1	Supporting Information
2	Fluconazole-induced actin cytoskeleton remodeling requires phosphatidylinositol 3-
3	phosphate 5-kinase in the pathogenic yeast Candida glabrata
4	Priyanka Bhakt, Raju Shivarathri, Deepak Kumar Choudhary, Sapan Borah and Rupinder Kaur
5	
6	Supplementary material includes three tables (Supplementary Tables 1-3) and eight figures
7	(Supplementary Figures 1-8).
8	
9	Supplementary Tables
10	Table S1: Tn7 mutants identified in the genetic screen for altered fluconazole susceptibility
11	profiles.
12	Table S2: List of strains and plasmids used in the study
13	Table S3: List of primers used in the study
14	
15	Legends to Supplementary Figures
16	Figure S1: The $Cgfab1\Delta$ mutant responds to azole stress through activation of the MDR
17	pathway.
18	A. qPCR-based measurement of CgCDR1 and CgPDR1 transcript levels in log-phase wt and
19	Cgfab1 Δ cultures. Data (mean \pm SEM, n = 3-5) represent fold change in expression in
20	fluconazole-treated samples compared to untreated cultures. **, p<0.01; ***, p<0.001,
21	paired two-tailed Student's t-test.
22	B. Glucose-induced rhodamine 6G (R6G) efflux by 4 h fluconazole-treated and untreated log
23	phase cultures. Glucose-starved cells were preloaded with 10 μ M R6G for 2 h at 30°C and

24	the supernatant fluorescence, read-out of R6G extracellular concentration, was measured
25	after 20 min of glucose (2 mM) addition. Data (mean \pm SEM, n = 6-8) are expressed in
26	arbitrary units (AU).
27	C. Serial dilution cell spotting assay showing azole resistance-conferring ability of the
28	$CgPDR1$ -GOF ($CgPDR1^{L280F}$) allele in the $Cgfab1\Delta$ mutant. Fluconazole was used at a
29	concentration of 16 μ g/ml (FLC-16) and 64 μ g/ml (FLC-64).
30	Figure S2: CgFab1 is required for vacuole functions.
31	A. Schematic illustration of domain structure of the CgFab1 protein as predicted by the NCB1
32	Conserved Domain tool. The diagram is not drawn to scale.
33	B. Serial dilution cell spotting assay illustrating sensitivity of the $Cgfab1\Delta$ mutant to
34	manganese chloride (MnCl ₂ ; 3 mM) and zinc chloride (ZnCl ₂ ; 8 mM).
35	C. Western blot analysis of whole-cell extracts (40 μ g) from indicated 12 h YPD-grown C.
36	glabrata cells.
37	D. Serial dilution spotting analysis illustrating CgFab1-GFP-mediated complementation of
38	fluconazole (16 μ g/ml; FLC), clotrimazole (2 μ g/ml; CTZ) and manganese chloride (3
39	mM; MnCl ₂) sensitivity of the <i>Cgfab1</i> Δ mutant.
40	E. Serial dilution spotting analysis illustrating growth of $Cgfab1\Delta$, $Cgvps15\Delta$, $Cgvps34\Delta$ and
41	Cgyps1-11 Δ mutants in the CAA medium lacking or containing fluconazole (16 μ g/ml
42	FLC) and clotrimazole (2 μ g/ml; CTZ). Plate images were captured after growth at 30°C
43	for 1-2 days.
44	Figure S3: Fluconazole treatment downregulates CgFAB1 gene expression.
45	A. qPCR-based measurement of CgFAB1 transcript levels in fluconazole-treated wt cultures.
46	Data (mean \pm SEM, n = 5) were normalized against the CgGAPDH mRNA control, and

47 represent fold change in expression in fluconazole-treated samples (FLC) compared to
48 untreated cultures (CAA). **, p<0.01, paired two-tailed Student's t-test.

