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A. APPENDICES 

A.1 Lemma 1 

Let � ( )*

1, ,

argmax
k K

kk d
=

=
…

ɶ E  be the optimal treatment under the bias-adjusted data ( )y βɶ . Then: 

a) � ( ) { }*

* * *0 for at least one 1, ,
bk

k k d b K k≠ < …⇔ ∈ɶ E ∖  . 

b) For a value of β  where � ( )* 0
bk

d <E  for only one { } *1, , kb K∈ … ∖  , the new optimal 

treatment is *k b=ɶ . 

Proof of Lemma 1a 

Recall a general property of contrasts that ab bad d= − . So without loss of generality, the set of 

contrasts associated with *k  is { }*

*: {1, , }
ak

d a K k∈ … ∖ . Note that under the original biased data 

the set of contrasts associated with *k  have posterior expected values satisfying 

( ) { }*

*

| 0 1, ,
ak

d a K k> ∀ ∈ …
d y

E ∖ . 

First show that 

 � ( )*

* * *
for at least one0  {1, , }

bk
k k d b K k≠ < ∈ …⇒ɶ ∖E . 

We have that *kɶ  is the new optimal treatment under the bias-adjusted data, so by definition 

 � ( ) � ( ) { }*

*1, ,ak
d d a K k> ∀ ∈ …ɶ

ɶE E ∖ , 

and in particular � ( ) � ( )* *k k
d d>ɶE E . Thus 
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 � ( ) � ( ) � ( )* * * * 0
k k k k

d d d= − <ɶ ɶE E E . 

That is, the posterior expectation of one of the contrasts associated with *k  has changed sign. 

Now show that 

 � ( ) { }*

* * *
for at least one0  1, ,

bk
k k d b K k≠ ⇐ < ∈ …ɶ ∖E . 

As *k  is optimal under the original biased data, the posterior expectations of contrasts associated 

with *k  satisfy 

 ( ) ( ) ( ) { }* *| |

*

| 0 1, ,aak k
d d d a K k= − > ∀ ∈ …

d y d y d y
E E E ∖ , 

since ( ) ( )*| |
1, ,

max ak a K
d d

= …
=d y d yE E . 

Now suppose we bias-adjust the data � ( )y β  enough that at least one of the posterior expectations 

of the contrasts associated with *k  changes sign; the set � ( ){ } { }*: 0 1, , 1
bk

B b d K= < ⊆ … −E  is not 

empty. 

We have then 

 

� ( ) � ( ) � ( )
� ( ) � ( ) � ( ) { }

* *

* *

*

0

0

bbk k

bbk k

d d d b B

d d d b B k

= − < ∀ ∈

= − ≥ ∀ ∉ ∪

E E E

E E E

 

Thus 

 

� ( ) � ( )
� ( ) � ( ) { }

*

*

*

bk

bk

d d b B

d d b B k

< ∀ ∈

≥ ∀ ∉ ∪

E E

E E

  

And so choosing � ( )* argmax b
b B

k d
∈

=ɶ E  we have that 

 � ( ) � ( ) � ( ) � ( ) { }* *

*,b bk k
d d d d b B b B k′ ′≥ > ≥ ∀ ∈ ∉ ∪ɶE E E E . 

Therefore *kɶ  is the new optimal treatment and * *k k≠ɶ  since *k B∉  and *k B∈ɶ  by definition. 
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Proof of Lemma 1b 

Let us choose a value of the bias adjustment β  so that the posterior expectation of only one 

contrast changes sign, say � ( )* 0
bk

d <E . 

Following on from the proof of part a) we see that { }B b= , a singleton set. Since *k B∈ɶ  by 

definition, we therefore know that *k b=ɶ . 

A.2 Theorem: Posterior distribution for FE model 

Given the following model with multivariate Normal likelihood and prior distribution 

 
( )
( )0

| ~ N ,

~ N , d

y d Xd V

d d Σ
 

Then the prior distribution and likelihood are conjugate and the posterior distribution is also 

multivariate Normal 

 ( )( )1 1

0| ~ N ,d

T

n n

− −+dd Σ X V yy Σ Σ , 

where 

 1 1 1T

n d

− − −= +Σ Σ X V X . 

