer was extracted with diethyl ether (3 × 50 mL), the combined organic layers were washed with brine (100 mL), dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. The crude material was purified by recrystallization from water (90 mL). The precipitate was filtered, washed with precooled water (10 mL) and dried under reduced pressure, giving 1.88 g of the title compound (11.4 mmol, 78%) as colourless, crystalline needles.

M.p.: 186 °C.

¹**H** NMR (500 MHz, DMSO-d₆, 298 K): δ [ppm] = 2.38 (s, 3 H, C-5-CH₃), 7.36 (dd, ³*J* = 7.9 Hz, ⁴*J* = 1.7 Hz, 1 H, H-4), 7.41 (d, ⁴*J* = 1.7 Hz, 1 H, H-6), 7.78 (d, ³*J* = 7.9 Hz, 1 H, H-3), 8.21 [*br* s, 2 H, B(OH)₂], 10.06 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, DMSO-d₆, 300 K): δ [ppm] = 21.4 (q, C-5-*C*H₃), 129.3 (d, C-4), 129.8 (d, C-3), 133.7 (d, C-6), 136.9 (s, C-2), 140.4 (*br* s, C-1), 143.4 (s, C-5), 193.7 (d, CHO).

¹¹**B** NMR (96 MHz, DMSO-d₆, 300 K): δ [ppm] = 30.9 [*br* s, 1 B, B(OH)₂].

The analytical data obtained matched those reported in literature.^[8]

(2-Formyl-4-methylphenyl)boronic acid was synthesized similar to the (2-formyl-5methylphenyl)boronic acid using 2-bromo-5-methylbenzoic acid as the starting material. (4-Chloro-2-formylphenyl)boronic acid, (5-fluoro-2-formylphenyl)boronic acid and (2formylphenyl)boronic acid were commercially available and were used without further purification.

Suzuki-Miyaura Coupling/Aldol Condensation Cascade

Following, the *Suzuki-Miyaura* coupling/aldol condensation cascade is shown on one example following a modified literature procedure.^[9] All other substituted phenanthrene-9-carbonitriles were synthesized in a similar manner.

3-Methylphenanthrene-9-carbonitrile

Representative Procedure: Synthesis of phenanthrene-9-carbonitriles:

An Ace pressure tube (100 mL), equipped with a stirring bar, was sequentially loaded with (2formyl-5-methylphenyl)boronic acid (502 mg, 3.06 mmol. 1.20 eq.), tetrakis(triphenylphosphine)palladium(0) (118 mg, 102 mmol, 4 mol%) and cesium carbonate (2.49 g, 7.65 mmol, 3.00 eq.). The mixture was suspended in toluene/ethanol (12 mL/6 mL) and 2-(2'-bromophenyl)acetonitrile (500 mg, 2.55 mmol, 1.00 eq.) was added. The pressure tube was placed in a pre-heated oil bath (100 °C) and was further warmed up to 125 °C. After 2 hour stirring at 125°C the reaction mixture was cooled to room temperature, diluted with ethyl acetate (15 mL) and filtered through a short Celite pad. The solution was concentrated under reduced pressure and the crude product was purified by column chromatography (silica, P/EtOAc = 25:1). The pale orange solid was further purified by addition of pentane $(3 \times 4 \text{ mL})$ and decanting the liquid after each addition. The residue was dried under reduced pressure, giving 375 mg of the title compound (1.72 mmol, 68%) as a colourless solid.

M.p.: 148 °C.

TLC: $R_{\rm f} = 0.66$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2977 (w, sp²-CH), 2853 (w, sp²-CH), 2853 (w, sp²-CH), 2218 (s, C=N), 1620 (m, C=C), 1450 (m, sp³-CH), 1390 (w), 1198 (w), 900 (m), 761 (m, sp²-CH).

¹H NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 2.66 (s, 3 H, C-3-CH₃), 7.51 (dd, ³J = 8.1 Hz, ⁴J = 1.6 Hz, 1 H, H-2), 7.72 – 7.77 (m, 2 H, H-6, H-7), 8.82 (d, ³J = 8.1 Hz, 1 H, H-1), 8.20 (s, 1 H, H-10), 8.27 – 8.29 (m, 1 H, H-8), 8.46 (s, 1 H, H-4), 8.67 – 8.71 (m, 1 H, H-5).
¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 22.6 (q, C-3-CH₃), 108.4 (s, C-9), 118.3 (s, CN), 122.8 (d, C-4), 123.2 (d, C-5), 126.2 (d, C-8), 127.9 (s, C-4b*), 128.1 (d, C-6, C-7), 129.2

(s, C-10a*), 129.5 (d, C-1, C-2), 129.8 (s, C-8a*), 132.0 (s, C-4a), 135.7 (d, C-10), 140.4 (s, C-4a).

* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 217 (100) [M]⁺, 189 (16), 163 (3), 108 (3), 49 (4).

HRMS (EI, 70 eV): calcd for $C_{16}H_{11}N [M]^+$: 217.0886; found: 217.0879.

calcd for C₁₅¹³CH₁₁N [M]⁺: 218.0920; found: 218.0913.

Di-iso-butylaluminium hydride reduction of phenanthrene-9-carbonitriles

General Procedure 1: Di-iso-butylaluminium Hydride Reduction

Di-*iso*-butylaluminium hydride solution (1.0 M in dichloromethane, 1.50 eq.) was added to a solution of phenanthrene-9-carbonitrile (1.00 eq.) in dichloromethane ($c \approx 0.03 - 0.05$ M) at 0 °C. After TLC analysis showed full conversion of the starting material, saturated aqueous *Rochelle* salt (Na/K tartrate) solution was added and the mixture was warmed to room temperature and stirred for 3 hours. The aqueous layer was extracted with dichloromethane, the combined organic layers were washed with brine, dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography.

2-Methylphenanthrene-9-carboxaldehyde (1b)

Following the general procedure 1, 2-methylphenanthrene-9-carbonitrile (375 mg, 1.72 mmol, 1.00 eq.) was reduced using di-*iso*-butylaluminium hydride solution (2.59 mL, 1.0 M in dichloromethane, 2.59 mmol, 1.50 eq.) in dichloromethane (50 mL) as the solvent. After six hours the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (15 mL). Purification by column chromatography (silica, P/Et₂O = 15/1) gave 347 mg of aldehyde **1b** (1.57 mmol, 91%) as an off-white solid.

M.p.: 85 °C.

TLC: $R_f = 0.26$ (P/Et₂O = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2919 (w, sp²-CH), 2726 (w, C-HO), 1682 (vs, C=O), 1624 (w, C=C), 1454 (m), 1385 (w), 1066 (m), 758 (s, sp²-CH), 723 (m, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 2.59 (s, 3 H, C2-CH₃), 7.64 (dd, ³*J* = 8.4 Hz, ⁴*J* = 1.9 Hz, 1 H, H-3), 7.70 – 7.73 (m, 2 H, H-6, H-7), 7.81 (s, 1 H, H-1), 8.19 (s, 1 H, H-10), 8.58 (d, ³*J* = 8.4 Hz, 1 H, H-4), 8.67 – 8.69 (m, 1 H, H-5), 9.34 – 9.36 (m, 1 H, H-8), 10.38 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.5 (q, C-2-*C*H₃), 122.7 (d, C-5), 123.0 (d, C-4), 126.1 (d, C-8), 127.7 (d, C-6*), 127.9 (d, C-7*), 128.1 (s, C-10a**), 130.0 (d, C-1), 130.4 (s, C-8a**), 130.7 (s, C-9**), 130.8 (s, C-4b**), 131.0 (s, C-4a**), 132.2 (d, C-3), 137.4 (s, C-2), 141.3 (d, C-10), 193.9 (d, CHO).

^{*, **} assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 220 (100) [M]⁺, 205 (18) [M-CH₃]⁺, 191 (75) [M-CHO]⁺, 189 (51),

176 (8) [M-C₂H₄O]⁺, 165 (16), 109 (5), 57 (5).

HRMS (EI, 70 eV): calcd for $C_{16}H_{12}O[M]^+$: 220.0883; found: 220.0881.

calcd for $C_{15}^{13}CH_{12}O[M]^+$: 221.0916; found: 221.0912.

2-Chlorophenanthrene-9-carboxaldehyde (1c)

Following the general procedure 1, 2-chlorophenanthrene-9-carbonitrile (369 mg, 1.55 mmol, 1.00 eq.) was dissolved in dichloromethane (50 mL). di-*iso*-butylaluminium hydride solution (3.10 mL, 1.0 M in dichloromethane, 3.10 mmol, 2.00 eq.) was used in. After seven hours further di-*iso*-butylaluminium hydride solution (1.55 mL, 1.0 M in dichloromethane, 1.55 mmol, 1.00 eq.) was added. After 9 hours the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (20 mL). Purification by column chromatography (silica, P/EtOAc = 25/1) gave 49.8 mg of aldehyde **1c** (207 µmol, 13%) as an off-white solid.

M.p.: 144 °C.

TLC: $R_{\rm f} = 0.58$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2923 (m, sp²-CH), 2852 (w, sp²-CH), 2735 (w, C-HO), 1683 (vs, C=O), 1616 (w, C=C), 1452 (m), 1384 (w), 1068 (s, C-Cl), 911 (s), 751 (s, sp²-CH), 714 (s, sp²-CH). ¹H NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 7.74 – 7.78 (m, 3 H, H-3, H-6, H-7), 8.03 (d, ⁴*J* = 2.3 Hz, 1 H, H-1), 8.18 (s, 1 H, H-10), 8.63 (d, ³*J* = 8.9 Hz, 1 H, H-4), 8.64 – 8.68 (m, 1 H, H-5), 9.34 – 9.37 (m, 1 H, H-8), 10.40 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 122.8 (d, C-5), 124.8 (d, C-4), 126.2 (d, C-8), 128.2 (d, C-6*), 128.3 (s, C-9**), 128.7 (d, C-7*), 129.1 (d, C-1), 130.5 (s, C-2**), 130.7 (d, C-3*), 131.3 (s, C-8a**), 131.4 (s, C-10a**), 131.6 (s, C-4b**), 133.3 (s, C-4a**), 139.7 (d, C-10), 193.5 (d, CHO).

*, ** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 242 (27) $[M(^{37}Cl)]^+$, 240 (84) $[M(^{35}Cl)]^+$, 214 (24) $[M(^{37}Cl)-CO]^+$, 212 (75) $[M(^{35}Cl)-CO]^+$, 176 (100) $[M-CHOCl]^+$, 150 (11), 105 (18), 84 (61), 51 (23), 49 (75). **HRMS** (EI, 70 eV): calcd for C₁₅H₉O³⁵Cl $[M]^+$: 240.0336; found: 240.0334.

3-Fluorophenanthrene-9-carboxaldehyde (1d)

Following the general procedure 1, 3-fluorophenanthrene-9-carbonitrile (301 mg, 1.36 mmol, 1.00 eq.) was reduced using di-*iso*-butylaluminium hydride solution (2.04 mL, 1.0 M in dichloromethane, 2.04 mmol, 1.50 eq.) in dichloromethane (30 mL) as the solvent. After five hours the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (10 mL). Purification by column chromatography (silica, P/Et₂O = 15/1) gave 283 mg of aldehyde **1d** (1.26 mmol, 92%) as an off-white solid.

M.p.: 135 °C.

TLC: $R_{\rm f} = 0.47$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 3074 (w, sp²-CH), 2853 (w, sp²-CH), 2730 (w, C-HO), 1687 (s, C=O), 1622 (s, C=C), 1450 (m), 1233 (m), 1182 (m, C-F), 811 (w), 761 (m, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 7.39 – 7.47 (m, 1 H, H-2), 7.67 – 7.80 (m, 2 H, H-6, H-7), 8.04 (ddd, ³*J* = 8.4 Hz, ⁴*J*_{HF} = 6.0 Hz, ⁴*J* = 1.8 Hz, 1 H, H-1), 8.24 (d, ⁴*J* = 1.8 Hz, 1 H, H-10), 8.29 (*virt.* dt, ³*J*_{HF} = 11.0 Hz, ⁴*J* \approx ⁵*J* = 2.1 Hz, 1 H, H-4), 8.57 (*virt.* dt, ³*J* = 8.3 Hz, ⁴*J* \approx ⁵*J* = 1.7 Hz, 1 H, H-8), 9.36 – 9.39 (m, 1 H, H-5), 10.37 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 108.6 (dd, ²*J*_{CF} = 22.7 Hz, C-4), 116.7 (dd, ²*J*_{CF} = 24.1 Hz, C-2), 123.1 (d, C-8), 126.2 (d, C-5), 127.0 (d, ⁴*J*_{CF} = 2.0 Hz, C-10a), 127.9 (d, C-7), 128.6 (s, C-9), 129.1 (d, C-6), 130.0 (d, ⁵*J*_{CF} = 2.5 Hz, C-8a), 130.1 (d, ⁴*J*_{CF} = 4.3 Hz, C-4b), 132.9 (dd, ³*J*_{CF} = 9.5 Hz, C-1), 135.1 (d, ³*J*_{CF} = 9.0 Hz, C-4a), 140.6 (d, C-10), 164.0 (d, ¹*J*_{CF} = 251.0 Hz, C-3), 193.5 (d, CHO).

¹⁹**F NMR** (471 MHz, CDCl₃, 300 K): δ [ppm] = -107.6 (ddd, ³*J*_{HF} = 11.0 Hz, ³*J*_{HF} = 8.0 Hz, ⁴*J*_{HF} = 6.0 Hz, 1 F, F-3).

MS (EI, 70 eV): m/z (%) = 224 (100) [M]⁺, 196 (80) [M-CO]⁺, 175 (22), 169 (12), 149 (2), 98 (4), 85 (2), 44 (5).

HRMS (EI, 70 eV): calcd for C₁₅H₉OF [M]⁺: 224.0632; found: 224.0637.

calcd for C₁₄¹³CH₉OF [M]⁺: 225.0665; found: 225.0670.

3-Methylphenanthrene-9-carboxaldehyde (1e)

Following the general procedure 1, 3-methylphenanthrene-9-carbonitrile (326 mg, 1.50 mmol, 1.00 eq.) was reduced using di-*iso*-butylaluminium hydride solution (2.25 mL, 1.0 M in dichloromethane, 2.25 mmol, 1.50 eq.) in dichloromethane (60 mL) as the solvent. After 5.5 hours the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (15 mL). Purification by column chromatography (silica, P/EtOAc = 25/1) gave 214 mg of aldehyde **1e** (1.43 mmol, 95%) as an off-white solid.

M.p.: 101 °C.

TLC: $R_{\rm f} = 0.68$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2981 (w, sp²-CH), 2727 (w, C-HO), 1686 (vs, C=O), 1619 (m, C=C), 1451 (m), 1386 (w), 1066 (m), 742 (w, sp²-CH), 724 (w, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 2.67 (s, 3 H, C3-CH₃), 7.51 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.6 Hz, 1 H, H-2), 7.70 – 7.74 (m, 2 H, H-6, H-7), 7.94 (d, ³*J* = 8.1 Hz, 1 H, H-1), 8.24 (s, 1 H, H-10), 8.49 (s, 1 H, H-4), 8.70 – 8.72 (m, 1 H, H-5), 9.37 – 9.39 (m, 1 H, H-8), 10.37 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 22.7 (q, C-3-*C*H₃), 122.8 (d, C-4*), 122.9 (d, C-5*), 126.1 (d, C-8), 127.5 (d, C-7**), 128.2 (s, C-10a), 128.2 (d, C-6**), 128.6 (s, C-8a), 129.2 (d, C-2), 129.8 (s, C-9), 130.4 (d, C-1), 130.4 (s, C-4b), 133.2 (s, C-4a), 140.9 (s, C-3), 141.6 (d, C-10), 193.7 (d, CHO).

*, ** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 220 (100) [M]⁺, 205 (4) [M-CH₃]⁺, 191 (73) [M-CHO]⁺, 189 (49),

176 (6) [M-C₂H₄O]⁺, 165 (13), 84 (6), 49 (10).

HRMS (EI, 70 eV): calcd for $C_{16}H_{12}O[M]^+$: 220.0883; found: 220.0880.

calcd for $C_{15}^{13}CH_{12}O[M]^+$: 221.0916; found: 221.0913.

5-Methylphenanthrene-9-carboxaldehyde (1f)

Following the general procedure 1, 5-methylphenanthrene-9-carbonitrile (950 mg, 4.37 mmol, 1.00 eq.) was reduced using di-*iso*-butylaluminium hydride solution (6.56 mL, 1.0 M in dichloromethane, 6.56 mmol, 1.50 eq.) in dichloromethane (85 mL) as the solvent. After two hours the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (30 mL). Purification by column chromatography (silica, P/EtOAc = 30/1) gave 640 mg of aldehyde **1f** (2.91 mmol, 67%) as an off-white solid.

M.p.: 77 °C.

TLC: $R_{\rm f} = 0.35$ (P/Et₂O = 10/1) [UV, KMnO₄].

IR (ATR): *ṽ* [cm⁻¹] = 3057 (w, sp²-CH), 2877 (w, sp²-CH), 2730 (w, C-HO), 1685 (vs, C=O), 1618 (m, C=C), 1495 (w), 1454 (m), 1097 (m), 749 (m, sp²-CH), 722 (m, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 3.13 (s, 3 H, C-5-CH₃), 7.58 – 7.60 (m, 1 H, H-6), 7.61 – 7.62 (m, 1 H, H-7), 7.67 (ddd, ³*J* = 8.0 Hz, ³*J* = 7.0 Hz, ⁴*J* = 1.1 Hz, 1 H, H-2), 7.78 (ddd, ³*J* = 8.6 Hz, ³*J* = 7.0 Hz, ⁴*J* = 1.6 Hz, 1 H, H-3), 8.06 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.6 Hz, 1 H, H-1), 8.22 (s, 1 H, H-10), 8.84 (d, ³*J* = 8.6 Hz, 1 H, H-4), 9.31 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.7 Hz, 1 H, H-8), 10.38 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 27.7 (q, C-5-*C*H₃), 124.0 (d, C-8), 126.7 (d, C-2), 127.5 (d, C-7), 127.9 (d, C-4), 129.2 (d, C-3), 129.9 (s, C-8a), 130.7 (d, C-1), 130.8 (s, C-10a*), 131.0 (s, C-9*), 131.5 (s, C-4b), 132.4 (d, C-6), 134.1 (s, C-4a), 135.5 (s, C-5), 141.9 (d, C-10), 193.7 (d, CHO).