- **B.** Jasplakinolide treatment did not rescue large-vacuole phenotype of the $Cgfab1\Delta$ mutant.
- Log phase *Cgfab1*∆ cultures were either grown in the CAA medium (CAA) or CAA
 medium containing 750 ng/ml of jasplakinolide (JSP) at 30°C. After 2 h, cells were
- 52 collected, stained with FM4-64 and imaged using confocal microscopy. Bar = $2 \mu m$.

Figure S4: Varied azole susceptibility of the clinical isolates of *C. glabrata*. Serial dilution cell spotting analysis showing fluconazole susceptibility of *C. glabrata* clinical isolates. 4 isolates showed *wt*-like sensitivity to fluconazole (16 μ g/ml; FLC-16), while 6 isolates displayed resistance

to fluconazole [(64 μ g/ml; FLC-64 (FLC-R)].

57 Figure S5: CgCap2 is required for organization of the actin cytoskeletal network.

- 58 **A.** Representative confocal images showing loss of actin cables and rounded morphology in 59 rhodamine-phalloidin-labelled *Cgcap2* Δ cells. White and yellow arrows mark actin cables 60 and patches, respectively. Bar = 1 μ m.
- B. Serial dilution cell spotting assay showing azole resistance in the *Cgcap2Δ* mutant.
 Fluconazole [(FLC-16 (16 µg/ml), FLC-32 (32 µg/ml) and FLC-64 (64 µg/ml)], and
 clotrimazole [(CTZ-2 (2 µg/ml) and CTZ-6 (6 µg/ml)] were used. Ectopic expression of
 CgCap2-GFP reverted the azole resistance in the *Cgcap2Δ* mutant to *wt*-levels.

Figure S6: Actin cytoskeletal-defective mutants display increased intracellular sterol accumulation.

67 **A.** Representative confocal images showing decreased intracellular sterol accumulation in 68 *Cgfab1* Δ cells treated with jasplakinolide (750 ng/ml; JSP) for 2 h. Fluconazole 69 concentration used was 16 µg/ml. For each sample, a minimum of 200 cells displaying

70	filipin fluorescence were counted, and data (mean \pm SEM) are presented, as the percentage
71	of cells with intracellular filipin signal, on the right side of panels. *, p<0.05; **, p<0.01.
72	Unpaired, two-tailed, Student's t-test. Bar = $1 \mu m$.
73	B. CAA liquid growth assay-based analysis of amphotericin B (3 μ g/ml) resistance in the
74	$Cgfab1\Delta$ mutant.
75	C. Representative confocal images showing higher levels of intracellular sterols in filipin-
76	stained $Cgbem2\Delta$, $Cgbnr1\Delta$::Tn7 and $Cgpan1\Delta$::Tn7, mutants. The $Cgcdr1\Delta$ mutant did
77	not accumulate sterols intracellularly. Red arrows indicate intracellular filipin staining. Bar
78	$= 1 \ \mu m.$
79	D. qPCR-based measurement of indicated <i>CgERG</i> gene transcript levels in <i>wt</i> and <i>Cgfab1</i> Δ
80	cultures. Data (mean \pm SEM, n = 3-5) were normalized against the CgGAPDH mRNA
81	control, and represent fold change in expression in the $Cgfab1\Delta$ mutant compared to the wt
82	strain.
83	Figure S7: Molecular docking analysis of CgCof1 with PI(3,5)P2 and CgAct1 using the
84	Autodock Vina and Z-DOCK servers, respectively. CgAct1 and PI(3,5)P2 showed binding to
85	same residues (Lys36, Arg96, Ser103 and Ser104) in CgCof1.
86	Figure S8: $Cgvac7\Delta$ and $Cgvac14\Delta$ mutants contain large vacuole and are azole sensitive.
87	A. Serial dilution cell spotting assay showing sensitivity of $Cgvac7\Delta$ and $Cgvac14\Delta$ mutants
88	towards azoles. Fluconazole (FLC), clotrimazole (CTZ) and ketoconazole (KTZ) were
89	used at a concentration of 16 μ g/ml, 2 μ g/ml and 4 μ g/ml, respectively.
90	B. Representative confocal images of FM4-64 stained, YPD-grown log-phase cultures of
91	indicated C. glabrata strains. Bar = $2.0 \ \mu m$.