Proof 

Using Bayes rule (Bayes 1763), the posterior distribution is 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

(

)

1 1

0 0

1 1 1 1

1 1 1 1

0 0 0 0

| |

1
exp

2

1
exp

2

T T

T T T T T T

T

d

d d d

T

d

T T

p p p

− −

− − − −

− − − −

∝

 ∝ − − − + − − 
 

= − − − +


+ − − + 


d y y d d

y Xd V Xd d d Σ d d

V d X V y V Xd d X V Xd

d Σ

y

y y y

d d d dd Σ d Σ d Σ
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( ) ( )( )

( ) ( )

1 1 1 1

0

1

Then since  and  are symmetric, and noting proportionality with ,

1
exp 2

2

And completing the square,

1
exp

2

d

T T T T

d

T

n n n

− − − −

−

 ∝ − + − + 
 

 ∝ − − − 
 

V Σ d

Σ X V X d d X V Σ

d d Σ d d

d y d

  

which we recognise as the multivariate Normal as required. See also Gelman et al. (2013, p. 71). 

A.3 Derivation of bias adjustment thresholds for the basic FE model 

We derive thresholds for the basic FE model described in section 2.3.2 by rearranging the 

expression for the posterior mean from equation (8). Under the bias adjusted data, this becomes 

 

� ( ) ( )( )
( )

1 1

0

1

T

n

dn

T

m

m

− −

−

= +

= +

+d X V yd Σ Σ β

d Σ X V β

E

E

  (A.1) 

Notice here that we can think of 1T

n

−
Σ X V  as an influence matrix, determining the change in the 

posterior mean resulting from a change in the data vector by mβ . Let us denote this influence 

matrix as H , and rewrite equation (A.1) as 

 � ( ) ( ) m= +d d HβE E .  (A.2) 

Consequently from Lemma 1 (appendix A.1), we must solve 1K − equations of the form 

 � ( ) { }*

*0, 1, ,
ak

d a K k= ∀ ∈ …E ∖  (A.3) 

to determine the point at which the expected value changes sign, and then take the smallest positive 

and negative solutions to be the positive and negative threshold values. Using (A.2) we can find 

solutions * ,ak m
u  to equation (A.3) expectation by rearranging the following equations: 

 

� ( ) � ( ) � ( )
� ( ) � ( )

( ) [ ] [ ]( )

* *

*

* **

1 1

,1, 1,

0
ak k

k a

ak akk m

a

a mm

d d d

d u

− −

− −

= = −

   =    −

−+=

d d

H H

E E E

E E

E

  (A.4) 

for { } *2, , ka K∈ … ∖  when * 1k ≠ , and  
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� ( ) � ( )
( ) [ ]

* *

* **

1

1 ,1,

0
k k

k k mk m

d

d u

d

−

= =

= + H

E E

E

  (A.5) 

for 1a =  when * 1k ≠ . If * 1k =  then the equations are of the form 

 

� ( ) � ( )
( ) [ ]

1

1 ,1,

0
a a

a a a mm

d

d u

d

−

=

=

=

+ H

E E

E
  (A.6) 

for { }2, ,a K∈ … . 

Now we simply re-arrange equations (A.4), (A.5), and (A.6) to arrive at the solutions: 

 

( )
[ ] [ ]

{ }

( )
[ ]

( )
[ ]

{ }

*

*

*

*

*

*

*

*

,

1, 1,

1

1 ,

1,

*

1 ,

1,

1

for

for

for

For 

,  

1

,  1

For 1

,

2,  

2,

, ,

ak

ak m

k m a m

k

k m

k m

a

m

a

m

a

d
u K k

k

a

a

k

a

d
u

du K

− −

−

−

−
=

−

−

≠

∈ …

∈ …

= =

=

−
=

H H

H

H

∖
E

E

E

  

The positive and negative threshold values thresh

mβ +  and thresh

mβ −  for a data point my  are then 

 
{ }

{ }

{ }
{ }

* * *
*

* * *
*

thresh

, , ,
1, ,

thresh

, , ,
1, ,

where argmin : 0

where argmax : 0

m bk m ak m ak m
a K k

m bk m ak m ak m
a K k

b u u

b

u

u u u

β

β

∈ …

∈ …

+

−

= >

<= =

=
∖

∖

 (A.7) 

Furthermore, from Lemma 1 (appendix A.1) and equation (A.7) we know that the new optimal 

treatment at the threshold is * bk =ɶ . Note that, although it is in theory possible for there to be two 

or more treatment effects that are both exactly maximal at the threshold value of β , this happens 

with probability zero. 