^{*} assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 220 (100) [M]⁺, 205 (48) [M-CH₃]⁺, 191 (91) [M-CHO]⁺, 189 (77),

176 (12) [M-C₂H₄O]⁺, 165 (19), 84 (39), 49 (44).

HRMS (EI, 70 eV): calcd for $C_{16}H_{12}O[M]^+$: 220.0883; found: 220.0883.

calcd for $C_{15}^{13}CH_{12}O[M]^+$: 221.0916; found: 221.0928.

CHN: calcd for C₁₆H₁₂O: C 87.25, H 5.49; found C 87.03, H 5.76.

6-(Trifluoromethyl)phenanthrene-9-carboxaldehyde (1g)

Following the general procedure 1, 6-(trifluoromethyl)-9-carbonitrile (200 mg, 729 μ mol, 1.00 eq.) was reduced using di-*iso*-butylaluminium hydride solution (1.09 mL, 1.0 M in dichloromethane, 1.09 mmol, 1.50 eq.) in dichloromethane (15 mL) as the solvent. After 90 minutes the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (10 mL). Purification by column chromatography (silica, P/EtOAc = 20/1) gave 181 mg of aldehyde **1g** (659 μ mol, 90%) as an off-white solid.

M.p.: 98 – 101 °C.

TLC: $R_{\rm f} = 0.49$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2924 (w, sp²-CH), 2852 (w, sp²-CH), 2738 (w, C-HO), 1692 (vs, C=O),

1618 (w, C=C), 1388 (m), 1314 (s), 1109 (s, C-F), 830 (m), 750 (m, sp²-CH).

¹**H** NMR (300 MHz, CDCl₃, 298 K): δ [ppm] = 7.76 (ddd, ³*J* = 8.1 Hz, ³*J* = 7.1 Hz, ⁴*J* = 1.1 Hz, 1 H, H-2), 7.87 – 7.89 (m, 1 H, H-3), 7.91 (dd, ³*J* = 8.8 Hz, ⁴*J* = 1.8 Hz, 1 H, H-7), 8.10 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.5 Hz, 1 H, H-1), 8.38 (s, 1 H, H-10), 8.72 (d, ³*J* = 8.5 Hz, 1 H, H-4), 8.96 (d, ⁴*J* = 1.8 Hz, 1 H, H-5), 9.53 (d, ³*J* = 8.8 Hz, 1 H, H-8), 10.38 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 120.2 (qd, ³*J*_{CF} = 4.3 Hz, C-5), 123.2 (d, C-4), 124.3 (qd, ³*J*_{CF} = 3.4 Hz, C-7), 124.4 (q, ¹*J*_{CF} = 273.2 Hz, C-6-*C*F₃), 127.2 (d, C-8), 128.4 (d, C-2), 129.4 (q, ²*J*_{CF} = 32.3 Hz, C-6), 130.0 (s, C-8a*), 130.3 (s, C-9*), 130.5 (s, C-10a*), 130.5 (s, C-4b*), 130.8 (d, C-1), 131.1 (d, C-3), 132.7 (s, C-4a), 143.4 (d, C-10), 193.3 (d, CHO).

¹⁹**F NMR** (376 MHz, CDCl₃, 300 K):
$$\delta$$
 [ppm] = -62.8 (s, 3 F, C6-CF₃).

* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 274 (100) [M]⁺, 245 (57) [M-CHO]⁺, 225 (23), 205 (10) [M-CF₃]⁺,

176 (21), 150 (2), 57 (4), 43 (4).

HRMS (EI, 70 eV): calcd for C₁₆H₉OF₃ [M]⁺: 274.0600; found: 274.0592.

calcd for $C_{15}^{13}CH_9OF_3$ [M]⁺: 275.0634; found: 275.0639.

CHN: calcd for C₁₆H₉OF₃: C 70.08, H 3.31; found C 70.27, H 3.46.

6-Fluorophenanthrene-9-carboxaldehyde (1h)

Following the general procedure 1, 6-fluorophenanthrene-9-carbonitrile (478 mg, 2.16 mmol, 1.00 eq.) was reduced using di-*iso*-butylaluminium hydride solution (3.24 mL, 1.0 M in dichloromethane, 3.24 mmol, 1.50 eq.) in dichloromethane (50 mL) as the solvent. After four hours the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (15 mL). Purification by column chromatography (silica, P/EtOAc = $25/1 \rightarrow 10/1$) gave 89.7 mg of aldehyde **1h** (400 µmol, 19%) as an off-white solid.

M.p.: 114 °C.

TLC: $R_{\rm f} = 0.44$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 2981 (w, sp²-CH), 2853 (w, sp²-CH), 2738 (w, C-HO), 1676 (s, C=O), 1617 (m, C=C), 1338 (w), 1209 (w), 1188 (s, C-F), 825 (m), 743 (m, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 7.47 (ddd, ³*J* = 9.2 Hz, ³*J*_{HF} = 7.9 Hz, ⁴*J* = 2.7 Hz, 1 H, H-7), 7.72 (ddd, ³*J* = 8.0 Hz, ³*J* = 7.0 Hz, ⁴*J* = 1.1 Hz, 1 H, H-2), 7.83 (ddd, ³*J* = 8.4 Hz, ³*J* = 7.0 Hz, ⁴*J* = 1.3 Hz, 1 H, H-3), 8.06 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.3 Hz, 1 H, H-1), 8.22 (s, 1 H, H-10), 8.30 (dd, ³*J*_{HF} = 10.9 Hz, ⁴*J* = 2.7 Hz, 1 H, H-5), 8.56 (d, ³*J* = 8.4 Hz, 1 H, H-4), 9.43 (dd, ³*J* = 9.2 Hz, ⁴*J*_{HF} = 6.1 Hz, 1 H, H-8), 10.33 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 108.1 (dd, ²*J*_{CF} = 22.3 Hz, C-5), 117.1 (dd, ²*J*_{CF} = 22.8 Hz, C-7), 123.3 (d, C-4), 124.9 (d, ⁴*J*_{CF} = 1.9 Hz, C-8a), 128.1 (d, C-2), 128.8 (dd, ³*J*_{CF} = 8.6 Hz, C-8), 130.3 (s, C-9*), 130.5 (d, C-1**), 130.5 (d, C-3**), 130.6 (s, C-10a*), 132.4 (d, ⁴*J*_{CF} = 4.1 Hz, C-4a), 133.0 (d, ³*J*_{CF} = 8.2 Hz, C-4b), 141.1 (d, C-10), 162.2 (d, ¹*J*_{CF} = 247.9 Hz, C-6), 193.7 (d, CHO).

¹⁹**F NMR** (376 MHz, CDCl₃, 300 K): δ [ppm] = -112.1 (ddd, ³*J*_{HF} = 10.9 Hz, ³*J*_{HF} = 7.9 Hz, ⁴*J*_{HF} = 6.1 Hz, 1 F, F-6).

*, ** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 224 (100) [M]⁺, 205 (2) [M-F]⁺, 196 (65) [M-CO]⁺, 175 (18), 169

(9), 149 (3), 98 (3), 43 (4).

HRMS (EI, 70 eV): calcd for C₁₅H₉OF [M]⁺: 224.0632; found: 224.0633.

calcd for C₁₄¹³CH₉OF [M]⁺: 225.0665; found: 225.0677.

2-Methyl-6-(trifluoromethyl)phenanthrene-9-carboxaldehyde (1i)

Following the general procedure 1, 2-methyl-6-(trifluoromethyl)phenanthrene-9-carbonitrile (203 mg, 711 μ mol, 1.00 eq.) was reduced using di-*iso*-butylaluminium hydride solution (1.07 mL, 1.0 M in dichloromethane, 1.07 mmol, 1.50 eq.) in dichloromethane (30 mL) as the solvent. After 5.5 hours the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (15 mL). Purification by column chromatography (silica, P/EtOAc = 25/1) gave 132 mg of aldehyde **1j** (457 μ mol, 64%) as an off-white solid.

M.p.: 108 °C.

TLC: $R_f = 0.48$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2926 (w, sp²-CH), 2857 (w, sp²-CH), 2730 (w, C-HO), 1688 (s, C=O), 1317 (s), 1115 (vs, C-F), 836 (m), 727 (m, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 2.61 (s, 3 H, C-2-CH₃), 7.69 (dd, ³*J* = 8.5 Hz, ⁴*J* = 1.9 Hz, 1 H, H-3), 7.83 (s, 1 H, H-1), 7.87 (dd, ³*J* = 8.7 Hz, ⁴*J* = 1.8 Hz, 1 H, H-7), 8.26 (s, 1 H, H-10), 8.56 (d, ³*J* = 8.5 Hz, 1 H, H-4), 8.88 (s, 1 H, H-5), 9.48 (d, ³*J* = 8.7 Hz, 1 H, H-8), 10.34 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.5 (q, C-2-*C*H₃), 119.9 (qd, ³*J*_{CF} = 4.2 Hz, C-5), 123.0 (d, C-4), 124.8 (qd, ³*J*_{CF} = 3.3 Hz, C-7), 124.5 (q, ¹*J*_{CF} = 272.4 Hz, C-6-*C*F₃), 127.1 (d, C-8), 129.3 (q, ²*J*_{CF} = 32.3 Hz, C-6), 129.9 (s, C-10a*), 130.0 (s, C-4b*), 130.2 (d, C-1), 130.4 (s, C-8a*), 132.8 (s, C-4a*), 130.6 (s, C-9*), 132.8 (d, C-3), 138.4 (s, C-2), 143.2 (d, C-10), 193.3 (d, CHO).

¹⁹**F NMR** (471 MHz, CDCl₃, 300 K): δ [ppm] = – 62.7 (s, 3 F, C-6-CF₃).

* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 288 (100) [M]⁺, 259 (50) [M-CHO]⁺, 233 (8), 219 (9) [M-CF₃]⁺, 189 (31), 173 (8), 119 (16), 57 (9), 43 (11).

HRMS (EI, 70 eV): calcd for $C_{17}H_{11}OF_3$ [M]⁺: 288.0757; found: 288.0755.

calcd for $C_{16}^{13}CH_{11}OF_3 [M]^+$: 289.0790; found: 289.0792.

3-Methyl-6-(trifluoromethyl)phenanthrene-9-carboxaldehyde (1j)

Following the general procedure 1, 3-methyl-6-(trifluoromethyl)phenanthrene-9-carbonitrile (239 mg, 836 μ mol, 1.00 eq.) was reduced using di-*iso*-butylaluminium hydride solution (1.25 mL, 1.0 M in dichloromethane, 1.25 mmol, 1.50 eq.) in dichloromethane (25 mL) as the solvent. After 5.5 hours the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (10 mL). Purification by column chromatography (silica, P/EtOAc = 25/1) gave 205 mg of aldehyde **1j** (710 μ mol, 85%) as an off-white solid.

M.p.: 132 – 134 °C.

TLC: $R_{\rm f} = 0.37$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2924 (w, sp²-CH), 2854 (w, sp²-CH), 2736 (w, C-HO), 1688 (s, C=O), 1619 (m, C=C), 1317 (s), 1117 (vs, C-F), 1086 (m), 751 (w), 725 (m, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 2.68 (s, 3 H, C-3-CH₃), 7.56 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.7 Hz, 1 H, H-2), 7.87 (dd, ³*J* = 8.8 Hz, ⁴*J* = 1.9 Hz, 1 H, H-7), 7.94 (d, ³*J* = 8.1 Hz, 1 H, H-1), 8.27 (s, 1 H, H-10), 8.42 (s, 1 H, H-4), 8.88 (s, 1 H, H-5), 9.48 (d, ³*J* = 8.8 Hz, 1 H, H-8), 10.31 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 22.7 (q, C-3-*C*H₃), 120.1 (qd, ³*J*_{CF} = 4.3 Hz, C-5), 122.9 (d, C-4), 124.1 (qd, ³*J*_{CF} = 3.3 Hz, C-7), 124.5 (q, ¹*J*_{CF} = 272.4 Hz, C-6-*C*F₃), 127.1 (d, C-8), 128.4 (s, C-10a), 129.1 (q, ²*J*_{CF} = 32.3 Hz, C-6), 129.1 (s, C-4b), 130.0 (s, C-8a), 130.1 (d, C-2), 130.5 (s, C-9), 130.6 (d, C-1), 132.8 (s, C-4a), 141.8 (s, C-3), 143.4 (d, C-10), 193.3 (d, CHO).

¹⁹**F NMR** (471 MHz, CDCl₃, 300 K): δ [ppm] = -62.6 (s, 3 F, C6-CF₃).

MS (EI, 70 eV): m/z (%) = 288 (100) $[M]^+$, 259 (51) $[M-CHO]^+$, 233 (9), 219 (9) $[M-CF_3]^+$,

189 (37), 163 (3), 84 (4) $[C_6H_{12}]^+$, 49 (4).

HRMS (EI, 70 eV): calcd for $C_{17}H_{11}OF_3$ [M]⁺: 288.0757; found: 288.0753.

calcd for $C_{16}^{13}CH_{11}OF_3$ [M]⁺: 289.0790; found: 289.0786.
3-Fluoro-6-(trifluoromethyl)phenanthrene-9-carboxaldehyde (1k)

Following the general procedure 1, 3-fluoro-6-(trifluoromethyl)phenanthrene-9-carbonitrile (147 mg, 510 μ mol, 1.00 eq.) was reduced using di-*iso*-butylaluminium hydride solution (764 μ L, 1.0 M in dichloromethane, 764 μ mol, 1.50 eq.) in dichloromethane (20 mL) as the solvent. After six hours the reaction was quenched by addition of saturated aqueous *Rochelle* salt (Na/K tartrate) solution (10 mL). Purification by column chromatography (silica, P/EtOAc = 20/1) gave 129 mg of aldehyde **1k** (441 μ mol, 87%) as an off-white solid.

M.p.: 145 °C.

TLC: $R_{\rm f} = 0.27$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): *ṽ* [cm⁻¹] = 2926 (w, sp²-CH), 2865 (w, sp²-CH), 1693 (vs, C=O), 1624 (m, C=C), 1434 (m), 1315 (s), 1145 (s, C-F), 1115 (m, C-F), 841 (m, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 7.50 (ddd, ³*J* = 8.7 Hz, ³*J*_{HF} = 7.8 Hz, ⁴*J* = 2.4 Hz, 1 H, H-2), 7.94 (dd, ³*J* = 8.7 Hz, ⁴*J* = 1.8 Hz, 1 H, H-7), 8.10 (dd, ³*J* = 8.7 Hz, ⁴*J*_{HF} = 5.8 Hz, 1 H, H-1), 8.30 (dd, ³*J*_{HF} = 10.6 Hz, ⁴*J* = 2.4 Hz, 1 H, H-4), 8.34 (s, 1 H, H-10), 8.79 (d, ⁴*J* = 1.8 Hz, 1 H, H-5), 9.52 (d, ³*J* = 8.7 Hz, 1 H, H-8), 10.35 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 108.8 (dd, ²*J*_{CF} = 23.1 Hz, C-4), 117.7 (dd, ²*J*_{CF} = 24.1 Hz, C-2), 120.3 (qd, ³*J*_{CF} = 4.3 Hz, C-5), 124.3 (q, ¹*J*_{CF} = 124.3 Hz, C-6-*C*F₃), 124.9 (qd, ³*J*_{CF} = 3.3 Hz, C-7), 127.2 (d, ⁴*J*_{CF} = 1.7 Hz, C-10a), 127.3 (d, C-8), 129.4 (d, ⁵*J*_{CF} = 2.5 Hz, C-8a), 129.6 (q, ²*J*_{CF} = 32.5 Hz, C-6), 129.8 (d, ⁴*J*_{CF} = 4.2 Hz, C-4b), 130.5 (s, C-9), 133.2 (dd, ³*J*_{CF} = 9.5 Hz, C-1), 134.8 (d, ³*J*_{CF} = 9.2 Hz, C-4a), 142.4 (d, C-10), 164.3 (d, ¹*J*_{CF} = 253.0 Hz, C-3), 193.0 (d, CHO).

¹⁹**F NMR** (471 MHz, CDCl₃, 300 K): δ [ppm] = -106.0 (ddd, ${}^{3}J_{\text{HF}}$ = 10.6 Hz, ${}^{3}J_{\text{HF}}$ = 7.8 Hz, ${}^{4}J_{\text{HF}}$ = 5.7 Hz, 1 F, F-3), - 62.8 (s, 3 F, C-6-CF₃).

MS (EI, 70 eV): m/z (%) = 292 (100) [M]⁺, 273 (4) [M-F]⁺, 263 (61) [M-CHO]⁺, 243 (24), 223

(10) [M-CF₃]⁺, 194 (19), 84 (10), 49 (12).

HRMS (EI, 70 eV): calcd for C₁₆H₈OF₄ [M]⁺: 292.0506; found: 292.0498.

calcd for C₁₅¹³CH₈OF₄ [M]⁺: 309.1605; found: 309.1603.