4

- 92 C. Liquid growth assay-based analysis of jasplakinolide (750 ng/ml; JSP)-mediated rescue of
- 93 fluconazole (48 μ g/ml; FLC) sensitivity.

94

Table S1: Tn7 mutants identified in the genetic screen for altered fluconazole susceptibility profiles.

Gene name	CAGL ID	Tn7 insertion position (<i>nt</i>)	ORF length (<i>nt</i>)	Function of the S. cerevisiae ortholog
	nts identified in the flucor		<u>tance sc</u>	reen
	ar protein modification proc			
SET2	CAGL0C00297g	1428	2151	Histone methyltransferase with a role in transcriptional elongation; methyletes U_2 hving 26 (U_2V_26)
HST1	CAGL0C05357g [#]	802	1530	methylates H3 lysine 36 (H3K36) NAD ⁺ -dependent histone deacetylase
SET4	CAGL0G04499g	36	1053	Protein of unknown function; contains a SET domain
	elle organization	20	1000	
HMI1	CAGL0107623g	902	2136	Mitochondrial inner membrane localized ATP-dependent DNA helicase
CCE1	CAGL0L05346g	118	996	Mitochondrial cruciform cutting endonuclease; cleaves Holliday junctions formed during recombination mitochondrial DNA
-	nse to stress			
SWI4	CAGL0A04565g	2185	3126	DNA binding component of the SBF complex (Swi4-Swi6)
	CAGL0C02541g	568	1932	Protein involved in transcription initiation; functions at TATA- containing promoters; associates with the basal transcription factor TFIID
	entous growth	756	1502	Cutopleamic nucleonorin required for polyadanylated mPNA apports
	<i>CAGL0J09636g</i> n catabolic process	/30	1593	Cytoplasmic nucleoporin required for polyadenylated mRNA export; contains a nuclear export signal
	CAGL0J01353g	2343	2484	Mitochondrial inner membrane m-AAA protease component; mediates
111112	0110200010008	2313	2101	degradation of misfolded or unassembled proteins
RNA n	netabolic process			
	CAGL0L05038g	1159	1542	Protein involved in early pre-mRNA splicing; component of the pre- mRNA-U1 snRNP complex, the commitment complex
	e-mediated transport	2600	4050	
CHCI	CAGL0A03718g	3608	4959	Clathrin heavy chain; subunit of the major coat protein involved in intracellular protein transport and endocytosis
Mutai	nts identified in the flucor	nazole sensi	itivity sc	reen
	metabolic process			
ERG4	$CAGLOAO0429g^{\#}$	170	1395	C-24(28) sterol reductase; catalyzes the final step in ergosterol biosynthesis
UPC2	$CAGL0C01199g^{\#}$	838	2769	Sterol regulatory element binding protein; induces sterol biosynthetic
PDR16	5 CAGL0J07436g [#]	884	1035	genes Phosphatidylinositol transfer protein (PITP); controlled by the multiple drug resistance regulator Pdr1
FAB1	CAGL0K10384g	5681	6315	1-phosphatidylinositol-3-phosphate 5-kinase; vacuolar membrane
11101	eneloniolog	5001	0010	kinase that generates phosphatidylinositol (3,5)P2, which is involved in vacuolar sorting and homeostasis
BST1	CAGL0K12408g	1751	3036	GPI inositol deacylase of the endoplasmic reticulum; negatively regulates COPII vesicle formation
	netabolic process			
PGD1	CAGL0A01325g [#]	1252	1434	Subunit of the RNA polymerase II mediator complex; associates with
MED2	CAGL0C04477g [#]	318	1107	core polymerase subunits to form the RNA polymerase II holoenzyme Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA polymerase II holoenzyme
HF11	CAGL0H00616g	1113	1356	Adaptor protein required for structural integrity of the histone acetyltransferase-coactivator SAGA complex
SLT2 Transj	<i>CAGL0J00539g[#]</i> port	557	1467	Serine/threonine MAP kinase of the PKC MAPK pathway
	CAGL0A00385g	1503	3210	Karyopherin beta; responsible for import of the Toa1-Toa2 complex into the nucleus
ITR2	CAGL0I07447g	1446	1713	Myo-inositol transporter; member of the sugar transporter superfamily
THO2	CAGL0J05654g	2416	4707	Subunit of the THO complex; THO is required for efficient transcription elongation and involved in transcriptional elongation- associated recombination