A.4 Theorem: Posterior distribution for RE model 

Given the RE model 
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( )
( )

( )2

0
Prior: ~ N ,

Likelihood: | ~ N

RE Mode

,

| N: ,l ~

d

τ

Σ

δ δ V

δ d Xd

y

Σ

d d

  

where the between studies covariance matrix 2τ
Σ  is known and fixed, the joint posterior 

distribution for d  and δ  is 

 

1

0

1
~ N , n

d

n

−

−

   
          

dd
y

V y

Σ
Σ Σ

δ
  

where 

 
2 2

2 2

1
1 1 1

1 1 1

T T

d

n
τ τ

τ τ

−− − −

− − −

+ −
=   − + 

Σ X Σ Σ
Σ

Σ Σ

X X

X V
. 

Proof 

Similarly to the proof for the posterior distribution of the FE model, the posterior distribution is 

 ( ) ( ) ( ) ( ) ( ) ( )2

2 2

2 2

1 1 1

0 0

11 1 1

0

1 1 1 1

( ,

2

| ) ( | ) ( | ) ( )

1
exp

2

1
exp

2

T T T

T T

d

T

d

d

p p pp

τ

τ τ

τ τ

− − −

−− − −

− − − −

∝

  ∝ − − − −   

   

− + +


∝ −    

  

− −

  + −    
−       

  
 − +

       

δ y y δ δ d d

y δ δ δ Xd Σ δ Xd Σ

ΣΣ

d

V y d d d d

dX X X d d

X V V

Σ Σd

Σ Σδ δ δ y

  

which we recognise as the multivariate Normal as required. See also Gelman et al. (2013, p. 582). 

A.5 Bias adjustment thresholds for the basic RE model 

The joint posterior distribution of d  and δ  (conditional on 2τ
Σ ) is given in equation (9)(with 

proof in appendix A.4). We partition the joint covariance matrix as 

 
2 2

2 2

1
1 1 1

* *

1 1 1
* *

T T

Tn

dτ τ

τ τ

−− − −

− − −

 −  
= =    − +  

+



Σ X Σ Σ
Σ

X X A B

CX V BΣ Σ
. 

Under bias-adjusted data m= +y y βɶ , the joint posterior mean of d  and δ  becomes  
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� ( )
( )

( )

1

0

1

1: 1

1 1 1

* 0 * *

1

*

m

n

m
K

d

d

m

−

−

−

− − −

−

 


 
=  

  

+

 + 

= + +

=

d

V y

A d B

Σ
d Σ

β

yΣ V V β

d BV

B

β

E

E

 

where we make use of a subscript colon notation to indicate subvectors (i.e. for a general vector 

x  of length l , we define :
, , )( T

p q p qx x…=x  for 1 p q l≤ < ≤ ). Then following the same arguments 

as the basic FE case (given in appendix A.3), the influence matrix is 1

*

−=H BV  and the thresholds 

are given by equations (5) and (6). 

A.6 Bias adjustment thresholds for the extended FE model 

The extended FE model with parameter vector 
 =  
 

d
γ

µ
 is written 

 
( )
( )0

~ N ,

~ N

|

, γ

γ Xγ V

γ γ Σ

y
  

with posterior distribution 

 ( )( )1 1

0| ,~ N T

n nγ
− −+γ y Σ Σ γ yX V Σ , 

where the posterior covariance matrix is ( ) 1
1 1T

n γ

−− −+=Σ Σ X V X . 

Then the joint posterior expectation of the basic treatment effect parameters d  under the bias-

adjusted data is 

 

� ( ) ( )( )
( )

( )

1 1

0
1: 1

1

1: 1

1

rows 1: 1

T

n
K

T

n
K

T

n
K

m

m

m

γ
− −

−

−

−

−

−

 =  

 +  

 +

+ +

 

=

=

d Σ Σ γ V βX

d Σ X V β

d Σ X V β

yE

E

E

  

where we make use of a subscript colon notation to denote subvectors (as in appendix A.5) and 

similarly to subset rows of a matrix. 
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From here we continue exactly as in the basic case (appendix A.3) to derive bias adjustment 

thresholds using the threshold equations (5) and (6), where the influence matrix is now 

rows 1: 1

1T

K
n

−

−
 =  H X VΣ . 