3.3 [2+2] Photocycloaddition Reactions of Irradiation Precursors

Synthesis of the Oxazaborolidine Catalyst

In analogy to a literature procedure:^[10] A *Schlenk* round-bottom flask, equipped with a *Dean-Stark* apparatus was loaded with (*S*)-bis(3,5-dimethylphenyl)(pyrrolidin-2-yl)methanol^[11] (18.6 mg, 60 μ mol, 1.00 eq.) and (2,6-dimethylphenyl)boronic acid (9.00 mg, 60 μ mol, 1.00 eq.). The apparatus was filled with toluene (25 mL) and the solution was refluxed. After four hours toluene (around 20 mL) was removed by distillation and the flask was refilled with toluene (20 mL). This procedure was repeated a second time after further four hours. After 16 hours toluene was distilled off under argon flow. The flask was sealed and the residual solvent was removed under reduced pressure over night. The oxazaborolidine was obtained as a colourless, viscous oil and used without further purification in the next step. [*Note:* It is necessary to synthesize the oxazaborolidine freshly for every enantioselective photoreaction to avoid decomposition and ensure reproducibility of the results.]

IR (ATR): *ṽ* [cm⁻¹] = 2918 (m, sp³-CH), 2870 (m, sp³-CH), 1598 (s, C=C), 1455 (vs, sp³-CH), 1269 (s), 862 (m), 744 (m, sp²-CH).

¹**H** NMR (500 MHz, C₆D₆, 300 K): δ [ppm] = 1.09 (*virt.* dq, ²J = 11.9 Hz, ³J \approx ³J \approx ³J = 10.1 Hz, 1 H, *H*H-4), 1.42 – 1.47 (m, 1 H, *H*H-5), 1.50 – 1.58 (m, 2 H, H*H*-4, H*H*-5), 2.14 (s, 6 H, Ar-CH₃), 2.17 (s, 6 H, Ar-CH₃), 2.43 (s, 6 H, Ar'-CH₃), 2.83 (ddd, ²J = 10.8 Hz, ³J = 9.7 Hz, ³J = 5.0 Hz, 1 H, *H*H-6), 3.14 (ddd, ²J = 10.8 Hz, ³J = 8.8 Hz, ⁴J = 5.3 Hz, 1 H, H*H*-6), 4.41 (dd, ³J = 10.4 Hz, ³J = 5.2 Hz, 1 H, H-3a), 6.72 – 6.74 (m, 2 H, Ar_{para}-H), 7.01 (d, ³*J* = 7.7 Hz, 2 H, Ar'_{meta}-H), 7.18 (t, ³*J* = 7.7 Hz, 1 H, Ar'_{para}-H), 7.38 (*br* s, 2 H, Ar_{ortho}-H), 7.54 (*br* s, 2 H, Ar_{ortho}-H).

¹³**C NMR** (126 MHz, C₆D₆, 300 K): δ [ppm] = 21.6 (q, Ar-CH₃), 21.7 (q, Ar-CH₃), 22.6 (q, Ar'-CH₃), 25.5 (t, C-5), 31.2 (t, C-4), 43.4 (t, C-6), 73.0 (d, C-3a), 88.5 (s, C-3), 124.4 (d, Ar_{ortho}-C), 124.5 (d, Ar_{ortho}-C), 126.7 (d, Ar'_{meta}-C), 128.5 (d, Ar_{para}-C), 129.0 (d, Ar'_{para}-C), 129.1 (d, Ar_{para}-C), 134.0 (*br* s, Ar'_{ipso}-C), 137.4 (s, Ar_{meta}-C), 137.6 (s, Ar_{meta}-C), 141.2 (s, Ar'_{ortho}-C), 145.3 (s, Ar_{ipso}-C), 148.8 (s, Ar_{ipso}-C).

¹¹**B** NMR (128 MHz, C_6D_6 , 300 K): δ [ppm] = 33.9 (*br* s, 1 B, NBO).

MS (EI, 70 eV): m/z (%) = 423 (34) [M]⁺, 408 (2) [M-CH₃]⁺, 318 (4) [M-C₈H₉]⁺, 291 (15), 223

 $(100) \ [C_{17}H_{19}]^+, \ 207 \ (42), \ 133 \ (16), \ 105 \ (9) \ [C_8H_9]^+, \ 91 \ (85) \ [C_7H_7]^+.$

HRMS (EI, 70 eV): calcd for $C_{29}H_{34}ON^{11}B$ [M]⁺: 423.2728; found: 423.2729.

calcd for C₂₈¹³CH₃₄ON¹¹B [M]⁺: 424.2762; found: 424.2762.

MS (EI, 70 eV): m/z (%) = 449 (10) [M]⁺, 434 (1) [M-CH₃]⁺, 365 (24), 276 (8), 223 (16), 207 (31), 192 (24), 133 (13), 111 (8), 97 (24), 83 (100).

Activation of the Oxazaborolidine Catalyst

In analogy to a literature procedure:^[10] Aluminum bromide solution solution (50.0 μ L, 1.0 M in dibromomethane, 50.0 μ mol, 1.00 eq.) was added to a solution of oxazaborolidine (60.0 μ mol, 1.20 eq.) in dichloromethane (2 mL). The solution was immediately cooled down to – 78 °C. After 5 minutes stirring an aliquot of the purple solution (0.80 mL, 20 μ mol) was transferred to the phototube.

General Procedure 2: Racemic [2+2] Photocycloaddition

The respective phenanthrene-9-carboxaldehyde (100 μ mol, 1.00 eq.) was dissolved in dichloromethane (5 mL, c = 20 mM) in a Duran tube and olefin (3.00 mmol, 30.0 eq.) was added. The solution was irradiated at λ = 366 nm until full conversion was observed by TLC analysis. The solvent was removed under reduced pressure and the crude product was purified by column chromatography afford the *ortho* photocycloaddition product beside the oxetane. [*Note:* In most of the cases, only the *ortho* photocycloaddition product was isolated, but TLC analysis and GC/MS analysis showed also the formation of the oxetane).

General Procedure 3: Enantioselective ortho Photocycloaddition

The respective phenanthrene-9-carboxaldehyde (100 μ mol, 1.00 eq.) was dissolved in dichloromethane (4.2 mL) in a Schlenk tube and olefin (3.00 mmol, 30.0 eq.) was added. The solution was cooled to – 78 °C. An aliquot of the activated oxazaborolidine catalyst solution (0.80 mL, 20 μ mol, 20 mol%, in dichloromethane) was transferred to the reaction mixture. The Schlenk tube was sealed and was irradiated at $\lambda = 457$ nm for 24 hours. The reaction was quenched by the addition of triethylamine (100 μ L) and was warmed to room temperature. The solvent was removed under reduced pressure and the crude product was purified by column chromatography afford the *ortho* photocycloaddition product.

(2a*S*,10b*S*)-1,1,2,2-Tetramethyl-1,10b-dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)carboxaldehyde (2a)

2a

1a

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1a** (41.2 mg, 200 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (713 μ L, 504 mg, 6.00 mmol, 30.0 eq.) were dissolved in dichloromethane (10 mL) and the solution was irradiated for seven hours. Purification by column chromatography (silica, P/Et₂O = 100/1) gave 18.2 mg of *ortho* photocycloaddition product *rac*-**2a** (62.7 μ mol, 31%) as an off-white solid beside 4.10 mg of the oxetane *rac*-**8** (14.1 μ mol, 7%) as a yellowish oil. Enantioselective *ortho* Photocycloaddition

Following General Procedure 3, substrate **1a** (20.6 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (4.6 mL). An aliquot of the activated oxazaborolidine catalyst solution (0.40 mL, 10 μ mol, 10 mol%, in dichloromethane) was transferred to the reaction mixture and the solution was irradiated for 26 hours. Purification by column chromatography (silica, P/Et₂O = 100/1) gave 23.4 mg of *ortho* photocycloaddition product **2a** (80.6 μ mol, 81%, 94% *ee*) as a colourless, crystalline solid. **M.p.**: 139 °C.

TLC: $R_f = 0.51$ (P/Et₂O = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 3057 (w, sp²-CH), 2969 (m, sp³-CH), 2823 (w, C-HO), 2725 (w, C-HO), 1699 (s, C=O), 1501 (w), 1440 (m), 1376 (m, sp³-CH), 755 (s, sp²-CH), 734 (s, sp²-CH). ¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.58 (s, 3 H, C-1-CH_{3β}), 0.96 (s, 3 H, C-2-CH_{3β}), 1.07 (s, 3 H, C-1-CH_{3α}), 1.29 (s, 3 H, C-2-CH_{3α}), 4.12 (s, 1 H, H-10b), 7.08 (d, ³*J* = 7.0 Hz, 1 H, H-10), 7.21 – 7.26* (m, 2 H, H-8, H-9), 7.27 – 7.29 (m, 1 H, H-3), 7.32 – 7.37 (m, 2 H, H-4, H-5), 7.87 (d, ³*J* = 7.6 Hz, 1 H, H-7), 7.96 – 7.98 (m, 1 H, H-6), 9.62 (s, 1 H, CHO).

¹³**C NMR** (75 MHz, CDCl₃, 298 K): δ [ppm] = 21.8 (q, C-1-*C*H₃ β , C-2-*C*H₃ β), 23.9 (q, C-2-*C*H₃ α), 24.1 (q, C-1-*C*H₃ α), 42.3 (d, C-10b), 44.3 (s, C-1), 51.1 (s, C-2), 57.7 (s, C-2a), 123.1 (d, C-7), 123.6 (d, C-6), 127.2 (d, C-4**), 127.3 (d, C-5**), 127.7 (d, C-8**), 128.3 (d, C-9**), 129.3 (d, C-10), 130.9 (d, C-3), 131.1 (s, C-6b), 131.7 (s, C-2b***), 132.5 (s, C-10a***), 134.5 (s, C-6a), 200.5 (d, CHO).

* partially overlaid with residual proton signal of chloroform.

, * assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 290 (7) [M]⁺, 273 (4) [M-OH]⁺, 215 (6), 206 (100) [M-C₆H₁₂]⁺, 178 (81) [M-C₇H₁₂O]⁺, 152 (4), 84 (8) [C₆H₁₂]⁺, 69 (6).

HRMS (EI, 70 eV): calcd for C₂₁H₂₂O [M]⁺: 290.1665; found: 290.1662.

calcd for C₂₀¹³CH₂₂O [M]⁺: 291.1699; found: 291.1695.

Chiral HPLC: $t_{R1} = 19.7 \text{ min}$, $t_{R2} = 20.2 \text{ min}$, [Daicel, Chiralcel OJ-RH, 150 x 4,6 mm, 5 μ m,

20 °C, 20% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].

Specific Rotation: $[\alpha]_D^{25} = +30.4$ (c = 1.84, CHCl₃) [94% *ee*].

2,2,3,3-Tetramethyl-4-(phenanthren-9'-yl)oxetane (rac-8)

TLC: $R_{\rm f} = 0.22$ (P/Et₂O = 25/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2957 (m, sp³-CH), 2923 (m), 1370 (m, sp³-CH), 1260 (m, C-O-C), 1070 (s, C-O-C), 1017 (s), 802 (s, sp²-CH), 745 (s, sp²-CH), 726 (s, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.74 (s, 3 H, C-3-CH₃), 1.41 (s, 3 H, C-2-CH₃), 1.57 (s, 3 H, C-3-CH₃), 1.64 (s, 3 H, C-2-CH₃), 6.14 (s, 1 H, H-4), 7.57 – 7.67 (m, 4 H, H-2', H-3', H-6', H-7'), 7.72 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.3 Hz, 1 H, H-8'), 7.97 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.7 Hz, 1 H, H-1'), 8.10 (s, 1 H, H-10'), 8.67 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.4 Hz, 1 H, H-4'), 8.75 (dd, ³*J* = 8.3 Hz, ⁴*J* = 1.2 Hz, 1 H, H-5').

¹³**C NMR** (101 MHz, CDCl₃, 298 K): δ [ppm] = 19.6 (q, C-3-*C*H₃), 23.9 (q, C-3-*C*H₃), 25.5 (q, C-2-*C*H₃), 25.6 (q, C-2-*C*H₃), 43.9 (s, C-3), 85.2 (d, C-4), 85.5 (s, C-2), 122.6 (d, C-4'), 123.5 (d, C-5'), 123.7 (d, C-8'), 124.2 (d, C-10'), 126.3 (d, C-2'*), 126.5 (d, C-3'*), 126.5 (d, C-6'*), 126.9 (d, C-7'*), 129.1 (d, C-1'), 129.9 (s, C-8a'**), 130.1 (s, C-10a'**), 130.4 (s, C-4a'**), 131.9 (s, C-4b'**), 135.4 (s, C-9').

*, ** assignment is interconvertible.

 $178\ (50)\ [\text{M-C}_7\text{H}_{12}\text{O}]^+,\ 151\ (9),\ 108\ (3),\ 84\ (40)\ [\text{C}_6\text{H}_{12}]^+,\ 69\ (29).$

HRMS (EI, 70 eV): calcd for $C_{21}H_{22}O[M]^+$: 290.1665; found: 290.1663.

calcd for C₂₀¹³CH₂₂O [M]⁺: 291.1699; found: 291.1694.

(2a*S*,10b*S*)-1,1,2,2,9-Pentamethyl-1,10b-dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)carboxaldehyde (2b)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1b** (22.0 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for eleven hours. Purification by column chromatography (silica, P/Et₂O = 200/1) gave 8.40 mg of *ortho* photocycloaddition product *rac*-**2b** (27.6 μ mol, 28%) as a colourless solid.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1b** (22.0 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/Et₂O = 200/1) gave 22.8 mg of *ortho* photocycloaddition product **2b** (74.9 μ mol, 75%, 84% *ee*) as a colourless, crystalline solid.

M.p.: 142 °C.

TLC: $R_f = 0.56 (P/Et_2O = 10/1) [UV, KMnO_4].$

IR (ATR): \tilde{v} [cm⁻¹] = 3059 (w, sp²-CH), 2956 (m, sp³-CH), 2716 (w, C-HO), 1712 (vs, C=O), 1614 (w, C=C), 1479 (m), 1377 (m), 1095 (w), 762 (m, sp³-CH), 729 (m).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.58 (s, 3 H, C-1-CH₃ β), 0.96 (s, 3 H, C-2-CH₃ β), 1.06 (s, 3 H, C-1-CH₃ α), 1.29 (s, 3 H, C-2-CH₃ α), 2.33 (s, 3 H, C-9-CH₃), 4.07 (s, 1 H,

H-10b), 6.89 (s, 1 H, H-10), 7.06 (d, ${}^{3}J = 8.3$ Hz, 1 H, H-8), 7.27 – 7.28* (m, 1 H, H-3), 7.29 – 7.34 (m, 2 H, H-4, H-5), 7.74 (d, ${}^{3}J = 8.3$ Hz, 1 H, H-7), 7.93 (dd, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.8$ Hz, 1 H, H-6), 9.62 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.3 (q, C-9-*C*H₃), 21.8 (q, C-1-*C*H₃ β , C-2-*C*H₃ β), 23.9 (q, C-2-*C*H₃ α), 24.2 (q, C-1-*C*H₃ α), 42.4 (d, C-10b), 44.3 (s, C-1), 51.1 (s, C-2), 58.0 (s, C-2a), 123.0 (d, C-7), 123.5 (d, C-6), 126.8 (d, C-5**), 127.7 (d, C-4**), 128.1 (d, C-8), 129.1 (s, C-6b), 129.9 (d, C-10), 130.7 (s, C-2b), 130.9 (d, C-3), 132.3 (s, C-10a), 134.7 (s, C-6a), 138.2 (s, C-9), 200.6 (s, CHO).

* partially overlaid with residual proton signal of chloroform.

** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 304 (4) [M]⁺, 229 (3), 220 (98) [M-C₆H₁₂]⁺, 192 (100) [M-C₇H₁₂O]⁺, 165 (7), 84 (8) [C₆H₁₂]⁺, 69 (7), 41 (4).

HRMS (EI, 70 eV): calcd for $C_{22}H_{24}O[M]^+$: 304.1822; found: 304.1824.

calcd for C₂₁¹³CH₂₄O [M]⁺: 305.1855; found: 305.1861.

Chiral HPLC: $t_{R1} = 6.4 \text{ min}, t_{R2} = 20.9 \text{ min}, \text{[Daicel, Chiralpak OD-RH, 150 x 4,6 mm, 5 <math>\mu$ m,

20 °C, 80% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].

Specific Rotation: $[\alpha]_D^{25} = +57.2$ (c = 1.15, CHCl₃) [84% *ee*].

(2aS,10bS)-9-Chloro-1,1,2,2-tetramethyl-1,10b-dihydrocyclobuta[/]phenanthrene-

2a(2H)-carboxaldehyde (2c)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1c** (24.1 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for 20 hours. Purification by column chromatography (silica, P/EtOAc = 300/1) gave 6.20 mg of *ortho* photocycloaddition product *rac*-**2c** (19.1 μ mol, 19%) as a colourless solid.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1c** (24.1 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/EtOAc = 300/1) gave 27.5 mg of *ortho* photocycloaddition product **2c** (84.6 μ mol, 85%, 88% *ee*) as a colourless, crystalline solid.

M.p.: 174 °C.

TLC: $R_f = 0.67$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2978 (m, sp³-CH), 2718 (w, C-HO), 1713 (vs, C=O), 1601 (m, C=C), 1477 (m), 1393 (s), 1370 (m), 1092 (m), 818 (m), 766 (vs, C-Cl).