	<i>CAGL0J08712g</i> eleton organization	611	1242	High affinity, broad selectivity, nucleoside/nucleobase transporter; vacuolar membrane-localized transporter
	CAGL0H06765g [#]	1747	3885	Formin; nucleates the formation of linear actin filaments; involved in processes such as budding and mitotic spindle orientation which require the formation of polarized actin cables
BEM2	<i>CAGL0106512g</i> [#]	1997	6360	Rho GTPase activating protein (RhoGAP); involved in the control of cytoskeleton organization and cellular morphogenesis; required for bud emergence
PAN1	$CAGL0J01892g^{\#}$	698	4125	Part of actin cytoskeleton-regulatory complex Pan1-Sla1-End3; associates with actin patches on cell cortex; promotes protein-protein interactions essential for endocytosis
Regula	tion of nitrogen utilization			·
	CAGL0104114g	1174	2733	Central component of GID Complex, involved in FBPase degradation
URE2	CAGL0J07392g	224	1068	Nitrogen catabolite repression transcriptional regulator; inhibits GLN3 transcription in good nitrogen source
Protein	n folding			
EMC1	CAGL0B00660g	1459	2241	Member of conserved endoplasmic reticulum membrane complex; involved in efficient folding of proteins in the ER
Biofilm	n formation			
NRG2	CAGL0L07480g	630	945	Transcriptional repressor; mediates glucose repression and negatively regulates filamentous growth
Miscell	aneous			
	CAGL0A00165g	16	840	
DNM1	CAGL0D05808g	8	2331	Dynamin-related GTPase involved in mitochondrial organization; required for mitochondrial fission and inheritance
EFR3	CAGL0F03773g	1637	2250	Protein required for Stt4-containing PI kinase complex localization
SAS2	CAGL0K03773g	793	1062	Histone acetyltransferase (HAT) catalytic subunit of the SAS complex; acetylates free histones and nucleosomes and regulates transcriptional silencing
NVJ2	CAGL0K08030g	657	2277	Lipid-binding ER protein, enriched at nucleus-vacuolar junctions
RPH1	CAGL0L11880g	1456	2943	JmjC domain-containing histone demethylase; targets tri- and dimethylated H3K36

Functional classification was performed using the GO Slim Mapper tool at CGD (http://www.candidagenome.org/cgibin/GO/goTermMapper). #Genes previously implicated in azole tolerance.