A.7 Bias adjustment thresholds for the extended RE model 

We extend the RE model to include additional parameters µ , which are given a Normal prior 

distribution, and have an associated design matrix M . We also allow for random effects terms to 

only be included for certain data points, using a design matrix L , for example in the case of 

absolute effect measure data where only non-reference arms have a random effect term (Dias et 

al. 2013a); in most other cases the matrix L  is the identity matrix. The extended RE model is 

written as 

 

( ) ( )
( )

( )2

0 0

2

Priors:

Likelihood:

RE Model:

~ N , , ,

|

~ N

, ,

| , ~

~ N

N ,

d µ

τ
τ

+

Σ µd d µ Σ

δ µ Lδ Mµ V

d Xd Σ

y

δ

  

The posterior distribution is then 

 

1

0

2 1

1 1

0

, ~ N ,

d

T

n n

T

µ

τ

−

−

− −

       
   
     +    

dd

y L V y

M y

Σ

δ Σ Σ

µ Σ µ V

  

where 

 

2 2

2 2

1
1 1 1

* * *
1 1 1 1

* * *

1 1 1
* * *

:

T T

d

T T T

n
T TT T

τ τ

τ τ

µ

−− − −

− − − −

− − −

 −  
   = − − =     −   

+

+

+

Σ X Σ Σ

Σ Σ Σ L

X X 0 A B D

X L L V M B C E

D E F0 M V L

V

Σ M MV

  (A.8) 

noting that, as in the basic RE case, we can partition the posterior covariance matrix into blocks. 

Proof of the posterior distribution follows closely that of the basic RE model in appendix A.4. 

The joint posterior expectation of the basic treatment effect parameters d under the bias-adjusted 

data yɶ  is then 
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� ( ) ( )
( )

( ) ( )

1

0

1

1 1

0
1: 1

1

* *

m

d

T

n

T

K

T

m

T

mµ

−

−

− −

−

−

 
 

+ 
 

 
 

=  
 + +


   

= ++

Σ

d Σ β

Σ µ

d

L V y

M y

L D M V

V β

d B β

E

E

  

Following the same arguments as before (appendix A.2), we see that the thresholds are given by 

equations (5) and (6) where the influence matrix is now ( ) 1

* *

T T −= +H B D M VL . 

A.8 Bias adjustment thresholds for RE models including class effects 

Further extending the RE model of section 2.3.4 to include class effects, we have 

 

( ) ( )
( )

( )
( )

2

0 0

2

Priors:

Likelihood:

Class Effect

RE Mode

s

l:

:

~ N

, ,

| ,

~ N , ,

~ N ,

~ N

| N

,

,

~

z

d

µ

τ
τ

+

z z

y

Σ µ µ Σ

δ µ Lδ Mµ V

δ d Xd Σ

d z Zz Σ

  

where z  is the vector of class effect parameters and the matrix Z  is a design matrix for the 

treatment clasfses. Each row of Z  corresponds to a treatment, which is assigned a class by a 1 in 

the corresponding column and zeros elsewhere in the row. As before, we must work with the 

posterior distribution assuming that 2τ
Σ  is known, fixed, and invariant to bias adjustments; 

furthermore, we now assume that the between-treatment covariance matrix dΣ  is also known, 

fixed, and invariant to bias adjustments. Both of these assumptions can be tested using sensitivity 

analyses. 

The posterior distribution is then 

 

1

2
1 1

0

1

0

, , ~ N ,

T

d n

z

Tn
µ

τ
−

− −

−

       
    +   

      

0d
L V y

y
M

δ
Σ Σ Σ

Σ µ V y

Σz

µ

z

  

where 
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2 2

2 2

1
1 1 1 1

* * * *
1 1 1 1

* * * *

1 1 1
* * * *

1 1 1
* * * *

:

T T

T T T

T Tn T T

T T

d d

d d

TT

z

T

τ τ

τ τ

µ

−− − − −

− − − −

− − −

− − −

 − −  
   − −   = =
 −  
    − +   

+

+

+

X X 0 Z A B D G

X L L V M 0 B C E H

D E F I0 M V L M 0

G H I JZ 0 0 Z

Σ X Σ Σ Σ

Σ Σ L V
Σ

Σ M V

Σ ZΣ Σ

 

noting that, as in the basic RE case, we can partition the posterior covariance matrix into blocks. 

Proof of the posterior distribution follows closely that of the basic RE model in appendix A.4. 