¹**H** NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 0.59 (s, 3 H, C-1-CH₃ β), 0.96 (s, 3 H, C-2-CH₃ β), 1.07 (s, 3 H, C-1-CH₃ α), 1.28 (s, 3 H, C-2-CH₃ α), 4.08 (s, 1 H, H-10b), 7.07 (d, S46

⁴*J* = 2.3 Hz, 1 H, H-10), 7.22 (dd, ³*J* = 8.6 Hz, ⁴*J* = 2.3 Hz, 1 H, H-8), 7.27 – 7.30 (m, 1 H, H-3), 7.33 – 7.37 (m, 2 H, H-4, H-5), 7.78 (d, ³*J* = 8.6 Hz, 1 H, H-7), 7.90 – 7.92 (m, 1 H, H-6), 9.61 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.7 (s, C-1-*C*H_{3β}, C-2-*C*H_{3β}), 23.8 (q, C-2-*C*H_{3α}), 24.2 (q, C-1-*C*H_{3α}), 42.2 (d, C-10b), 44.6 (s, C-1), 51.3 (s, C-2), 57.8 (s, C-2a), 123.8 (d, C-6), 124.6 (d, C-7), 127.4 (d, C-8), 127.6 (d, C-4*), 127.9 (d, C-5*), 128.9 (d, C-10), 130.4 (s, C-9**), 130.9 (s, C-6b**), 130.9 (d, C-3), 133.5 (s, C-2b), 134.0 (s, C-10a), 134.4 (s, C-6a), 200.1 (s, CHO).

*, ** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 326 (2) $[M(^{37}Cl)]^+$, 324 (5) $[M(^{35}Cl)]^+$, 242 (16) $[M(^{37}Cl)-C_6H_{12}]^+$, 240 (53) $[M(^{35}Cl)-C_6H_{12}]^+$, 214 (30) $[M(^{37}Cl)-C_7H_{12}O]^+$, 212 (100) $[M(^{35}Cl)-C_7H_{12}O]^+$, 176 (35) $[M-C_7H_{13}OCl]^+$, 151 (4), 84 (63) $[C_6H_{12}]^+$, 69 (28), 41 (10).

HRMS (EI, 70 eV): calcd for $C_{21}H_{21}O^{35}Cl [M]^+$: 324.1275; found: 324.1287.

calcd for $C_{20}^{13}CH_{21}O^{35}Cl$ [M]⁺: 325.1309; found: 325.1299.

Chiral HPLC: $t_{R1} = 24.8 \text{ min}, t_{R2} = 28.7 \text{ min}, [Daicel, Chiralcel OD-RH, 150 x 4,6 mm, 5 µm, 20 °C, 20% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].$

Specific Rotation: $[\alpha]_D^{25} = +39.3$ (c = 2.44, CHCl₃) [88% *ee*].

(2aS,10bS)-8-Fluoro-1,1,2,2-tetramethyl-1,10b-dihydrocyclobuta[l]phenanthrene-

2a(2H)-carboxaldehyde (2d)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1d** (22.4 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for eight hours. Purification by column chromatography (silica, P/Et₂O = 200/1) gave 15.8 mg of *ortho* photocycloaddition product *rac*-**2d** (51.2 μ mol, 51%) as a colourless solid.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1d** (22.4 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/Et₂O = 200/1) gave 24.1 mg of *ortho* photocycloaddition product **2d** (78.1 μ mol, 78%, 93% *ee*) as a colourless solid. **M.p.**: 134 °C.

TLC: $R_f = 0.59 (P/Et_2O = 10/1) [UV, KMnO_4].$

IR (ATR): *ṽ* [cm⁻¹] = 2957 (w, sp³-CH), 2869 (w, sp³-CH), 2717 (w, C-HO), 1714 (vs, C=O), 1610 (m, C=C), 1500 (s), 1443 (m), 1164 (s, C-F), 840 (m), 770 (m, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.56 (s, 3 H, C-1-CH₃ β), 0.96 (s, 3 H, C-2-CH₃ β), 1.05 (s, 3 H, C-1-CH₃ α), 1.29 (s, 3 H, C-2-CH₃ α), 4.10 (s, 1 H, H-10b), 6.94 (*virt.* td, ${}^{3}J \approx {}^{3}J_{\rm HF} = 8.2$ Hz, ${}^{4}J = 2.6$ Hz, 1 H, H-9), 7.04 (dd, ${}^{3}J = 8.4$ Hz, ${}^{4}J_{\rm HF} = 6.0$ Hz, 1 H, H-10),

7.29 - 7.31 (m, 1 H, H-3), 7.35 - 7.39 (m, 2 H, H-4, H-5), 7.54 (dd, ${}^{3}J_{HF} = 11.1$ Hz, ${}^{4}J = 2.6$ Hz, 1 H, H-7), 7.85 - 7.88 (m, 1 H, H-6), 9.62 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.7 (q, C-2-*C*H_{3β}*), 21.8 (q, C-1-*C*H_{3β}*), 23.8 (q, C-2-*C*H_{3α}), 24.1 (q, C-1-*C*H_{3α}), 41.8 (d, C-10b), 44.4 (s, C-1), 51.3 (s, C-2), 58.0 (s, C-2a), 109.9 (dd, ${}^{2}J_{CF}$ = 22.8 Hz, C-7), 115.2 (dd, ${}^{2}J_{CF}$ = 21.6 Hz, C-9), 124.0 (d, C-6), 127.9 (d, C-4, C-5), 128.1 (d, ${}^{4}J_{CF}$ = 2.9 Hz, C-10a**), 130.6 (dd, ${}^{3}J_{CF}$ = 8.1 Hz, C-10), 130.9 (d, C-3), 131.3 (s, C-2b), 133.6 (d, ${}^{4}J_{CF}$ = 2.5 Hz, C-6a**), 133.7 (d, ${}^{3}J_{CF}$ = 7.6 Hz, C-6b), 162.5 (d, ${}^{1}J_{CF}$ = 242.8 Hz, C-8), 200.3 (d, CHO).

¹⁹**F NMR** (471 MHz, CDCl₃, 300 K): δ [ppm] = -116.2 (ddd, ³*J*_{HF} = 11.1 Hz, ³*J*_{HF} = 8.1 Hz, ⁴*J*_{HF} = 6.0 Hz, 1 F, F-8).

MS (EI, 70 eV): m/z (%) = 308 (2) [M]⁺, 291 (3) [M-OH]⁺, 224 (40) [M-C₆H₁₂]⁺, 196 (100) [M-C₇H₁₂O]⁺, 175 (4), 84 (24) [C₆H₁₂]⁺, 69 (16), 41 (7).

HRMS (EI, 70 eV): calcd for C₂₁H₂₁OF [M]⁺: 308.1571; found: 308.1570.

calcd for C₂₀¹³CH₂₁OF [M]⁺: 309.1605; found: 309.1603.

Chiral HPLC: $t_{R1} = 6.9 \text{ min}, t_{R2} = 10.6 \text{ min}, [Daicel, Chiralpak OD-RH, 150 x 4,6 mm, 5 µm, 20 °C, 80% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].$

Specific Rotation: $[\alpha]_D^{25} = +45.5$ (c = 2.33, CHCl₃) [93% *ee*].

(2a*S*,10b*S*)-1,1,2,2,8-Pentamethyl-1,10b-dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)carboxaldehyde (2e)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1e** (22.0 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for 10 hours. Purification by column chromatography (silica, P/Et₂O = 200/1) gave 17.7 mg of *ortho* photocycloaddition product *rac*-**2e** (58.1 μ mol, 58%) as a colourless oil.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1e** (22.0 mg, 100 µmol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 µL, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 µmol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/Et₂O = 200/1) gave 20.1 mg of *ortho* photocycloaddition product **2e** (66.0 µmol, 66%, 92% *ee*) as a colourless oil. **TLC**: $R_f = 0.51$ (P/Et₂O = 10/1) [UV, KMnO4].

IR (ATR): *ṽ* [cm⁻¹] = 2924 (s, sp³-CH), 2853 (m, sp³-CH), 2715 (w, C-HO), 1714 (vs, C=O), 1600 (w, C=C), 1443 (m), 1370 (m), 1096 (m), 771 (m, sp³-CH), 731 (m, sp³-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.57 (s, 3 H, C-1-CH₃ β), 0.95 (s, 3 H, C-2-CH₃ β), 1.05 (s, 3 H, C-1-CH₃ α), 1.28 (s, 3 H, C-2-CH₃ α), 2.37 (s, 3 H, C-8-CH₃), 4.08 (s, 1 H, H-10b), 6.98 (d, ³*J* = 7.7 Hz, 1 H, H-10), 7.05 (dd, ³*J* = 7.7 Hz, ⁴*J* = 1.7 Hz, 1 H, H-9),

 $7.26 - 7.28^*$ (m, 1 H, H-3), 7.30 - 7.36 (m, 2 H, H-4, H-5), 7.68 (s, 1 H, H-7), 7.97 (dd, ${}^{3}J = 7.0$ Hz, ${}^{4}J = 2.2$ Hz, 1 H, H-6), 9.62 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.7 (q, C-8-*C*H₃), 21.8 (q, C-1-*C*H₃ β , C-2-*C*H₃ β), 23.9 (q, C-2-*C*H₃ α), 24.2 (q, C-1-*C*H₃ α), 42.1 (d, C-10b), 44.2 (s, C-1), 51.1 (s, C-2), 57.9 (s, C-2a), 123.7 (d, C-6**), 123.8 (d, C-7**), 127.1 (d, C-4***), 127.7 (d, C-5***), 129.2 (d, C-9, C-10), 129.4 (s, C-6b****), 131.0 (d, C-3), 131.2 (s, C-10a****), 131.5 (s, C-6a****), 134.6 (s, C-2b), 136.6 (s, C-8), 200.7 (d, CHO).

- * partially overlaid with residual proton signal of chloroform.
- **, ***, **** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 304 (4) [M]⁺, 290 (18), 275 (51) [M-CHO], 259 (19), 220 (99) [M-

 $C_{6}H_{12}^{+}$, 192 (100) $[M-C_{7}H_{12}O]^{+}$, 165 (12), 84 (11) $[C_{6}H_{12}]^{+}$, 69 (14), 41 (15).

HRMS (EI, 70 eV): calcd for $C_{22}H_{24}O[M]^+$: 304.1822; found: 304.1822.

calcd for C₂₁¹³CH₂₄O [M]⁺: 305.1855; found: 305.1863.

Chiral HPLC: $t_{R1} = 20.5 \text{ min}$, $t_{R2} = 21.2 \text{ min}$, [Daicel, Chiralcel OJ-RH, 150 x 4,6 mm, 5 μ m,

20 °C, 20% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].

Specific Rotation: $[\alpha]_D^{25} = +54.9$ (c = 0.95, CHCl₃) [92% *ee*].

(2a*S*,10b*S*)-1,1,2,2,6-Pentamethyl-1,10b-dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)carboxaldehyde (2f)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1f** (22.0 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for 11 hours. Purification by column chromatography (silica, P/Et₂O = 100/1) gave 12.9 mg of *ortho* photocycloaddition product *rac*-**2f** (42.4 μ mol, 42%) as an off-white solid.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1f** (22.0 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/Et₂O = 100/1) gave 26.0 mg of *ortho* photocycloaddition product **2f** (85.4 μ mol, 85%, 86% *ee*) as a colourless solid. **M.p.**:110 °C.

TLC: $R_f = 0.45$ (P/Et₂O = 10/1) [UV, KMnO₄].

IR (ATR): *ṽ* [cm⁻¹] = 2972 (s, sp³-CH), 2928 (s, sp³-CH), 2716 (w, C-HO), 1712 (vs, C=O), 1594 (w, C=C), 1446 (vs), 1378 (m), 1098 (m), 757 (s, sp³-CH), 724 (s, sp³-CH).

¹**H NMR** (300 MHz, CDCl₃, 298 K): δ [ppm] = 0.63 (s, 3 H, C-1-CH_{3β}), 0.79 (s, 3 H, C-2-CH_{3β}), 1.08 (s, 3 H, C-1-CH_{3α}), 1.27 (s, 3 H, C-2-CH_{3α}), 2.72 (s, 3 H, C-6-CH₃), 4.07 (s, 1 H, H-10b), 7.12 – 7.16 (m, 2 H, H-9, H-10), 7.19 – 7.24 (m, 4 H, H-3, H-4, H-5, H-8), 7.70 – 7.74 (m, 1 H, H-7), 9.72 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.8 (q, C-1-*C*H_{3 β}, C-2-*C*H_{3 β}), 24.1 (q, C-2-*C*H_{3 α}), 24.5 (q, C-1-*C*H_{3 α}), 25.2 (q, C-6-*C*H₃), 43.5 (d, C-10b), 43.6 (s, C-1), 51.8 (s, C-2), 58.4 (s, C-2a), 125.9 (d, C-4*), 126.3 (d, C-5*), 127.5 (d, C-8*), 128.9 (d, C-7, C-9**), 129.8 (d, C-10**), 131.9 (d, C-3*), 133.3 (s, C-6b***), 133.4 (s, C-10a***), 134.1 (s, C-6a***), 135.3 (s, C-2b***), 136.1 (s, C-6***), 201.1 (d, CHO).

*, **, *** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 304 (4) [M]⁺, 275 (6) [M-CHO], 259 (5), 220 (100) [M-C₆H₁₂]⁺,

205 (37), 192 (81) $[M-C_7H_{12}O]^+$, 165 (11), 84 (41) $[C_6H_{12}]^+$, 69 (78), 41 (77).

HRMS (EI, 70 eV): calcd for $C_{22}H_{24}O[M]^+$: 304.1822; found: 304.1820.

calcd for C₂₁¹³CH₂₄O [M]⁺: 305.1855; found: 305.1854.

Chiral HPLC: $t_{R1} = 20.4 \text{ min}$, $t_{R2} = 21.5 \text{ min}$, [Daicel, Chiralcel OJ-RH, 150 x 4,6 mm, 5 μ m,

20 °C, 20% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].

Specific Rotation: $[\alpha]_D^{25} = +37.2$ (c = 2.35, CHCl₃) [86% *ee*].

(2aS,10bS)-1,1,2,2-Tetramethyl-5-(trifluoromethyl)-1,10b-

dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2g)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1g** (27.4 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for eight hours. Purification by column chromatography (silica, P/Et₂O = 100/1) gave 21.1 mg of *ortho* photocycloaddition product *rac*-**2g** (58.9 μ mol, 59%) as an off-white solid.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1g** (27.4 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/EtOAc = 100/1) gave 32.8 mg of *ortho* photocycloaddition product **2g** (91.5 μ mol, 92%, 92% *ee*) as a colourless solid. **M.p.**: 112 °C.

TLC: $R_f = 0.66$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): *ṽ* [cm⁻¹] = 2928 (m, sp³-CH), 2720 (w, C-HO), 1718 (s, C=O), 1617 (w, C=C), 1498 (w), 1335 (vs), 1126 (s, C-F), 840 (w), 742 (m, sp²-CH).

¹**H NMR** (400 MHz, CDCl₃, 298 K): δ [ppm] = 0.56 (s, 3 H, C-1-CH_{3β}), 0.96 (s, 3 H, C-2-CH_{3β}), 1.09 (s, 3 H, C-1-CH_{3α}), 1.32 (s, 3 H, C-2-CH_{3α}), 4.16 (s, 1 H, H-10b), 7.10 – 7.12 (m, 1 H, H-10), 7.26 – 7.33 (m, 2 H, H-8, H-9), 7.40 (d, ${}^{3}J$ = 8.1 Hz, 1 H, H-3), 7.58 (dq,

 ${}^{3}J = 8.1 \text{ Hz}, {}^{4}J_{HF} = 0.6 \text{ Hz}, 1 \text{ H}, \text{H-4}), 7.87 - 7.90 (m, 1 \text{ H}, \text{H-7}), 8.19 (s, 1 \text{ H}, \text{H-6}), 9.64 (s, 1 \text{ H}, \text{CHO}).$

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.8 (q, C-2-*C*H₃ β *), 21.9 (q, C-1-*C*H₃ β *), 23.9 (q, C-2-*C*H₃ α), 24.2 (q, C-1-*C*H₃ α), 42.4 (d, C-10b), 44.7 (s, C-1), 52.1 (s, C-2), 58.0 (s, C-2a), 120.6 (qd, ${}^{3}J_{CF}$ = 3.7 Hz, C-6), 123.2 (d, C-7), 123.6 (qd, ${}^{3}J_{CF}$ = 3.7 Hz, C-4), 124.3 (q, ${}^{1}J_{CF}$ = 271.9 Hz, C-5-*C*F₃), 127.6 (d, C-8**), 129.3 (d, C-9**), 129.4 (d, C-10), 130.0 (q, ${}^{2}J_{CF}$ = 32.3 Hz, C-5), 130.4 (s, C-2b***), 131.3 (d, C-3), 132.5 (s, C-10a***), 135.1 (s, C-6b***), 135.4 (s, C-6a***), 200.0 (d, CHO).

¹⁹**F NMR** (376 MHz, CDCl₃, 300 K): δ [ppm] = -63.3 (s, 3 F, C-5-CF₃).

MS (EI, 70 eV): m/z (%) = 358 (2) [M]⁺, 329 (9) [M-CHO]⁺, 274 (75) [M-C₆H₁₂]⁺, 246 (100)

 $[M-C_7H_{12}O]^+,\,225\;(19),\,176\;(17),\,84\;(92)\;[C_6H_{12}]^+,\,69\;(44)\;[CF_3]^+,\,40\;(33).$

HRMS (EI, 70 eV): calcd for $C_{22}H_{21}OF_3$ [M]⁺: 358.1539; found: 358.1538.

CHN: calcd for C₂₂H₂₁OF₃: C 73.73, H 5.91; found C 73.60, H 5.95.

Chiral HPLC: $t_{R1} = 20.3 \text{ min}$, $t_{R2} = 20.7 \text{ min}$, [Daicel, Chiralcel OJ-RH, 150 x 4,6 mm, 5 μ m,

20 °C, 20% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].

Specific Rotation: $[\alpha]_D^{25} = +38.9$ (c = 2.01, CHCl₃) [92% *ee*].

(2aS,10bS)-5-Fluoro-1,1,2,2-tetramethyl-1,10b-dihydrocyclobuta[l]phenanthrene-

2a(2H)-carboxaldehyde (2h)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1h** (22.4 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for eight hours. Purification by column chromatography (silica, P/Et₂O = 300/1) gave 16.1 mg of *ortho* photocycloaddition product *rac*-**2h** (52.2 μ mol, 52%) as a colourless, crystalline solid.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1h** (22.4 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/Et₂O = 300/1) gave 23.1 mg of *ortho* photocycloaddition product **2h** (74.9 μ mol, 75%, 82% *ee*) as a colourless, crystalline solid.