Yeast strain	Genotype	References
BG2	Clinical isolate	Fidel et al., 1996
YRK19	<i>ura3∆::Tn903 G418R</i> (BG14)	Cormack and Falkow, 1999
YRK20	URA3 (BG462)	Orta-Zavalza et al., 2013
YRK531	URA3 Cgbem2A::nat1	Borah <i>et al.</i> , 2011
YRK695	$URA3 Cgvps15\Delta::nat1$	Rai et. al., 2015
YRK710	$URA3 Cgvps34\Delta::nat1$	Rai et. al., 2015
YRK870	C. glabrata isolate from the oral mucosa of a diabetic patient	Gift from Dr. Shukla Das
YRK981	URA3 Cgprc1 Δ ::nat1	Bairwa <i>et al.</i> , 2014
YRK1070	$ura3\Delta$::Tn903 G418R Cgfab1 Δ ::nat1	This study
YRK1139	$ura3\Delta$::Tn903 G418R Cgfab1 Δ ::nat1/pRK1033	This study
YPS1205	URA3 Cgyps1-11A::hph	Kaur et. al., 2007
YRK1287	URA3 Cgfab1 Δ ::nat1	This study
YRK1297	Cgpan1∆::Tn7	Borah <i>et al.</i> , 2011
YRK1413	ura3A::Tn903 G418R (YRK19)/pRK1018	This study
YRK1414	$ura3\Delta$::Tn903 G418R Cgfab1 Δ ::nat1/pRK1018	This study
YRK1433	$ura3\Delta$::Tn903 G418R Cgfab1 Δ ::nat1/pRK1107	This study
YRK1519	YRK20/CgPDR1 ^{L280F}	This study
YRK1520	$ura3\Delta$:: $Tn903 G418R Cgfab1\Delta/CgPDR1^{L280F}$	This study
YRK1533	$ura3\Delta$::Tn903 G418R Cgfab1 Δ ::nat1/pRK1144	This study
YRK1601	$URA3 Cgvac14\Delta::nat1$	This study
YRK1692	URA3 Cgvac7\Delta::nat1	This study
YRK1966	Cgbnr1\Delta::Tn7	Borah et al., 2011
YRK2144	ura3∆::Tn903 G418R (YRK19)/pRK1409	This study
YRK2148	$ura3\Delta$::Tn903 G418R Cgfab1 Δ ::nat1/pRK1409	This study
YRK2171	ura3A::Tn903 G418R (YRK19)/pRK1411	This study
YRK2181	$ura3\Delta$::Tn903 G418R Cgfab1 Δ ::nat1/pRK1411	This study
YRK2359	ura3A::Tn903 G418R (YRK19)/pRK1493	This study
YRK2285	ura3A::Tn903 G418R (YRK19)/pRK1476	This study
YRK2287	<i>C. glabrata</i> isolate from the vitreous fluid of patient with ocular infection	Gift from Dr. S. Shivaji
YRK2288	<i>C. glabrata</i> isolate from the corneal scrapping of patient with ocular infection	Gift from Dr. S. Shivaji
YRK2289	<i>C. glabrata</i> isolate from the vitreous fluid of patient with ocular infection	Gift from Dr. S. Shivaji
YRK2290	<i>C. glabrata</i> isolate from the vitreous fluid of patient with ocular infection	Gift from Dr. S. Shivaji
YRK2291	<i>C. glabrata</i> isolate from the corneal scrapping of patient with ocular infection	Gift from Dr. S. Shivaji

Table S2: List of strains and plasmids used in the study.

YRK2301	$ura3\Delta$::Tn903 G418R Cgcap 2Δ ::nat1	This study
YRK2315	ura3A::Tn903 G418R Cgcap2A::nat1/pRK1409	This study
YRK2340	<i>C. glabrata</i> isolate from the blood	Gift from Dr. Arunaloke Chakrabarti
YRK2341	<i>C. glabrata</i> isolate from the blood	Gift from Dr. Arunaloke Chakrabarti
YRK2342	<i>C. glabrata</i> isolate from the blood	Gift from Dr. Arunaloke Chakrabarti
YRK2344	<i>C. glabrata</i> isolate from the ascitic fluid	Gift from Dr. Arunaloke Chakrabarti
Plasmid	Description	References
pRK74	A CEN-ARS plasmid (pGRB2.2) of <i>C. glabrata</i> carrying <i>S. cerevisiae URA3</i> as a selection marker. MCS sites are flanked by <i>S. cerevisiae PGK1</i> promoter at one end and by 3' UTR of <i>HIS3</i> at the other end.	Frieman <i>et al.</i> , 2002
pRK949	pSF67, plasmid with CgPDR1 hyperactive allele (<i>CgPDR1</i> ^{L280F}) (DSY565)	Sanglard laboratory
pRK1018	pGRB2.3 plasmid	Addgene (Plasmid #45343)
pRK1033	CgFAB1 (6.31 kb) cloned in BamHI-SalI sites of pRK74 plasmid	This study
pRK1107	<i>CgFAB1</i> (6.31 kb) cloned in BamH <i>I</i> -Xma <i>I</i> sites of pGRB2.3 plasmid (pRK1018)	This study
pRK1144	$C_{gFAB1}^{GKSG \rightarrow VKSV}$ cloned in the pRK74 plasmid	This study
pRK1349	SFB (S-protein-FLAG epitope-streptavidin-binding peptide) tag cloned in PCU-PDC1 (ADD Gene #45323) in <i>EcoRI-Sall</i> sites	Kaur Laboratory
pRK1409	<i>CgCAP2</i> (0.813 kb) cloned in Spe <i>I</i> -Xma <i>I</i> sites of pGRB2.3 plasmid (pRK1018)	This study
pRK1411	<i>CgCOF1</i> (0.908 kb) cloned in Spe <i>I</i> -BamH <i>I</i> sites of pGRB2.3 plasmid (pRK1018)	This study
pRK1476	<i>CgCOF1</i> (0.908 kb) cloned in Spe <i>I</i> -BamH <i>I</i> sites of pRK1349 plasmid	This study
pRK1493	<i>CgCAP2</i> (0.813 kb) cloned in Spe <i>I</i> -Xma <i>I</i> sites of pRK1349 plasmid	This study
pRK1494	<i>CgCOF1</i> cloned in pET28a vector at <i>EcoRI-XhoI</i> sites of pET28-a plasmid	This study