The joint posterior expectation of the basic treatment effect parameters d under the bias-adjusted 

data yɶ  is then 

 

� ( )

( ) ( )

1

1 1

0

1

0 1: 1

1

* *

T

z

T

T

m

n

K

T

µ

−

− −

−

−

−

 
 

 
 
 =
 
 

 
+ 

 
 

=



+ +



0

L V y

M y

z

L D M

d Σ
Σ µ V

B βV

Σ

d

E

E

  

Following the same arguments as before (appendix A.3), we see that the thresholds are given by 

equations (5) and (6) where the influence matrix is now ( ) 1

* *

T TH −= +B D M VL . Note that the 

influence matrix is identical to that in the extended RE case; we need do nothing different to the 

extended RE case despite the presence of class effects. 

A.9 Forming an approximate dataset for contrast-level analysis 

Suppose that we have the posterior summaries available from a one-stage Bayesian analysis for 

basic treatment effect parameters ( )2 , ,
T

Kdd …=d , with joint posterior distribution given by 

( )| N ,~d y η Σ . We wish to obtain a bias adjustment threshold for the combined data on each 

contrast abd  for which there is direct evidence, dirabd ∈D , where dirD  is the set of contrasts with 

direct evidence. We may think of the posterior distribution as arising from a NMA on 

( )dir
1 2K K≤ −D  data points aby  with variances abv . These data points are hypothetical and are 

treated as independent of one another, each representing the combined evidence on a single 

contrast. 
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Assume a multivariate Normal likelihood for these hypothetical data points: ( )~ N ,y d Xd V  

where ( )dir:
T

aab by d= ∈y D  , ( )dir
diag :ab abv d ∈=V D , and X is a design matrix. Giving d  the 

conjugate prior distribution ( )0
,~ N dd d Σ  we have that the reconstructed posterior distribution 

based on the hypothetical data points is 

 ( ) ( ) ( )( )1 1
1 1 1 1 1 1

0| ~ N ,T T T

d d d

− −− − − − − −+ + +d y V d V y VΣ X X Σ X Σ X X . 

Equating this with the true joint posterior distribution ( )N ,η Σ  reported by the original NMA, we 

see that ( ) ( )1 1
1 1 1 1

0

T

d

T

d

− −− − − −= + +η Σ X X Σ VXV d y  and 

 ( ) 1
1 1T

d

−− −= +Σ Σ X XV .  (A.9) 

In order to calculate bias adjustment thresholds using the results of section 2.3.2, we require the 

influence matrix 1T −=H ΣX V . However, we cannot immediately evaluate H  as the hypothetical 

likelihood precision matrix 1−V  is required. Instead, exploiting the structure of the design matrix 

X , we obtain 1−V  (or an approximation) using equation (A.9) which we then use to evaluate the 

influence matrix and derive thresholds. 

To obtain 1−V , firstly, note that there are dir
D  unknowns in 1−V , as this matrix is diagonal with 

elements 1

ab abp v−=  by assumption. Secondly, note that X  is structured with a row for each data 

point 
aby , with a 1 in column 1b −  and, provided 1k > , with a –1 in column 1a − ; this structure 

results in the symmetric matrix 

 

( )

12 2 23 24 2

3

13 23 3 34 3

4
1 3

14 4 4

2 5

1

1

1

2

K

b K

b
K

b K

b
T K

a b

a b

K K

K

K aK

a

p p p p p

p p p p p

p p p

p

p p

=

=
−

= =

−

−

=

 
+ − − − 

 
 + + − − 
 =  + +
 
 −
 
 + 
 

∑

∑

∑ ∑

∑

X V X

⋯

⋯

⋱ ⋮

⋱
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where 0abp =  if dirabd ∉D . We then rearrange equation (A.9) to equate 1 1 1

d

T − − −= −X Σ ΣX V , 

resulting in ( )1 2K K −  equations to solve in dirD  unknowns as the matrices are symmetric.  

When the evidence network is complete ( )dir
1 2K K= −D  and the number of equations equals 

the number of unknowns. We therefore easily find a unique solution for each abp .  

When there are some treatments with no direct evidence comparing them ( )dir 1 2K K< −D  and 

we have fewer unknowns than equations; the system of equations is overdetermined. We proceed 

to approximate 1−V  using non-negative least squares (Lawson and Hanson 1995).  