M.p.: 143 °C.

TLC: $R_f = 0.68$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): *ṽ* [cm⁻¹] = 2958 (m, sp³-CH), 2927 (m, sp³-CH), 2717 (w, C-HO), 1714 (vs, C=O), 1606 (w, C=C), 1495 (s), 1336 (w), 1193 (m, C-F), 867 (m), 770 (m, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.57 (s, 3 H, C-1-CH_{3β}), 0.95 (s, 3 H, C-2-CH_{3β}), 1.07 (s, 3 H, C-1-CH_{3α}), 1.29 (s, 3 H, C-2-CH_{3α}), 4.12 (s, 1 H, H-10b), 7.04 (*virt.* td, ${}^{3}J \approx {}^{3}J_{\rm HF} = 8.2$ Hz, ${}^{4}J = 2.7$ Hz, 1 H, H-4), 7.08 – 7.10 (m, 1 H, H-10**), 7.23 – 7.25* (m, 1 H, S56 H-3), $7.26 - 7.28^*$ (m, 2 H, H-8, H-9**), 7.64 (dd, ${}^{3}J_{\text{HF}} = 11.0$ Hz, ${}^{4}J = 2.7$ Hz, 1 H, H-6), 7.76 - 7.78 (m, 1 H, H-7), 9.60 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.8 (q, C-1-*C*H_{3β}, C-2-*C*H_{3β}), 23.8 (q, C-2-*C*H_{3α}), 24.2 (q, C-1-*C*H_{3α}), 42.5 (d, C-10b), 44.4 (s, C-1), 51.1 (s, C-2), 57.3 (s, C-2a), 110.7 (dd, ²*J*_{CF} = 22.8 Hz, C-6), 114.2 (dd, ²*J*_{CF} = 21.6 Hz, C-4), 123.3 (d, C-7), 126.8 (d, ⁴*J*_{CF} = 3.0 Hz, C-6b**), 127.4 (d, C-9***), 129.0 (d, C-8***), 129.3 (d, C-10***), 130.9 (d, ⁴*J*_{CF} = 2.3 Hz, C-2b**), 132.4 (dd, ³*J*_{CF} = 8.4 Hz, C-3), 132.6 (s, C-10a), 136.9 (d, ³*J*_{CF} = 7.6 Hz, C-6a), 162.7 (d, ¹*J*_{CF} = 245.4 Hz, C-5), 200.2 (d, CHO).

¹⁹**F NMR** (471 MHz, CDCl₃, 300 K): δ [ppm] = -115.1 (ddd, ³*J*_{HF} = 11.0 Hz, ³*J*_{HF} = 7.8 Hz, ⁴*J*_{HF} = 6.0 Hz, 1 F, F-5).

* partially overlaid with residual proton signal of chloroform.

, * assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 308 (3) [M]⁺, 263 (2), 233 (5), 224 (66) [M-C₆H₁₂]⁺, 196 (100) [M-C₇H₁₂O]⁺, 175 (6), 84 (28) [C₆H₁₂]⁺, 69 (15), 40 (7).

HRMS (EI, 70 eV): calcd for C₂₁H₂₁OF [M]⁺: 308.1571; found: 308.1570.

calcd for C₂₀¹³CH₂₁OF [M]⁺: 309.1605; found: 309.1605.

Chiral HPLC: $t_{R1} = 8.3 \text{ min}$, $t_{R2} = 12.0 \text{ min}$, [Daicel, Chiralpak OD-RH, 150 x 4,6 mm, 5 μ m,

20 °C, 80% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].

Specific Rotation: $[\alpha]_D^{25} = +26.8$ (c = 2.76, CHCl₃) [82% *ee*].

(2aS,10bS)-1,1,2,2,9-Pentamethyl-5-(trifluoromethyl)-1,10b-

dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde (2i)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1i** (28.8 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for eight hours. Purification by column chromatography (silica, P/EtOAc = 200/1) gave 19.4 mg of *ortho* photocycloaddition product *rac*-**2i** (52.1 μ mol, 52%) as a colourless solid.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1i** (28.8 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/EtOAc = 200/1) gave 33.0 mg of *ortho* photocycloaddition product **2i** (88.6 μ mol, 89%, 90% *ee*) as a colourless solid. **M.p.**: 134 °C.

TLC: $R_f = 0.72$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2958 (m, sp³-CH), 2870 (w, sp³-CH), 2718 (w, C-HO), 1716 (s, C=O), 1615 (w, C=C), 1595 (w), 1335 (s), 1124 (vs, C-F), 835 (w), 760 (w, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.57 (s, 3 H, C-1-CH_{3β}), 0.96 (s, 3 H, C-2-CH_{3β}), 1.08 (s, 3 H, C-1-CH_{3α}), 1.30 (s, 3 H, C-2-CH_{3α}), 2.35 (s, 3 H, C-9-CH₃), 4.10 (s, 1 H, H-10b), 6.91 (s, 1 H, H-10), 7.10 (dd, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 1.1 Hz, 1 H, H-8), 7.38 (d, ${}^{3}J$ = 8.1 Hz, S58

1 H, H-3), 7.54 (dd, ³*J* = 8.1 Hz, ⁴*J* = 0.9 Hz, 1 H, H-4), 7.76 (d, ³*J* = 8.2 Hz, 1 H, H-7), 8.15 (s, 1 H, H-6), 9.62 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.3 (q, C-9-*C*H₃), 21.8 (q, C-1-*C*H_{3β}, C-2-*C*H_{3β}), 23.9 (q, C-2-*C*H_{3α}), 24.2 (q, C-1-*C*H_{3α}), 42.4 (d, C-10b), 44.6 (s, C-1), 51.9 (s, C-2), 58.1 (s, C-2a), 120.2 (qd, ${}^{3}J_{CF}$ = 3.9 Hz, C-6), 123.1 (qd, ${}^{3}J_{CF}$ = 3.7 Hz, C-4), 123.3 (d, C-7), 124.4 (q, ${}^{1}J_{CF}$ = 272.2 Hz, C-5-*C*F₃), 127.8 (s, C-6b), 128.5 (d, C-8), 129.9 (q, ${}^{2}J_{CF}$ = 32.3 Hz, C-5), 130.0 (d, C-10), 131.2 (d, C-3), 132.4 (s, C-10a), 134.7 (s, C-2b), 135.6 (s, C-6a), 139.3 (s, C-9), 200.0 (s, CHO).

¹⁹**F NMR** (471 MHz, CDCl₃, 300 K): δ [ppm] = -63.2 (s, 3 F, C5-CF₃).

MS (EI, 70 eV): m/z (%) = 372 (2) [M]⁺, 343 (4) [M-CHO]⁺, 288 (52) [M-C₆H₁₂]⁺, 260 (43)

 $[M-C_7H_{12}O]^+$, 189 (10), 119 (18), 84 (100) $[C_6H_{12}]^+$, 69 (41) $[CF_3]^+$.

HRMS (EI, 70 eV): calcd for $C_{23}H_{23}OF_3$ [M]⁺: 372.1696; found: 372.1689.

calcd for C₂₂¹³CH₂₃OF₃ [M]⁺: 373.1729; found: 373.1723.

Chiral HPLC: $t_{R1} = 23.7 \text{ min}, t_{R2} = 24.3 \text{ min}, [Daicel, Chiralcel OD-RH, 150 x 4,6 mm, 20 °C,$

20% MeCN/H₂O (0 min) \rightarrow 100% MeCN (30 min), 1 mL/min, 215 nm].

Specific Rotation: $[\alpha]_D^{25} = +33.6$ (c = 2.20, CHCl₃) [90% *ee*].

(2aS,10bS)-1,1,2,2,8-Pentamethyl-5-(trifluoromethyl)-1,10b-

dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde (2j)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1j** (28.8 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for 12 hours. Purification by column chromatography (silica, P/EtOAc = 200/1) gave 17.2 mg of *ortho* photocycloaddition product *rac*-**2j** (46.2 μ mol, 46%) as a colourless solid.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1j** (28.8 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/EtOAc = 200/1) gave 34.6 mg of *ortho* photocycloaddition product **2j** (92.9 μ mol, 93%, 92% *ee*) as a colourless solid. **M.p.**: 141 °C.

TLC: $R_f = 0.70$ (P/Et₂O = 10/1) [UV, KMnO₄].

IR (ATR): *ṽ* [cm⁻¹] = 2958 (m, sp³-CH), 2718 (w, C-HO), 1714 (s, C=O), 1670 (w, C=C), 1509 (w), 1336 (m), 1126 (vs, C-F), 840 (w), 760 (w, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.55 (s, 3 H, C-1-CH_{3 β}), 0.96 (s, 3 H, C-2-CH_{3 β}), 1.07 (s, 3 H, C-1-CH_{3 α}), 1.31 (s, 3 H, C-2-CH_{3 α}), 2.40 (s, 3 H, C-8-CH₃), 4.12 (s, 1 H, H-10b), 7.00 (d, ³*J* = 7.6 Hz, 1 H, H-10), 7.11 (dd, ³*J* = 7.6 Hz, ⁴*J* = 2.0 Hz, 1 H, H-9), 7.39 (d,

³*J* = 8.2 Hz, 1 H, H-3), 7.56 (dd, ³*J* = 8.2 Hz, ⁴*J* = 2.2 Hz, 1 H, H-4), 7.68 (s, 1 H, H-7), 8.18 (s, 1 H, H-6), 9.63 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.6 (q, C-8-*C*H₃), 21.8 (q, C-1-*C*H_{3β}, C-2-*C*H_{3β}), 23.9 (q, C-2-*C*H_{3α}), 24.2 (q, C-1-*C*H_{3α}), 42.2 (d, C-10b), 44.5 (s, C-1), 51.9 (s, C-2), 58.0 (s, C-2a), 120.4 (qd, ${}^{3}J_{CF} = 4.0$ Hz, C-6), 123.4 (qd, ${}^{3}J_{CF} = 3.7$ Hz, C-4), 123.9 (d, C-7), 124.4 (q, ${}^{1}J_{CF} = 272.3$ Hz, C-5-*C*F₃), 129.3 (d, C-10), 129.5 (s, C-6b), 129.9 (q, ${}^{2}J_{CF} = 32.1$ Hz, C-5), 130.1 (d, C-9), 130.2 (s, C-10a), 131.3 (d, C-3), 135.2 (s, C-2b), 135.5 (s, C-6a), 137.1 (s, C-8), 200.1 (s, CHO).

¹⁹**F NMR** (471 MHz, CDCl₃, 300 K): δ [ppm] = -63.2 (s, 3 F, C5-CF₃).

MS (EI, 70 eV): m/z (%) = 372 (1) [M]⁺, 343 (4) [M-CHO]⁺, 288 (50) [M-C₆H₁₂]⁺, 260 (44)

 $[M-C_7H_{12}O]^+,\,189~(11),\,109~(3),\,84~(100)~[C_6H_{12}]^+,\,69~(31)~[CF_3]^+.$

HRMS (EI, 70 eV): calcd for $C_{23}H_{23}OF_3$ [M]⁺: 372.1696; found: 372.1684.

calcd for C₂₂¹³CH₂₃OF₃ [M]⁺: 373.1729; found: 373.1713.

Chiral HPLC: $t_{R1} = 20.7 \text{ min}$, $t_{R2} = 21.1 \text{ min}$, [Daicel, Chiralcel OJ-RH, 10 x 4,6 mm, 20 °C,

20% MeCN/H₂O (0 min) \rightarrow 100% MeCN (30 min), 1 mL/min, 215 nm].

Specific Rotation: $[\alpha]_D^{25} = +29.8$ (c = 2.75, CHCl₃) [92% *ee*].

(2aS,10bS)-8-Fluoro-1,1,2,2-tetramethyl-5-(trifluoromethyl)-1,10b-

dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2k)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1k** (17.0 mg, 58.1 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (207 μ L, 147 mg, 1.75 mmol, 30.0 eq.) were dissolved in dichloromethane (2.91 mL) and the solution was irradiated for 11 hours. Purification by column chromatography (silica, P/EtOAc = 200/1) gave 12.3 mg of *ortho* photocycloaddition product *rac*-**2k** (32.7 μ mol, 56%) as a colourless solid.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1k** (29.2 mg, 100 μ mol, 1.00 eq.) and 2,3-dimethyl-2-butene (357 μ L, 252 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/Et₂O = 100/1) gave 31.9 mg of *ortho* photocycloaddition product **2k** (84.8 μ mol, 85%, 96% *ee*) as a colourless, crystalline solid.

M.p.: 117 °C.

TLC: $R_f = 0.33$ (P/Et₂O = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2960 (m, sp³-CH), 2872 (w, sp³-CH), 2719 (w, C-HO), 1716 (s, C=O), 1614 (w, C=C), 1507 (w), 1335 (m), 1127 (vs, C-F), 840 (w), 760 (w, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 300 K): δ [ppm] = 0.55 (s, 3 H, C-1-CH_{3β}), 0.96 (s, 3 H, C-2-CH_{3β}), 1.07 (s, 3 H, C-1-CH_{3α}), 1.31 (s, 3 H, C-2-CH_{3α}), 4.14 (s, 1 H, H-10b), 7.00 (*virt.* td,

 ${}^{3}J \approx {}^{3}J_{\text{HF}} = 8.2 \text{ Hz}, {}^{4}J = 2.5 \text{ Hz}, 1 \text{ H}, \text{H-9}), 7.08 (dd, {}^{3}J = 8.4 \text{ Hz}, {}^{4}J_{\text{HF}} = 6.0 \text{ Hz}, 1 \text{ H}, \text{H-10}), 7.42 (d, {}^{3}J = 8.1 \text{ Hz}, 1 \text{ H}, \text{H-3}), 7.56 (dd, {}^{3}J_{\text{HF}} = 10.7 \text{ Hz}, {}^{4}J = 2.5 \text{ Hz}, 1 \text{ H}, \text{H-7}), 7.61 (dq, {}^{3}J = 8.1 \text{ Hz}, {}^{4}J_{\text{HF}} = 0.9 \text{ Hz}, 1 \text{ H}, \text{H-4}), 8.07 - 8.08 (m, 1 \text{ H}, \text{H-6}), 9.62 (s, 1 \text{ H}, \text{CHO}).$

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.8 (q, C-2-*C*H_{3β}*), 21.8 (q, C-1-*C*H_{3β}*), 23.8 (q, C-2-*C*H_{3α}), 24.1 (q, C-1-*C*H_{3α}), 41.8 (d, C-10b), 44.7 (s, C-1), 52.1 (s, C-2), 58.1 (s, C-2a), 110.2 (dd, ²*J*_{CF} = 23.3 Hz, C-7), 116.2 (dd, ²*J*_{CF} = 21.5 Hz, C-9), 120.8 (qd, ³*J*_{CF} = 3.8 Hz, C-6), 124.2 (q, ¹*J*_{CF} = 272.3 Hz, C-5-*C*F₃), 124.3 (qd, ³*J*_{CF} = 3.6 Hz, C-4), 128.2 (d, ⁴*J*_{CF} = 2.9 Hz, C-10a), 130.2 (q, ²*J*_{CF} = 32.5 Hz, C-5), 130.8 (dd, ³*J*_{CF} = 8.1 Hz, C-10), 131.3 (d, C-3), 132.4 (d, ³*J*_{CF} = 7.5 Hz, C-6b), 134.4 (d, ⁴*J*_{CF} = 2.4 Hz, C-6a), 135.3 (s, C-2b), 162.6 (d, ¹*J*_{CF} = 244.1 Hz, C-8), 199.6 (s, CHO).

¹⁹**F NMR** (471 MHz, CDCl₃, 300 K): δ [ppm] = -115.3 (ddd, ³*J*_{HF} = 10.7 Hz, ³*J*_{HF} = 8.1 Hz, ⁴*J*_{HF} = 6.0 Hz, 1 F, F-8), - 63.3 (s, 3 F, C-5-CF₃).

MS (EI, 70 eV): m/z (%) = 376 (1) [M]⁺, 347 (4) [M-CHO]⁺, 292 (38) [M-C₆H₁₂]⁺, 264 (46) [M-C₇H₁₂O]⁺, 243 (13), 194 (14), 84 (100) [C₆H₁₂]⁺, 69 (41).

HRMS (EI, 70 eV): calcd for C₂₂H₂₀OF₄ [M]⁺: 376.1445; found: 376.1443.

calcd for C₂₁¹³CH₂₀OF₄ [M]⁺: 377.1478; found: 377.1480.

Chiral HPLC: $t_{R1} = 20.6 \text{ min}$, $t_{R2} = 21.1 \text{ min}$, [Daicel, Chiralcel OJ-RH, 150 x 4,6 mm, 5 °C, 20% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].

Specific Rotation: $[\alpha]_D^{25} = +34.6$ (c = 2.84, CHCl₃) [96% *ee*].

(8bR,8cR,11aS,11bS)-8c,9,10,11,11a,11b-Hexahydro-8bH-cyclopenta[3,4]cyclobuta[1,2-

l]phenanthrene-8b-carboxaldehyde (4a)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1a** (20.6 mg, 100 μ mol, 1.00 eq.) and cyclopentene (275 μ L, 204 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for eight hours. Purification by column chromatography (silica, P/Et₂O = 200/1) gave 7.6 mg of *ortho* photocycloaddition product *rac*-**4b** (27.7 μ mol, 28%, d.r. 12/88) as a colourless oil.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1a** (20.6 mg, 100 μ mol, 1.00 eq.) and cyclopentene (275 μ L, 204 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/Et₂O = 200/1) gave 12.7 mg of *ortho* photocycloaddition product **4a** (46.4 μ mol, 46%, 96% *ee*, d.r. 93/7) as a colourless solid. **M.p.**: 106 – 108 °C.