References

Bairwa, G., Rasheed, M., Taigwal, R., Sahoo, R., and Kaur, R. (2014) GPI (glycosylphosphatidylinositol)linked aspartyl proteases regulate vacuole homoeostasis in *Candida glabrata*. *Biochem J* **458**: 323–334.

Borah, S., Shivarathri, R., and Kaur, R. (2011) The Rho1 GTPase-activating protein CgBem2 is required for survival of azole stress in *Candida glabrata*. *J Biol Chem* **286**: 34311–34324.

Cormack, B.P., and Falkow, S. (1999) Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen *Candida glabrata*. *Genetics* **151**: 979–987.

Fidel, P.L., Cutright, J.L., Tait, L., and Sobel, J.D. (1996) A murine model of *Candida glabrata* vaginitis. *J Infect Dis* **173**: 425–431.

Frieman, M.B., McCaffery, J.M., and Cormack, B.P. (2002) Modular domain structure in the *Candida* glabrata adhesin Epa1p, a beta1,6 glucan-cross-linked cell wall protein. *Mol Microbiol* **46**: 479–492.

Kaur, R., Ma, B., and Cormack BP (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of *Candida glabrata*. *Proc Natl Acad Sci USA* **104**: 7628-7633

Orta-Zavalza, E., Guerrero-Serrano, G., Gutierrez-Escobedo, G., Canas-Villamar, I., Juarez-Cepeda, J., Castano, I., and Las Penas, A. De (2013) Local silencing controls the oxidative stress response and the multidrug resistance in *Candida glabrata*. *Mol Microbiol* **88**: 1135–1148.