To examine how well the hypothetical likelihood recreates the posterior distribution we suggest 

evaluating the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951) of the reconstructed 

posterior distribution with covariance matrix ( ) 1
1 1:ˆ T

d

−− −= + VXΣ Σ X  from the true posterior 

distribution with covariance matrix Σ ; the KL divergence between two multivariate Normal 

distributions with the same mean is given by 

 ( ) ( )11
log tr 1

2

ˆ
ˆ K−

 
 + − −
 
 

Σ
Σ Σ

Σ
 . 

The KL divergence is always non-negative and smaller values are desirable, indicating that the 

approximation reconstructs the posterior distribution well. Noting that the KL divergence is 

equivalent to the expected value of a log Bayes factor, we refer to Kass and Raftery (1995) for 

interpretation: for example, a KL divergence less than 1 is negligible, and values greater than 3 

may be considered large. If evaluation of the KL divergence suggests a bad approximation, the 

contrast-level threshold analysis may give inaccurate results. 

Once the hypothetical likelihood covariance matrix has been reconstructed, the thresholds are then 

evaluated as before using equations (5) and (6) with the influence matrix 1T −=H ΣX V . Note that 

we cannot re-evaluate the posterior means under the bias-adjusted data to obtain *kɶ  as we do not 

have the hypothetical data, but we can use the result of Lemma 1 (appendix A.1) to efficiently 

obtain the new optimal treatment. 
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A.10 Computation 

The threshold methods described in sections 2.3, 2.4, and 2.5 are implemented in R (version 3.0.1 

or later) (R Core Team 2016), where we take advantage of the computational efficiency of vector 

and matrix operations to derive every threshold at the same time instead of looping over all data 

points and all treatments. In section A.10.1 we briefly demonstrate how such an approach is 

formulated mathematically. The resulting computation times are almost instantaneous; the 

examples presented in section 3 of this paper each took less than 0.01 seconds to calculate 

thresholds on a standard desktop PC. An R package nmathresh is provided in the supplementary 

material, containing all of the functions described below plus the data required for the examples 

in section 3. The package also contains a vignette which details the exact commands used for the 

examples. 

The R function nma_thresh implements the study-level threshold method for FE models (sections 

2.3.2 and 2.3.4) and RE models (sections 2.3.3, 2.3.4, and 2.3.5), depending on the value of the 

nmatype parameter (either “fixed” or “random” respectively). This function takes the posterior 

mean of the relative treatment effects, the likelihood and posterior covariance matrices, and the 

design matrix/matrices as inputs. The R function nma_thresh is also used to perform contrast-level 

analysis (section 2.4). In this scenario the hypothetical likelihood covariance matrix is constructed 

from the prior and posterior covariance matrices and the design matrix using the R function 

recon_vcov, either exactly or using non-negative least squares (NNLS) (Lawson and Hanson 1995) 

via the function nnls from the package nnls (Mullen and van Stokkum 2012). The R function 

thresh_forest takes the results from the NMA and threshold analysis and presents them graphically 

on a forest plot.  

A.10.1 Mathematical derivation 

Here we briefly describe mathematically the derivation of bias adjustment thresholds in a 

vectorised manner, allowing for highly efficient computation that does not rely on looping. 

First, define a matrix U  which contains the elements *
,ak m

u  : 
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( ) ( )

( ) ( )

* *

* * * *

* * * *

* *

1 ,1 1 ,

1 ,1 1

1 ,1 1 ,

,1

,

,

k k N

k k k k

k k k k N

K Kk N

N

k

u u

u u

u u

u u

−

+ +

−

 
 
 
 

=  
 
 
  
 

U

⋯

⋮ ⋮

⋯

⋯

⋮ ⋮

⋯

  

where each row corresponds to a contrast *ak
d  and each column to a data point my . 

Recall that each *
,ak m

u  is of the form ( ) [ ] [ ]( )* * *, 1, 1,ak m ak k m a m
u d

− −
= − −H HE  where H  is the 

influence matrix of the data y  on the joint posterior mean of d , and so each *
,ak m

u  consists of a 

numerator and denominator. Next construct the matrix D  which describes the linear combinations 

of elements of the influence matrix found in the denominator of each *
,ak m

u  element of B : 

 

0 0 1 0 0

1 1

0 0

1 1 0

0 1 1

0

0

0 0 1 0 0 1

 
 −
 
 

− =
− 

 
 
 