TLC: $R_f = 0.57$ (P/Et₂O = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 3066 (w, sp³-CH), 2950 (m, sp³-CH), 2854 (w, C-HO), 2720 (w, C-HO), 1713 (vs, C=O), 1489 (w), 1448 (m), 1167, 752 (s, sp²-CH), 730 (m, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 1.44 (*virt.* ddt, ²*J* = 13.3 Hz, ³*J* = 10.9 Hz, ³*J* \approx ³*J* = 6.9 Hz, 1 H, *H*H-11), 1.57 – 1.66 (m, 1 H, *H*H-9), 1.81 – 1.87 (m, 2 H, *H*H-10, H*H*-11), 1.97 – 2.07 (m, 2 H, H*H*-9, H*H*-10), 2.90 (*virt.* q, ³*J* \approx ³*J* \approx ³*J* = 7.0 Hz, 1 H, H-11a), 3.01 (*virt.* t, ${}^{3}J \approx {}^{3}J = 7.6$ Hz, 1 H, H-8c), 3.79 (d, ${}^{3}J = 7.4$ Hz, 1 H, H-11b), 7.10 (dd, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.6$ Hz, 1 H, H-1), 7.22 (*virt.* td, ${}^{3}J \approx {}^{3}J = 7.4$ Hz, ${}^{4}J = 1.4$ Hz, 1 H, H-2), 7.25 – 7.28* (m, 1 H, H-3), 7.34 – 7.41 (m, 2 H, H-6, H-7), 7.52 (dd, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.7$ Hz, 1 H, H-8), 7.87 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.4$ Hz, 1 H, H-4), 7.96 (dd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.7$ Hz, 1 H, H-5), 9.72 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 25.6 (t, C-10), 27.6 (t, C-9), 31.1 (t, C-11), 37.9 (d, C-11b), 45.8 (d, C-11a), 52.6 (s, C-8b), 56.3 (d, C-8c), 123.1 (d, C-4), 123.4 (d, C-5), 127.3 (d, C-3), 127.6 (d, C-6**), 128.3 (d, C-1**), 128.4 (d, C-2**), 128.4 (d, C-7**), 129.0 (d, C-8), 130.3 (s, C-4a), 132.8 (s, C-4b), 135.1 (s, C-8a), 135.8 (s, C-11c), 200.5 (d, CHO).

* partially overlaid with residual proton signal of chloroform.

** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 274 (11) [M]⁺, 244 (29), 229 (33), 215 (30), 206 (83) [M-C₅H₈]⁺, 178 (100) [M-C₆H₈O]⁺, 152 (6), 67 (5) [C₅H₇]⁺.

HRMS (EI, 70 eV): calcd for $C_{20}H_{18}O[M]^+$: 274.1352; found: 274.1348.

calcd for C₁₉¹³CH₁₈O [M]⁺: 275.1386; found: 275.1385.

Chiral HPLC: $t_{D1R1} = 15.5 \text{ min}$, $t_{D1R2} = 21.9 \text{ min}$; $t_{D2R1} = 16.2 \text{ min}$, $t_{D2R2} = 22.8 \text{ min}$ [Daicel, Chiralpak OD-RH, 150 x 4,6 mm, 5 µm, 20 °C, 80% MeCN/H₂O (0 min) \rightarrow 100% MeCN (30 min), 1 mL/min, 215 nm]. (8bSR,8cRS,11aSR,11bRS)-8c,9,10,11,11a,11b-Hexahydro-8bHcyclopenta[3,4]cyclobuta[1,2-l]phenanthrene-8b-carboxaldehyde (rac-**4b**)

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.90 – 0.95 (m, 1 H, *H*H-10), 1.26 – 1.32 (m, 2 H, *H*H-9, H*H*-10), 1.33 – 1.41 (m, 1 H, *H*H-11), 1.43 – 1.48 (m, 2 H, H*H*-9, H*H*-11), 3.20 (*virt.* q, ${}^{3}J \approx {}^{3}J \approx {}^{3}J = 8.4$ Hz, 1 H, H-11a), 3.51 (*virt.* t, ${}^{3}J \approx {}^{3}J = 7.4$ Hz, 1 H, H-8c), 4.24 (d, ${}^{3}J = 10.2$ Hz, 1 H, H-11b), 6.90 (dd, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.7$ Hz, 1 H, H-8), 6.97 – 6.99 (m, 1 H, H-1), 7.24 – 7.26* (m, 2 H, H-2, H-3), 7.28* (*virt.* td, ${}^{3}J \approx {}^{3}J = 7.4$ Hz, ${}^{4}J = 1.5$ Hz, 1 H, H-7), 7.28 (*virt.* td, ${}^{3}J \approx {}^{3}J = 7.8$ Hz, ${}^{4}J = 1.7$ Hz, 1 H, H-6), 7.89 – 7.91 (m, 1 H, H-4), 7.96 (d, ${}^{3}J = 7.9$ Hz, 1 H, H-5), 9.76 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 26.2 (t, C-10), 27.7 (t, C-9), 28.8 (t, C-11), 35.8 (d, C-11b), 42.4 (d, C-11a), 46.3 (d, C-8c), 53.6 (s, C-8b), 122.9 (d, C-4), 123.5 (d, C-5), 127.1 (d, C-3**), 128.0 (d, C-2**), 128.1 (d, C-6**), 128.2 (d, C-7**), 128.9 (s, C-11c***), 129.9 (d, C-1, C-8), 131.3 (s, C-4a), 132.5 (s, C-8a), 133.1 (s, C-4b***), 200.5 (d, CHO).

* partially overlaid with residual proton signal of chloroform.

, * assignment is interconvertible.

(8bR,8cR,11aS,11bS)-3-Fluoro-8c,9,10,11,11a,11b-hexahydro-8bH-

cyclopenta[3,4]cyclobuta[1,2-*l*]phenanthrene-8b-carboxaldehyde (5a)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1d** (22.4 mg, 100 μ mol, 1.00 eq.) and cyclopentene (275 μ L, 204 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for 10 hours. Purification by column chromatography (silica, P/Et₂O = 200/1) gave 11.8 mg of *ortho* photocycloaddition product *rac*-**5b** (40.4 μ mol, 40%, d.r. 9/91) as a colourless oil.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1d** (22.4 mg, 100 μ mol, 1.00 eq.) and cyclopentene (275 μ L, 204 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/EtOAc = 200/1) gave 17.2 mg of *ortho* photocycloaddition product **5a** (59.0 μ mol, 59%, 98% *ee*, d.r. 93/7) as a colourless oil.

TLC: $R_f = 0.67$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2951 (s, sp³-CH), 2856 (m, sp³-CH), 2716 (w, C-HO), 1714 (s, C=O), 1603 (m, C=C), 1499 (s), 1444 (m), 1185 (vs, C-F), 865 (m, sp²-CH), 768 (vs, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 1.39 – 1.47 (m, 1 H, *H*H-11), 1.59 – 1.66 (m, 1 H, *H*H-9), 1.80 – 1.87 (m, 2 H, *H*H-10, H*H*-11), 1.96 – 2.05 (m, 2 H, H*H*-9, H*H*-10), 2.90 (*virt.* q, ${}^{3}J \approx {}^{3}J \approx {}^{3}J = 7.0$ Hz, 1 H, H-11a), 3.01 (*virt.* t, ${}^{3}J \approx {}^{3}J = 8.0$ Hz, 1 H, H-8c), 3.79 (d, ${}^{3}J = 7.4$ Hz, 1 H, H-11b), 6.92 (*virt.* td, ${}^{3}J \approx {}^{3}J_{HF} = 8.4$ Hz, ${}^{4}J = 2.7$ Hz, 1 H, H-2), 7.05 (dd,

 ${}^{3}J = 8.3$ Hz, ${}^{4}J_{HF} = 6.0$ Hz, 1 H, H-1), 7.37 (*virt.* td, ${}^{3}J \approx {}^{3}J = 7.6$ Hz, ${}^{4}J = 1.4$ Hz, 1 H, H-6), 7.42 (*virt.* td, ${}^{3}J \approx {}^{3}J = 7.5$ Hz, ${}^{4}J = 1.5$ Hz, 1 H, H-7), 7.51 – 7.54 (m, 2 H, H-4, H-8), 7.85 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.5$ Hz, 1 H, H-5), 9.71 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 25.7 (t, C-10), 27.6 (t, C-9), 31.1 (t, C-11), 37.3 (d, C-11b), 46.0 (d, C-11a), 52.9 (s, C-8b), 56.5 (d, C-8c), 110.0 (dd, ${}^{2}J_{CF}$ = 22.9 Hz, C-4), 115.3 (dd, ${}^{2}J_{CF}$ = 21.4 Hz, C-2), 123.7 (d, C-5), 127.9 (d, C-6), 129.1 (d, C-8*), 129.2 (d, C-7*), 129.8 (dd, ${}^{3}J_{CF}$ = 8.1 Hz, C-1), 131.6 (d, ${}^{4}J_{CF}$ = 2.9 Hz, C-11c), 132.0 (d, ${}^{4}J_{CF}$ = 2.4 Hz, C-4b), 132.5 (d, ${}^{3}J_{CF}$ = 7.6 Hz, C-4a), 135.3 (s, C-8a), 162.5 (d, ${}^{1}J_{CF}$ = 243.2 Hz, C-3), 200.4 (d, CHO).

¹⁹**F NMR** (376 MHz, CDCl₃, 298 K): δ [ppm] = -116.0 (ddd, ³*J*_{HF} = 11.0 Hz, ³*J*_{HF} = 8.1 Hz, ⁴*J*_{HF} = 6.0 Hz, 1 F, F-3).

* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 292 (9) [M]⁺, 274 (4), 262 (8), 247 (7), 233 (12), 224 (100) [M- C_5H_8]⁺, 196 (66), 175 (6).

HRMS (EI, 70 eV): calcd for C₂₀H₁₇O [M]⁺: 292.1258; found: 292.1262.

calcd for C₁₉¹³CH₁₇O [M]⁺: 293.1291; found: 293.1296.

Chiral HPLC: $t_{D1R1} = 26.5 \text{ min}$, $t_{D1R2} = 29.5 \text{ min}$; $t_{D2R1} = 26.8 \text{ min}$, $t_{D2R2} = 27.1 \text{ min}$ [Daicel, Chiralcel OD-RH, 150 x 4,6 mm, 5 µm, 20 °C, 20% MeCN/H₂O (0 min) \rightarrow 100% MeCN (30 min), 1 mL/min, 215 nm]. (8bSR,8cRS,11aSR,11bRS)-3-Fluoro-8c,9,10,11,11a,11b-hexahydro-8bH-cyclopenta[3,4]cyclobuta[1,2-l]phenanthrene-8b-carboxaldehyde (rac-**5b**)

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.84 – 0.93 (m, 1 H, *H*H-10), 1.27 – 1.47 (m, 5 H, H-9, H*H*-10, H-11), 3.18 (*virt.* q, ${}^{3}J \approx {}^{3}J \approx {}^{3}J = 8.1$ Hz, 1 H, H-11a), 3.49 (*virt.* t, ${}^{3}J \approx {}^{3}J \approx {}^{3}J = 7.1$ Hz, 1 H, H-8c), 4.22 (d, ${}^{3}J = 10.1$ Hz, 1 H, H-11b), 6.92 – 6.96 (m, 3 H, H-1, H-2, H-8), 7.30 – 7.36 (m, 2 H, H-6, H-7), 7.55 – 7.58 (m, 1 H, H-4), 7.84 – 7.86 (m, 1 H, H-5), 9.76 (s, 1 H, CHO).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 26.2 (t, C-10), 27.6 (t, C-9*), 28.7 (t, C-11*), 35.1 (d, C-11b), 42.3 (d, C-11a), 46.6 (d, C-8c), 53.6 (s, C-8b), 109.7 (dd, ²*J*_{CF} = 22.9 Hz, C-4), 115.2 (dd, ²*J*_{CF} = 21.5 Hz, C-2), 123.7 (d, C-5), 128.1 (d, ⁴*J*_{CF} = 3.1 Hz, C-11c), 128.2 (d, C-6**), 128.6 (d, C-7**), 129.2 (s, C-8a), 129.9 (d, C-8), 131.3 (dd, ³*J*_{CF} = 8.1 Hz, C-1), 132.2 (d, ⁴*J*_{CF} = 2.3 Hz, C-4b), 133.4 (d, ³*J*_{CF} = 7.5 Hz, C-4a), 162.2 (d, ¹*J*_{CF} = 243.3 Hz, C-3), 199.5 (d, CHO).

¹⁹**F NMR** (376 MHz, CDCl₃, 298 K): δ [ppm] = -116.1 - -116.0 (m, 1 F, F-3).

*,** assignment is interconvertible.

(8bR,8cR,12aS,12bS)-9,10,11,12,12a,12b-hexahydrobenzo[3,4]cyclobuta[1,2-

l]phenanthrene-8b(8c*H*)-carbaldehyde (6a)

Racemic [2+2] Photocycloaddition

Following General Procedure 2, substrate **1a** (20.6 mg, 100 μ mol, 1.00 eq.) and cyclohexene (304 μ L, 246 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (5 mL) and the solution was irradiated for 16 hours. Purification by column chromatography (silica, P/EtOAc = 200/1) gave 8.90 mg of *ortho* photocycloaddition product *rac*-**6b**/*rac*-**6c** (30.9 μ mol, 31%, d.r. *rac*-**6a**/*rac*-**6b**/*rac*-**6c** = 21/35/44) as an off-white oil.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1a** (20.6 mg, 100 μ mol, 1.00 eq.) and cyclohexene (304 μ L, 246 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/EtOAc = 200/1) gave 20.1 mg of *ortho* photocycloaddition product **6a** (69.7 μ mol, 70%, 90% *ee*, d.r. 87/10/3) as a colourless oil.

TLC: $R_{\rm f} = 0.78$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): *ṽ* [cm⁻¹] = 2929 (vs, sp³-CH), 2856 (m, sp³-CH), 2707 (w, C-HO), 1713 (vs, C=O), 1487 (m), 1450 (s), 1085 (w), 758 (s, sp²-CH), 735 (vs, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.95 – 1.04 (m, 1 H, *H*H-10), 1.25 – 1.33 (m, 1 H, *H*H-12), 1.53 – 1.56 (m, 1 H, *H*H-11), 1.61 – 1.71 (m, 4 H, *H*H-9, H*H*-10, H*H*-11, H*H*-12), 2.01 (ddd, ²*J* = 15.9 Hz, ³*J* = 8.6 Hz, ³*J* = 4.5 Hz, 1 H, H*H*-9), 2.63 (*virt.* dt, ³*J* = 10.8 Hz, ³*J* \approx ³*J* = 7.2 Hz, 1 H, H-12a), 2.78 (*virt.* dt, ³*J* = 11.2 Hz, ³*J* \approx ³*J* = 7.7 Hz, 1 H, H-8c), 3.98 (d,

 ${}^{3}J = 10.8$ Hz, 1 H, H-12b), 7.13 (dd, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.5$ Hz, 1 H, H-1), 7.23 (*virt.* td, ${}^{3}J \approx {}^{3}J = 7.4$ Hz, ${}^{4}J = 1.3$ Hz, 1 H, H-2), 7.29* (*virt.* td, ${}^{3}J \approx {}^{3}J = 7.6$ Hz, ${}^{4}J = 1.5$ Hz, 1 H, H-3), 7.35 – 7.41 (m, 2 H, H-6, H-7), 7.55 – 7.57 (m, 1 H, H-8), 7.84 (dd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.3$ Hz, 1 H, H-4), 7.92 (dd, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.9$ Hz, 1 H, H-5), 9.67 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.8 (t, C-11), 23.1 (t, C-10), 24.2 (t, C-12), 25.4 (t, C-9), 25.8 (d, C-12a), 37.9 (d, C-12b), 49.9 (d, C-8c), 56.0 (s, C-8b), 123.7 (d, C-4, C-5), 127.6 (d, C-3), 127.9 (d, C-6**), 128.3 (d, C-2), 128.4 (d, C-1), 128.5 (d, C-7**), 129.5 (d, C-8), 131.5 (s, C-4a), 134.1 (s, C-4b***), 134.3 (s, C-8a***), 135.4 (s, C-12c), 200.8 (d, CHO).
* partially overlaid with residual proton signal of chloroform.

,* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 288 (5) [M]⁺, 270 (4), 215 (3), 206 (8), 178 (9), 118 (3), 83 (100) [C₆H₁₁]⁺, 67 (6), 47 (14).

HRMS (EI, 70 eV): calcd for $C_{21}H_{20}O[M]^+$: 288.1509; found: 288.1508.

calcd for C₂₀¹³CH₂₀O [M]⁺: 289.1542; found: 289.1543.