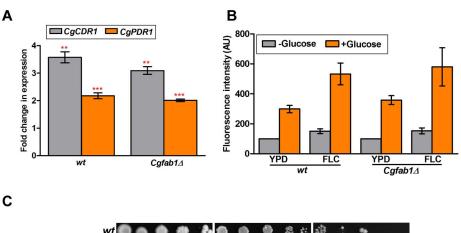
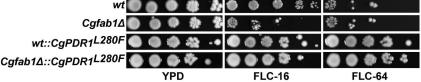
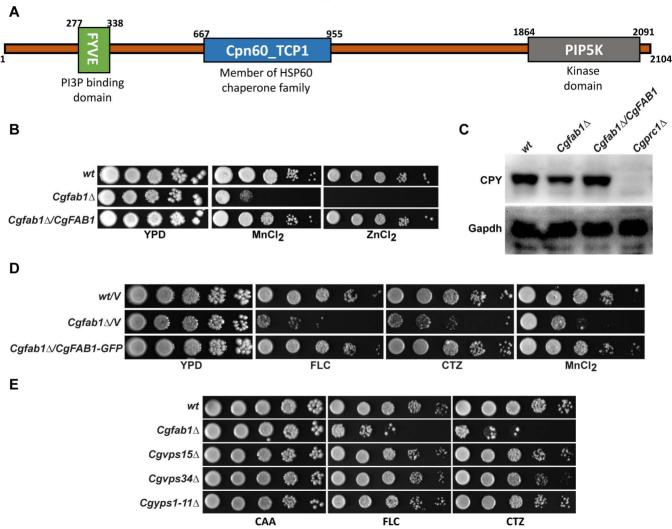
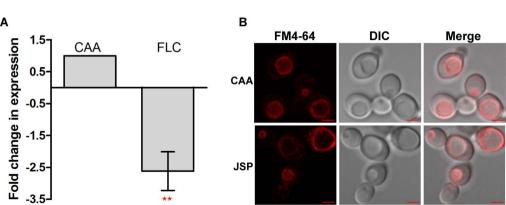
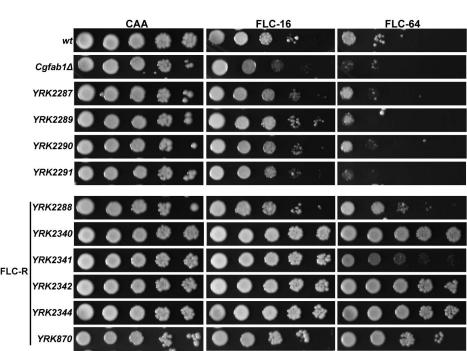
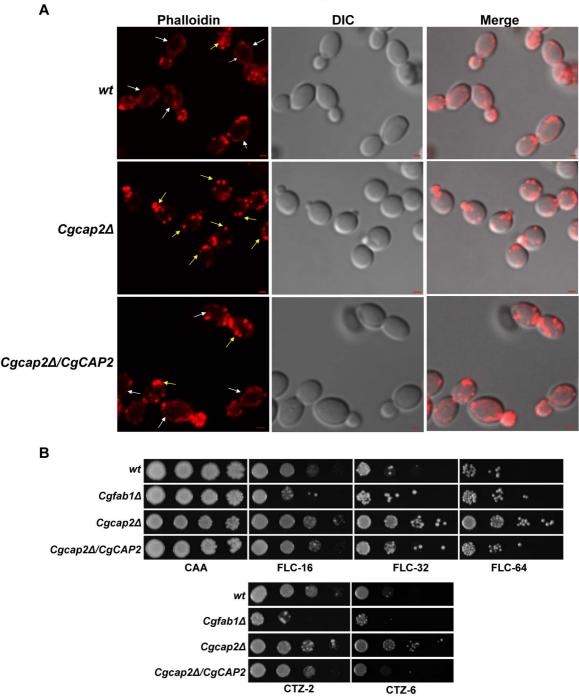

Rai, M. N., Sharma, V., Balusu, S., and Kaur, R. 2015. An essential role for phosphatidylinositol 3-kinase in the inhibition of phagosomal maturation, intracellular survival and virulence in *Candida glabrata*. *Cell Microbiol* **17**: 269-287.