− 

D

⋱ ⋮ ⋮ ⋮

⋱ ⋮ ⋮ ⋮

⋮ ⋱ ⋮

⋮ ⋱ ⋮

⋮ ⋮ ⋮ ⋱ ⋱ ⋮

⋮ ⋮ ⋮ ⋮ ⋱ ⋱

⋯ ⋯

⋯ ⋯ ⋯

  

where the ( )* 1 -thk −  column of D  is filled with 1s. We can now write the matrix U  using the 

formula 

 ( ) { }( ) ( )*

*diag 1: 1, ,
ak

d a K k∈ …   = −   
U DH∖E  (A.10) 

where ( ) { }( )*

*: 1d g , ,ia
ak

d a K k∈ …E ∖  denotes the diagonal matrix with elements being the 

posterior expected values of contrasts associated with *k , and ( )1 DH  denotes division performed 

elementwise, that is ( ) [ ]
,,

1 1
i ji j

  = DH DH . Threshold values and invariant intervals for each 

data point my  are then simply found by examining the -thm  column of U from equation (A.10). 
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A.11 Thrombolytics Example: Formulating the NNLS problem for the contrast-level case 

The design matrix for the hypothetical data is 

 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

 
 
 
 

=  
− 

 −
 − 

X . 

We need now to reconstruct the hypothetical likelihood covariance matrix V . Letting the 

likelihood precision matrix 1−V  have diagonal elements 12 13 14 15 34 35 36, , , , , ,p p p p pp p , we see that  

 

12

13 34 35 36 34 35 36
1

14 34

15 35

36

0 0 0 0

0 0

0

T

p

p pp p p

p

p

p p

p

p p

−

 
 − − −
 =  
 
 
 

+ + +
+

+
X V X   (A.11) 

then using the fact that 1 1 1T

n d

− − −= + X VΣ Σ X  we equate (A.11) with 

 

22 23 24 25 26

33 34 35 36
1 1

44 45 46

55 56

66

n d

q q q q q

q q q q

q q q

q q

q

− −

 
 
 − =  
 
 
 

Σ Σ   (A.12) 

Thus we have a system of ( )1 2 15K K − =  equations with ( )length 7=y  unknowns to solve; an 

overdetermined system. We can write the system of equations (A.11) and (A.12) in the form 

R =p q , where 

 
( )

( )
12 13 14 15 34 35 36

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

, , , , , ,

, , , , , , , , , , , ,, ,

T

T

p p p p p p

q q q q q q q q q q q q

p

q qq

=

=

p

q
 

and 
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1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 1 1 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 1 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

 
 
 
 
 
 
 
 − 

= − 
− 

 
 
 
 
 
 
 
 

R . 

The NNLS problem is then 

 

2
Minimise

Subject to 0

−

≥

Rp q

p
  

A.12 Social Anxiety Example: Treatment Codes 

Table A1: Social Anxiety treatment codes and classes. 

Code Treatment Class 

   
1 Wait List Wait List 

2 Pill Placebo Pill Placebo 

3 Psychological Placebo Psychological Placebo 

4 Exercise Promotion Exercise 

5 Book 
Self-help without support 

6 Internet 

7 Book 
Self-help with support 

8 Internet 

9 Pregabalin 

Anticonvulsants 10 Levetiracetam 

11 Gabapentin 

12 Mirtazapine Noradrenaline and selective serotonin antagonists 

13 Sertraline 

SSRIs 

14 Citalopram 

15 Escitalopram 

16 Fluoxetine 

17 Fluvoxamine 

18 Paroxetine 
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19 Venlafaxine 

20 Alprazolam 
Benzodiazepines 

21 Clonazepam 

22 Moclobemide 
MAOIs 

23 Phenelzine 

24 Exposure in vivo 
Exposure in vivo and social skills training 

25 Social skills training 

26 Supportive therapy 

Other psychological interventions 27 Mindfullness 

28 Interpersonal 

29 Short-term psychodynamic Short-term psychodynamic 

30 CBT 

CBT - Group 31 CBT (Heimberg) 

32 CBT (Enhanced) 

33 CT (Shortened) 

CBT - Individual 
34 CBT (Heimberg) 

35 CBT 

36 CT 

37 Group CBT with fluoxetine 

Combined psychological and drug 

38 Psychodynamic with clonazepam 

39 Paroxetine with clonazepam 

40 Group CBT with moclobemide 

41 Group CBT with phenelzine 

   
 