Chiral HPLC: $t_{D1R1} = 12.2 \text{ min}$, $t_{D1R2} = 25.3 \text{ min}$; $t_{D2R1} = 16.5 \text{ min}$, $t_{D2R2} = 20.1 \text{ min}$; $t_{D3R1} = 10.9 \text{ min}$, $t_{D3R2} = 17.9 \text{ min}$ [Daicel, Chiralpak OD-RH, 150 x 4,6 mm, 5 µm, 20 °C, 80% MeCN/H₂O (0 min) \rightarrow 100% MeCN (30 min), 1 mL/min, 215 nm].
(8bSR,8cRS,12bRS)-9,10,11,12,12a,12b-hexahydrobenzo[3,4]cyclobuta[1,2-l]phenanthrene-8b(8cH)-carbaldehyde (rac-**6b**/rac-**6c**)

Major Diastereomer

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.98 – 1.45 (m, 8 H, CH₂), 1.88 (*virt.* tdd, ³ $J \approx {}^{3}J = 11.8$ Hz, ${}^{3}J = 10.0$ Hz, ${}^{3}J = 3.2$ Hz, 1 H, H-12a), 2.41 (*virt.* td, ${}^{3}J \approx {}^{3}J = 11.9$ Hz, ³J = 3.2 Hz, 1 H, H-8c), 3.56 (d, ${}^{3}J = 10.0$ Hz, 1 H, H-12b), 7.10 – 7.15 (m, 2 H, Ar-H), 7.20 – 7.39 (m, 3 H, Ar-H), 7.40 – 7.43 (m, 1 H, Ar-H), 7.88 (dd, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.3$ Hz, 1 H, Ar-H), 8.00 – 8.02 (m, 1 H, Ar-H), 9.65 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 25.9 (t, CH₂), 26.2 (t, CH₂), 28.7 (t, CH₂), 30.4 (t, CH₂), 46.8 (d, C-12a), 46.9 (d, C-12b), 52.6 (d, C-8c), 60.3 (s, C-8b), 124.0 (d, Ar-C), 124.1 (d, Ar-C), 127.7 (d, Ar-C), 127.9 (d, Ar-C), 128.2 (d, Ar-C), 128.3 (d, Ar-C), 130.3 (s, Ar-C), 130.8 (d, Ar-C), 131.8 (s, Ar-C), 134.5 (s, Ar-C), 134.9 (s, Ar-C), 201.0 (d, CHO).

Minor Diastereomer

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.55 – 0.63 (m, 1 H, C*H*H), 1.05 – 1.80 (m, 6 H, CH₂), 1.99 – 2.05 (m, 1 H, C*H*H), 2.60 – 2.68 (m, 1 H, H-12a), 3.30 (*virt.* td, ${}^{3}J \approx {}^{3}J = 8.3$ Hz, ${}^{3}J = 3.8$ Hz, 1 H, H-8c), 4.12 (d, ${}^{3}J = 8.9$ Hz, 1 H, H-12b), 7.08 (dd, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.4$ Hz, 1 H, Ar-H), 7.10 – 7.15 (m, 1 H, Ar-H), 7.20 – 7.39 (m, 4 H, Ar-H), 7.91 – 7.93 (m, 1 H, Ar-H), 8.00 – 8.02 (m, 1 H, Ar-H), 9.66 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.5 (t, CH₂), 21.8 (t, CH₂), 23.8 (t, CH₂), 24.0 (t, CH₂), 36.7 (d, C-12a), 39.3 (d, C-12b), 40.1 (d, C-8c), 56.2 (s, C-8b), 123.1 (d, Ar-C), 124.0 (d, Ar-C), 127.4 (d, Ar-C), 127.9 (d, Ar-C), 128.2 (d, Ar-C), 129.1 (d, Ar-C), 130.0 (d, Ar-C), 131.3 (s, Ar-C), 132.7 (s, Ar-C), 133.1 (s, Ar-C), 133.9 (s, Ar-C), 200.8 (d, CHO).

(2a*S*,10b*S*)-2,2-dimethyl-2,2a-dihydro-10b*H*-spiro[cyclobuta[*l*]phenanthrene-1,1'cyclohexane]-10b-carbaldehyde (7)

Racemic [2+2] Photocycloaddition

In analogy to General Procedure 3, substrate **1a** (20.6 mg, 100 μ mol, 1.00 eq.) and isopropylidenecyclohexane (373 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of AlBr₃ (250 μ l, 0.10 M in CH₂Cl₂/CH₂Br₂, 25.0 μ mol, 25 mol%) for 11 hours. Purification by column chromatography (silica, P/Et₂O = 100/1) gave 17.3 mg of *ortho* photocycloaddition product **7** (52.3 μ mol, 52%, r.r. 92/8) as a colourless oil.

Enantioselective ortho Photocycloaddition

Following General Procedure 3, substrate **1a** (20.6 mg, 100 μ mol, 1.00 eq.) and isopropylidenecyclohexane (373 mg, 3.00 mmol, 30.0 eq.) were dissolved in dichloromethane (c = 20 mM) and the solution was irradiated in presence of chiral Lewis acid **3c** (20 μ mol, 20 mol%) for 24 hours. Purification by column chromatography (silica, P/EtOAc = 200/1) gave 23.1 mg of *ortho* photocycloaddition product **7** (69.9 μ mol, 70%, 84% *ee*, r.r. 91/9) as a colourless oil.

TLC: $R_{\rm f} = 0.57$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 2930 (vs, sp³-CH), 2857 (m, sp³-CH), 1713 (s, C=O), 1599 (m, C=C), 1502 (m), 1448 (s), 1086 (m), 754 (vs, sp²-CH), 726 (s, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.88 – 0.93 (m, 1 H, CH₂), 1.07 – 1.15 (m, 3 H, CH₂), 1.10 (s, 3 H, C-2-CH₃), 1.23 – 1.33 (m, 3 H, CH₂), 1.32 (s, 3 H, C-2-CH₃), 1.54 – 1.65

(m, 2 H, CH₂), 1.72 - 1.74 (m, 1 H, CH₂), 4.06 (s, 3 H, H-2a), 7.18 (dd, ${}^{3}J = 7.1$ Hz, ${}^{4}J = 1.9$ Hz, 1 H, H-10), 7.22 - 7.28 (m, 2 H, Ar-H), 7.32 - 7.37 (m, 3 H, Ar-H), 7.84 (dd, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.7$ Hz, 1 H, H-6), 7.96 - 7.98 (m, 1 H, H-7), 9.63 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 23.5 (t, CH₂), 23.6 (q, C-2-*C*H₃), 23.9 (q, C-2-*C*H₃), 24.2 (t, CH₂), 26.0 (t, CH₂), 30.9 (t, CH₂), 34.7 (t, CH₂), 43.0 (d, C-2a), 47.5 (s, C-2), 51.5 (s, C-1), 57.1 (s, C-10b), 123.2 (d, C-6), 123.6 (d, C-7), 127.1 (d, C-Ar), 127.3 (d, C-Ar), 127.7 (d, C-Ar), 128.3 (d, C-Ar), 130.2 (d, C-10), 130.9 (d, C-Ar), 131.4 (s, C-Ar), 132.1 (s, C-Ar), 132.8 (s, C-Ar), 134.9 (s, C-Ar), 200.6 (d, CHO).

MS (EI, 70 eV): m/z (%) = 330 (3) [M]⁺, 281 (2), 206 (100) $[C_{15}H_{10}O]^+$, 178 (85), 151 (18), 126 (2), 88 (10), 63 (2).

HRMS (EI, 70 eV): calcd for C₂₄H₂₆O [M]⁺: 330.1978; found: 330.1974.

calcd for C₂₃¹³CH₂₆O [M]⁺: 331.2012; found: 331.2010.

Chiral HPLC: $t_{R1} = 22.0 \text{ min}$, $t_{R2} = 22.8 \text{ min}$ [Daicel, Chiralcel OJ-RH, 150 x 4,6 mm, 5 µm, 20 °C, 20% MeCN/H₂O (0 min) → 100% MeCN (30 min), 1 mL/min, 215 nm].

4. Additional Experiments for the Uncatalysed Photocycloaddition

Side Products from Decarbonylation:

entry	λ [nm]	ratio I/II	I [%] ^[a]	II [%] ^[a]
1	350 (reactor)	41/59	25	35
2	366 (reactor)	9/91	< 5	21

[a]: Separation of side products not possible. Determination of yield by ¹H NMR of the mixture. Quantification was only done under these two different conditions.

5. Additional Experiments for the Chiral Lewis Acid Screening

6. Chiral HPLC Traces

(2a*S*,10b*S*)-1,1,2,2-Tetramethyl-1,10b-dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2a)

2a

Racemic product

Enantioenriched product (98% ee)

(2a*S*,10b*S*)-1,1,2,2,9-Pentamethyl-1,10b-dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2b)

Racemic product

Enantioenriched product (84% ee)

(2a*S*,10b*S*)-9-Chloro-1,1,2,2-tetramethyl-1,10b-dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2c)

Enantioenriched product (88% ee)

(2aS,10bS)-8-Fluoro-1,1,2,2-tetramethyl-1,10b-dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde~(2d)

Enantioenriched product (93% ee)

No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	6.92	n.a.		17.621	3.387	3.40	n.a.	BMB*
2	10.57	n.a.		339.089	96.334	96.60	n.a.	BMB
Fotal:				356.709	99.722	100.00	0.000	

(2aS,10bS)-1,1,2,2,8-Pentamethyl-1,10b-dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde~(2e)

Racemic product

Enantioenriched product (92% ee)

(2aS,10bS) - 1,1,2,2,6 - Pentamethyl - 1,10b - dihydrocyclobuta[l] phenanthrene - 2a(2H) - carboxaldehyde~(2f)

Total:

600.131

79.006

100.00

0.000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	20.37	n.a.	433.617	57.202	92.77	n.a.	BMB
2	21.43	n.a.	32.494	4.455	7.23	n.a.	BMB*
Total:			466.110	61.657	100.00	0.000	

Racemic product

(2aS,10bS)-1,1,2,2-Tetramethyl-5-(trifluoromethyl)-1,10bdihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2g)

Racemic product

Enantioenriched product (92% ee)

Total:

683.988

81.636

100.00

(2a*S*,10b*S*)-5-Fluoro-1,1,2,2-tetramethyl-1,10b-dihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2h)

F

Racemic product

Enantioenriched product (82% ee)

12.00

Total:

n.a.

8.469

125.821

2.671

29.014

9.21

100.00

BMB*

n.a.

0.000

S84

(2aS,10bS)-1,1,2,2,9-Pentamethyl-5-(trifluoromethyl)-1,10bdihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2i)

452,926

74,934

100,00

0,000

Enantioenriched product (90% ee)

(2a*S*,10b*S*)-1,1,2,2,8-Pentamethyl-5-(trifluoromethyl)-1,10bdihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2j)

2j

Racemic product

Enantioenriched product (92% ee)

No.	Ret.Time	Pea	ak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	20,72	n.a.		20,750	2,375	3,90	n.a.	BMB*
2	21,04	n.a.		479,262	58,552	96,10	n.a.	BMB
Total:				500,012	60,928	100,00	0,000	

(2aS,10bS) - 8-Fluoro-1,1,2,2-tetramethyl-5-(trifluoromethyl)-1,10b-dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde~(2k)

Racemic product

Enantioenriched product (96% ee)

No.	Ret.Time	Peak N	ame Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	20.61	n.a.	12.058	1.680	2.02	n.a.	BMB*
2	21.14	n.a.	512.129	81.305	97.98	n.a.	BMB
Total:			524.187	82.985	100.00	0.000	

(8bS,8cR,11aR,11bS)-8c,11a-Dimethyl-8c,9,10,11,11a,11b-hexahydro-8bH-cyclopenta[3,4]cyclobuta[1,2-*l*]phenanthrene-8b-carboxaldehyde (4a)


```
Racemic product (d.r. = 12/88)
```


Enantioenriched product (96% *ee*, d.r. = 93/7)

(8b*S*,8c*R*,11a*R*,11b*S*)-3-Fluoro-8c,11a-dimethyl-8c,9,10,11,11a,11b-hexahydro-8b*H*-cyclopenta[3,4]cyclobuta[1,2-*l*]phenanthrene-8b-carboxaldehyde (5a)


```
Racemic product (d.r. = 9/91)
```


Enantioenriched product (98% ee, d.r. = 93/7)

(8b*R*,8c*R*,12a*S*,12b*S*)-9,10,11,12,12a,12b-hexahydrobenzo[3,4]cyclobuta[1,2*l*]phenanthrene-8b(8c*H*)-carbaldehyde (6a)

6a *Racemic product* (d.r. *rac*-**6a**/*rac*-**6b**/*rac*-**6c** = 21/35/44)

Enantioenriched product (90% ee, d.r. rac-6a/rac-6b/rac-6c = 87/10/3)

Total:

204,391

97,778

100,00

0.000

(2a*S*,10b*S*)-2,2-dimethyl-2,2a-dihydro-10b*H*-spiro[cyclobuta[*l*]phenanthrene-1,1'cyclohexane]-10b-carbaldehyde (7)

Enantioenriched product (84% ee)

Total:

990,192

133,321

100,00

0,000

7. NMR Spectra of New Compounds

140

130

160 150

170

210 200 190 180

120

110 100 f1 (ppm) 90

80 70 60 50

0

10

30 20

40

2-Methylphenanthrene-9-carboxaldehyde (1b)

1b

¹³C NMR (126 MHz, CDCl₃, 300 K):

80

60 50 40

S93

2-Chlorophenanthrene-9-carboxaldehyde (1c)

3-Fluorophenanthrene-9-carboxaldehyde (1d)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

-107.61 -107.63 -107.63 -107.64 -107.65 -107.65

-107.61 -107.63 -107.63 -107.63 -107.65 -107.65

3-Methylphenanthrene-9-carboxaldehyde (1e)

5-Methylphenanthrene-9-carboxaldehyde (1f)

¹³C NMR (126 MHz, CDCl₃, 300 K):

6-(Trifluoromethyl)phenanthrene-9-carboxaldehyde (1g)

¹³C NMR (126 MHz, CDCl₃, 300 K):

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

¹⁹**F NMR** (376 MHz, CDCl₃, 300 K):

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm)

6-Fluorophenanthrene-9-carboxaldehyde (1h)

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

$\label{eq:2-Methyl-6-(trifluoromethyl)phenanthrene-9-carboxaldehyde (1i)$

110 100 f1 (ppm) 90

80 70

60

130 120

20

210 200 190

160 150 140

180 170

S103

20 10 0

. 30 -1

$\label{eq:2.1} 3-Methyl-6-(trifluoromethyl) phenanthrene-9-carboxaldehyde~(1j)$

.2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (126 MHz, CDCl₃, 300 K):

¹⁹F NMR (471 MHz, CDCl₃, 300 K):

60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

3-Fluoro-6-(trifluoromethyl)phenanthrene-9-carboxaldehyde (1k)

-8.79 -8.79 -8.81 -8.82 -8.82 -8.82 -8.81 -7.755 -7.75 - 10.35 9.53 8.79 8.10 8.09 8.09 8.09 7.95 7.94 7.93 7.93 834 830 828 830 828 ę 8.8 8.7 8.6 8.5 8.0 7.8 7.7 7.4 8.4 7.9 7.6 8.3 8.2 8.1 f1 (ppm) 2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 f1 (ppm) 1.5 1.0 0.5 0.0 -0.5 -1 4.5 4.0 3.5 3.0 2.5 2.0 ¹³C NMR (126 MHz, CDCl₃, 300 K): 1,12,4 1,14,5 1,14,5 1,14,5 1,133,2 1,133,5 1,133,5 1,133,5 1,133,5 1,133,5 1,134,9 1,134,9 1,134,9 1,134,9 1,134,9 1,134,9 1,134,9 1,135,5 1, - 134.79 ~ 117.78 130.50 129.77 129.77 129.74 129.43 12 133.25

135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 f1 (ppm) 210 200 190 140 130 120 10 0 20 180 170 160 150 110 100 f1 (ppm) 90 80 20 -1 70 60 30

¹H NMR (500 MHz, CDCl₃, 300 K):
¹⁹F NMR (471 MHz, CDCl₃, 300 K):

(S) - 1 - (2, 6 - dimethylphenyl) - 3, 3 - bis (3, 5 - dimethylphenyl) tetrahydro - 1H, 3H - pyrrolo [1, 2 - c] [1, 3, 2] oxazaborole

¹**H NMR** (500 MHz, C₆D₆, 298 K):

¹¹**B NMR** (128 MHz, C_6D_6 , 300 K):

(2aS,10bS)-1,1,2,2-Tetramethyl-1,10b-dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde~(2a)

(2aS,10bS)-1,1,2,2,9-Pentamethyl-1,10b-dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde~(2b)

2b ¹H NMR (500 MHz, CDCl₃, 298 K): 62 - 2.33 1.54
 1.29
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.06
 1.0 7.94 7.94 7.93 7.93 C7.75 NVi g 1.2 1.1 1.0 0.9 f1 (ppm) 0.8 0.7 8.0 1.3 0.6 7.7 7.6 7.9 7.8 7.5 7.4 f1 (ppm) 7.3 7.2 7.1 7.0 2011 2011 2010 2010 2010 2010 2010 1.04= 1.00-3.04₌ 30 20 30 2 16 15 7 14 13 12 11 10 9 8 6 f1 (ppm) 2 0 -1 -2 -3 ¹³C NMR (126 MHz, CDCl₃, 300 K): 138.17 134.69 132.26 130.88 130.74 120.87 129.07 129.07 129.67 125.67 125.67 125.49 127.67 125.49 127.67 125.49 127.67 123.49 44.31
42.40 24.23 23.85 23.85 21.81 21.76 21.76 57.95 51.06 - 138.17 - 128.13 - 134.69 - 132.29 130.88130.74 - 129.87 - 129.07 - 126.77 23.5 22.0 21.5 21.0 24.0 23.0 22.5 f1 (ppm) 42.40 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 f1 (ppm) 52 50 48 46 44 42 f1 (ppm) 58 56 54

S112

(2aS,10bS)-9-Chloro-1,1,2,2-tetramethyl-1,10b-dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde~(2c)

(2aS,10bS)-8-Fluoro-1,1,2,2-tetramethyl-1,10b-dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde~(2d)

(2aS,10bS) - 1,1,2,2,8 - Pentamethyl - 1,10b - dihydrocyclobuta[l] phenanthrene - 2a(2H) - carboxaldehyde (2e)

¹³C NMR (126 MHz, CDCl₃, 300 K):

(2aS,10bS)-1,1,2,2,6-Pentamethyl-1,10b-dihydrocyclobuta[l]phenanthrene-2a(2H)carboxaldehyde (2f)

S117

o

(2a*S*,10b*S*)-1,1,2,2-Tetramethyl-5-(trifluoromethyl)-1,10bdihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2g)

¹⁹F NMR (376 MHz, CDCl₃, 300 K):

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 fl (ppm) (2aS,10bS)-5-Fluoro-1,1,2,2-tetramethyl-1,10b-dihydrocyclobuta[l]phenanthrene-2a(2H)-carboxaldehyde~(2h)

-1 110 100 f1 (ppm) ò

S120

¹⁹F NMR (471 MHz, CDCl₃, 300 K):

(2a*S*,10b*S*)-1,1,2,2,9-Pentamethyl-5-(trifluoromethyl)-1,10bdihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2i)

2i

¹⁹F NMR (471 MHz, CDCl₃, 300 K): --- 0.00 CCI3F

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

(2a*S*,10b*S*)-1,1,2,2,8-Pentamethyl-5-(trifluoromethyl)-1,10bdihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2j)

¹⁹F NMR (471 MHz, CDCl₃, 300 K):

---- 0.00 CCI3F

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 f1 (ppm) (2a*S*,10b*S*)-8-Fluoro-1,1,2,2-tetramethyl-5-(trifluoromethyl)-1,10bdihydrocyclobuta[*l*]phenanthrene-2a(2*H*)-carboxaldehyde (2k)

¹⁹F NMR (471 MHz, CDCl₃, 300 K):

(8b*R*,8c*R*,11a*S*,11b*S*)-8c,9,10,11,11a,11b-Hexahydro-8b*H*-cyclopenta[3,4]cyclobuta[1,2-*I*]phenanthrene-8b-carboxaldehyde (4a)

(8b*SR*,8c*RS*,11a*SR*,11b*RS*)-8c,9,10,11,11a,11b-Hexahydro-8b*H*cyclopenta[3,4]cyclobuta[1,2-*l*]phenanthrene-8b-carboxaldehyde (*rac*-4b)

140 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

(8b*R*,8c*R*,11a*S*,11b*S*)-3-Fluoro-8c,9,10,11,11a,11b-hexahydro-8b*H*-cyclopenta[3,4]cyclobuta[1,2-*l*]phenanthrene-8b-carboxaldehyde (5a)

¹⁹F NMR (376 MHz, CDCl₃, 298 K):

(8bSR,8cRS,11aSR,11bRS)-3-Fluoro-8c,9,10,11,11a,11b-hexahydro-8bH-cyclopenta[3,4]cyclobuta[1,2-*l*]phenanthrene-8b-carboxaldehyde (*rac*-5b)

rac-**5b**

¹⁹F NMR (376 MHz, CDCl₃, 298 K):

(8b*R*,8c*R*,12a*S*,12b*S*)-9,10,11,12,12a,12b-hexahydrobenzo[3,4]cyclobuta[1,2*l*]phenanthrene-8b(8c*H*)-carbaldehyde (6a)

зо 110 100 f1 (ppm)

(8b*SR*,8c*RS*,12b*RS*)-9,10,11,12,12a,12b-hexahydrobenzo[3,4]cyclobuta[1,2-*l*]phenanthrene-8b(8c*H*)-carbaldehyde (*rac*-6b/*rac*-6c)

¹³C NMR (126 MHz, CDCl₃, 300 K):

(2a*S*,10b*S*)-2,2-dimethyl-2,2a-dihydro-10b*H*-spiro[cyclobuta[*l*]phenanthrene-1,1'-cyclohexane]-10b-carbaldehyde (7)

2,2,3,3-Tetramethyl-4-(phenanthren-9'-yl)oxetane (*rac*-8)

¹³C NMR (101 MHz, CDCl₃, 300 K):

8. Datasheet of Flurescent Light Sources

366 nm reactor

Lehrstuhl OC 1 - TUM 200 nm 250 nm 300 nm 350	nm 400 nm	l 450 nm	1500 nm	1550 nm	600 nm	l650 nm	
Datasheet FLT015				RP	R-Set1	-UV-A	
Basic Information							
Туре	Fluorescent lig	ht tube					
Description	Set1 (UV-A)						
Manufacturer / Supplier	n/a / Rayonet						
Order number / Date of purch.	n/a / n/a						
Internal lot / serial number	Set1 / FLT015						
Specification Manufacturer							
Type / size	T5 tube, G5 socket						
Mechanical specification	16 mm diameter, 288 mm length						
Electrical specification	8 W						
Wavelength (range, typ.)	350 nm						
Spectral width (FWHM)	~ 30 nm						
Datasheet							
Characterization							
Description of measurement	Measured with	ocean-op	tics USB40	000 spectro	ometer usir	ng a	
	calibrated setu	p (cosine c	orrector/f	ibre).			
	The cosine corrector was placed at 20 mm distance from a						
	single fluorescent tube at half height.						
Measured dominant wavelength / Int.	365 nm		10	04 μW/mm	1²nm		
Measured spectral width (FWHM)	18 nm						
Integral Reference intensity / range	2194 µW/cm ²		30	00-450 nm			

424 nm LED

Lehrstuhl OC 1 - TUM	n 350 nm 400 nm 450 nm 500 nm 550 nm 600 nm 650 n						
Datasheet LED011	H2A1-H420						
Basic Information							
Туре	High-Power-LED						
Description	H2A1-H420						
Manufacturer / Supplier	n/a / Roithner-Lasertechnik, Wien						
Order number / Date of purch.	H2A1-H420 / 2014/04						
Internal lot / serial number	H2A1-H420_2014/04 / LED011						
Specification Manufactur	er						
Туре	single emitter, InGaN						
Mechanical specification	hexagonal mount						
Electrical specification	<500 mA, UF~3,4 V. abs. max. 500 mA						
Wavelength (range, typ.)	420 nm						
Spectral width (FWHM)	20 nm						
Datasheet	h2a1-h420.pdf						
Characterization							
Description of measurement	Measured with Ocean-optics USB4000 spectrometer using a						
	calibrated setup (cosine corrector/fibre).						
	The distance between the emitting surface and the surface of						
	the cosine corrector was 20 mm. The LED was operated at						
	350 mA on a passive heat-sink at approx. 20 °C						
Measured wavelength	424 nm						
Measured spectral width	17 nm						
Integral Reference intensity	3,44 mW/mm ² (350 mA, 390-490 nm @ 20 mm distance, 4 mm cc)						
	4,62 mW/mm ² (500 mA, 390-490 nm @ 20 mm distance, 4 mm cc)						

435 nm LED

Lehrstuhl OC 1 - TUM 200 nm 250 nm 300 nm	350 nm 400 nm 450 nm 500 nm 550 nm 600 nm 650 nm						
Datasheet LED043	Av-435-5W						
Basic Information							
Туре	High-Power-LED						
Description	Avonec 435 nm / 5 W						
Manufacturer / Supplier	n/a / Avonec						
Order number / Date of purch.	n/a / 07/2016						
Internal lot / serial number	2016-07 / LED043						
Specification Manufacturer							
Type / size	dual emitter / 2 x <1 x <1 mm						
Mechanical specification							
Electrical specification	700 mA, UF 6-7 V						
Wavelength (range, typ.)	435-440 nm, typ. n/a						
Spectral width (FWHM)	n/a						
Datasheet	Avonec_435nm_5W.pdf						
Characterization							
Description of measurement	Measured with Ocean-optics USB4000 spectrometer using a						
	calibrated setup (cosine corrector/fibre).						
	The distance between the emitting surface and the surface of						
	the cosine corrector was 20 mm. The LED was operated at						
	700 mA on a passive heat-sink at approx. 20 °C						
Measured wavelength	435 nm						
Measured spectral width	20 nm						
Integral Reference intensity	115800 $\mu W/cm^2$ (350-500 nm @ 20 mm distance, 4 mmcosine corr.)						

457 nm LED

Lehrstuhl OC 1 - TUM 200 nm 250 nm 300 nm	350 nm	400 nm	l 450 nm	l 500 nm	1550 nm	600 nm	l650 nm
Datasheet LED005						H2A3	-H470
Basic Information							
Туре	High-Pov	wer-LED					
Description	H2A3-H470						
Manufacturer / Supplier	n/a / Roithner-Lasertechnik, Wien						
Order number / Date of purch.	H2A3-H470 / 12/2011						
Internal lot / serial number	2011-12	/ LED005					
Specification Manufacturer							
Type / size	single er	nitter / <1 >	x <1 mm				
Mechanical specification							
Electrical specification	700 mA,	UF~3.8 V					
Wavelength (range, typ.)	not spec	., typ. 470	nm				
Spectral width (FWHM)	25 nm						
Datasheet	H2A3H4	70.pdf (n. b	o datashe	et is for H2	A3H530!)		
Characterization							
Description of measurement	Measure	ed with Oce	an-optics L	JSB4000 sp	ectromete	er using a	
	calibrate	ed setup (co	osine correc	ctor/fibre).			
	The dista	ance betwe	en the emi	tting surfac	ce and the	surface of	
	the cosir	ne correcto	r was 20 m	m. The LED) was oper	ated at	
	700 mA	on a passiv	e heat-sink	at approx.	20 °C		
Measured wavelength	457 nm						
Measured spectral width	21 nm						
Integral Reference intensity	56580 μ	W/cm² (40	0-550 nm @	20 mm d و	istance, 4 r	mmcosine	corr.)

Spectrum

9. UV/Vis Spectra

UV/Vis-spectrum of phenanthrene-9-carboxaldehyde (**1a**) in the absence of a Lewis acid (black line, $\epsilon_{316 \text{ nm}} = 13780 \text{ M}^{-1}\text{cm}^{-1}$, $\epsilon_{361 \text{ nm}} = 1940 \text{ M}^{-1}\text{cm}^{-1}$) and in the presence variable equivalents of EtAlCl₂ (2 eq. – 20 eq., $\epsilon_{387 \text{ nm}, 20 \text{ eq. L.A.}} = 16180 \text{ M}^{-1}\text{cm}^{-1}$) in dichloromethane [c = 0.25 mM].

UV/Vis-spectrum of cyclohexene-1-carbaldehyde in the absence of a Lewis acid (blue line: c = 1.00 mM, green line: c = 20.0 mM; $\epsilon_{231 \text{ nm}} = 15640 \text{ M}^{-1} \text{cm}^{-1}$, $\epsilon_{315 \text{ nm}} = 50 \text{ M}^{-1} \text{cm}^{-1}$) and in the presence of 20 equivalents of EtAlCl₂ (yellow line: c = 1.00 mM; $\epsilon_{277 \text{ nm}} = 8850 \text{ M}^{-1} \text{cm}^{-1}$) in dichloromethane.
10. Luminescence Measurements

•

The emission spectrum of complex 1a·AlEtCl₂ was measured (blue line) (CH₂Cl₂ as the solvent) in the presence of an excess of EtAlCl₂ (15 eq.). We used 400 nm as the excitation wavelength and observed the emission spectrum from 420 – 750 nm. Both excitation and emission bandwidth was set to 1.5 nm. The qualitative quenching experiment was performed by addition of varying amounts of 2,3-dimethyl-2-butene (0.0 M – 0.8 M) to a solution of 1a (100 μ M, CH₂Cl₂ as the solvent) in the presence of an excess of EtAlCl₂ (15 eq.).

11. X-ray Crystallographic Details

Data were collected on a single crystal x-ray diffractometer equipped with a CMOS detector (Bruker APEX III, κ -CMOS), a TXS rotating anode with MoK_a radiation ($\lambda = 0.71073$ Å) and a Helios optic using the APEX3 software package.^[12] The measurement was performed on a single crystal coated with perfluorinated ether. The crystal was fixed on top of a kapton micro sampler and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were corrected for Lorentz and polarisation effects, scan speed, and background using SAINT.^[13] Absorption correction, including odd and even ordered spherical harmonics was performed using SADABS.^[13] Space group assignment was based upon systematic absences, E statistics, and successful refinement of the structure. The structure was solved using SHELXT with the aid of successive difference Fourier maps, and was refined against all data using SHELXL-2014 in conjunction with SHELXLE.^[14-16] Hydrogen atoms were calculated in ideal positions as follows: Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C–H distance of 0.98 Å and $U_{iso(H)} = 1.5 \cdot U_{ea(C)}$. Other H atoms were placed in calculated positions and refined using a riding model, with aldehyde and aromatic C–H distances of 0.95 Å and other C–H distances of 1.00 Å, all with $U_{iso(H)} = 1.2 \cdot U_{eq(C)}$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix leastsquares refinements were carried out by minimizing $\Sigma w (F_0^2 F_c^2)^2$ with the SHELXL weighting scheme.^[14] Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from *International Tables for Crystallography*.^[17] Images of the crystal structure were generated with PLATON.^[18] CCDC 1859722 contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Compound 2c (CCDC 1859722)

Diffractometer operator C. Jandl scanspeed 1-10 s per frame dx 60 mm 2743 frames measured in 10 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode

Crystal data

 $\underline{C}_{21}\underline{H}_{21}\underline{ClO}$ $D_{\rm x} = 1.271 {\rm Mg m^{-3}}$ $M_r = 324.83$ Orthorhombic, $P2_12_12_1$ Melting point: ? <u>Mo *K*\alpha</u> radiation, $\lambda = 0.71073$ Å Hall symbol: <u>P 2ac 2ab</u> $a = \underline{7.0920}(7) \text{ Å}$ Cell parameters from 9727 reflections b = 8.1128 (8) Å $\theta = \underline{2.6} - \underline{28.3}^{\circ}$ $\mu = \underline{0.23} \text{ mm}^{-1}$ c = 29.514(3) Å V = 1698.1 (3) Å³ T = 100 K $Z = \underline{4}$ Fragment, colourless F(000) = 688 $\underline{0.34} \times \underline{0.31} \times \underline{0.30} \text{ mm}$

Data collection

Bruker Photon CMOS diffractometer	4059 independent reflections
Radiation source: <u>TXS rotating anode</u>	<u>3943</u> reflections with $\underline{I > 2\sigma(I)}$
Helios optic monochromator	$R_{\rm int} = \underline{0.030}$
Detector resolution: <u>16</u> pixels mm ⁻¹	$\theta_{\text{max}} = \underline{27.9}^{\circ}, \ \theta_{\text{min}} = \underline{2.6}^{\circ}$
<u>phi– and ω–rotation scans</u>	$h = \underline{-9} \underline{9}$
Absorption correction: <u>multi-scan</u> <u>SADABS 2014/5, Bruker</u>	k = -10 10
$T_{\min} = 0.705, T_{\max} = 0.746$	l = -38 38
47539 measured reflections	

Refinement

Refinement on $\underline{F^2}$	Hydrogen site location: <u>inferred from</u> <u>neighbouring sites</u>
Least-squares matrix: <u>full</u>	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = \underline{0.028}$	$\frac{W = 1/[\Sigma^2(FO^2) + (0.0429P)^2 + 0.4138P]}{WHERE P = (FO^2 + 2FC^2)/3}$
$wR(F^2) = \underline{0.075}$	$(\Delta/\sigma)_{\text{max}} = \underline{0.002}$
S = 1.07	$\Delta \rho_{\text{max}} = \underline{0.25} \text{ e } \text{\AA}^{-3}$
4059 reflections	$\Delta \rho_{min} = \underline{-0.29} \text{ e } \text{\AA}^{-3}$
<u>212</u> parameters	Extinction correction: none
<u>0</u> restraints	Extinction coefficient: -
<u>0</u> constraints	Absolute structure: <u>Flack (1983)^[19]</u> , <u>Parsons</u> (2013) ^[20]
Primary atom site location: intrinsic phasing	Absolute structure parameter: 0.005 (11)
Secondary atom site location: <u>difference</u> <u>Fourier map</u>	

12. References

- M. Schuster, M. Knollmueller, P. Gaertner, *Tetrahedron: Asymmetry* 2006, 17, 2430-2441.
- [2] G. B. Jones, J. E. Mathews, *Tetrahedron* 1997, 53, 14599-14614.
- [3] S. E. Conner, N. B. Mantlo, G. Zhu, R. J. Herr (Eli Lilly & Company), *Bicyclic derivatives as PPAR modulators*, US20070106081A1, May 10, **2007**.
- [4] K. Amin, M. Dahlström, P. Nordberg, I. Starke (AstraZeneca AB), *Compounds*, US006579884B1, June 17, 2003.
- [5] R. Das, M. Kapur, J. Org. Chem. 2017, 82, 1114-1126.
- [6] N. Yamakawa, S. Suemasu, M. Matoyama, A. Kimoto, M. Takeda, K.-i. Tanaka, T. Ishihara, T. Katsu, Y. Okamoto, M. Otsuka, T. Mizushima, *J. Med. Chem.* 2010, 53, 7879-7882.
- [7] K. Pati, G. Dos Passos Gomes, T. Harris, I. V. Alabugin, Org. Lett. 2016, 18, 928-931.
- [8] J. F. Cairns, H. R. Snyder, J. Org. Chem. 1964, 29, 2810-2912.
- [9] Y. H. Kim, H. Lee, Y. J. Kim, B. T. Kim, J.-N. Heo, J. Org. Chem. 2008, 73, 495-501.
- [10] R. Brimioulle, T. Bach, Angew. Chem. Int. Ed. 2014, 53, 12921-12924; Angew. Chem.
 2014, 126, 13135-13138.
- [11] S. Poplata, T. Bach, J. Am. Chem. Soc. 2018, 140, 3228-3231.
- [12] APEX suite of crystallographic software, APEX 3, Version 2015-5.2, Bruker AXS Inc., Madison, Wisconsin, USA, 2015.
- [13] SAINT, Version 8.34A and SADABS, Version 2014/5, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- [14] G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.
- [15] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
- [16] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281-1284.

- [17] International Tables for Crystallography, Vol. C (Ed.: A. J. Wilson), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199).
- [18] A. L. Spek, Acta Crystallogr. Sect. D 2009, 65, 148-155.
- [19] H. D. Flack, Acta Crystallogr. Sect A 1983, 39, 876-881.
- [20] S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. Sect B 2013, 69, 249-259.