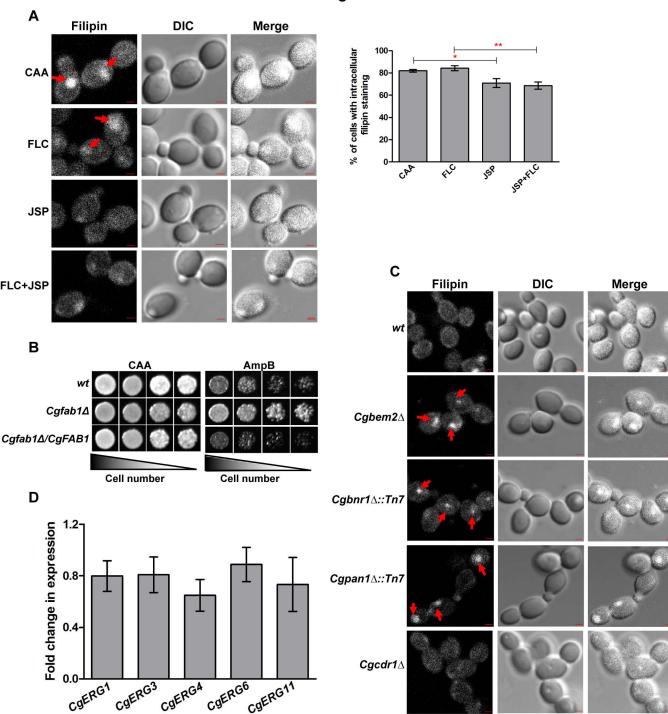
Table S3: List of primers used in the study.

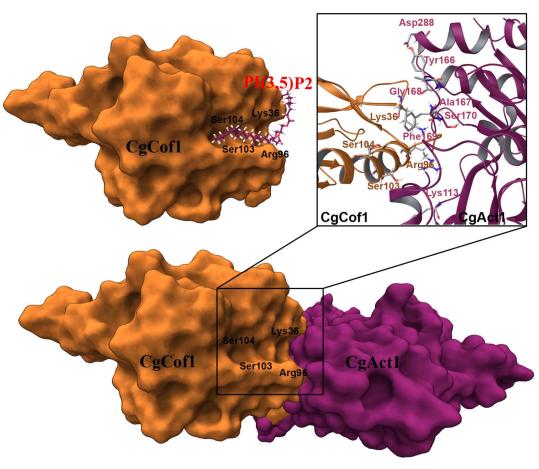
Primer	Sequence $(5' \rightarrow 3')$	Description
For generation	on of deletion strains	
OgRK986	CGTCCGCAAAATCTTCATCT	CgFAB1 5'UTR Forward
OgRK987	GCGTCGACCTGCAGCGTACGATAGGCCAACGCAACTCATT	CgFAB1 5'UTR Reverse
OgRK988	CGACGGTGTCGGTCTCGTAGCACCAACTGCCGTGTAAGGT	CgFAB1 3'UTR Forward
OgRK989	ATGACAGAAATAGCGCAGCA	CgFAB1 3'UTR Reverse
OgRK990	GAGTCATCGTCGCTCCATTC	<i>CgFAB1</i> 5' Integration check Forward
OgRK991	TATTACCGCCTGCAACTCCT	<i>CgFAB1</i> 3' Integration check Reverse
OgRK1366	CTGGAACGGATAAGCGAGAG	<i>CgFAB1</i> Internal check Forward
OgRK1367	TCAACTGCGTCCTTGACATC	<i>CgFAB1</i> Internal check Reverse
OgRK1954	GGATTGGATCAGCAAACCACTTA	CgPDR1 5' integration check
OgRK1955	ACAACCATGAAGACAGACAAAGA	CgPDR1 3' integration check
OgRK2746	CTTGGAAAGAGTGGGTTCCAGAG	CgCAP2 5'UTR Forward
OgRK2747	GCGTCGACCTGCAGCGTACGCGTAAGGGAAGAAGCTCTGTG	CgCAP2 5'UTR Reverse
OgRK2748	CGACGGTGTCGGTCTCGTAGCCCACCAACAAATGAAACTC	CgCAP2 3'UTR Forward
OgRK2749	CTCGGACCAAACTCTGCATCTC	CgCAP2 3'UTR Reverse
OgRK2750	GCACTACTGAACGACTTGCCAC	<i>CgCAP2</i> 5' Integration check Forward
OgRK2751	CTCGATCTCATAATCTTTGAC	<i>CgCAP2</i> 3' Integration check Reverse
OGRK 2653	TGCTGCACTTGATCTGCTTC	<i>CgCAP2</i> Internal check Forward
OGRK 2654	ATGGTGATTCCTGCAGATCC	<i>CgCAP2</i> Internal check Reverse
OgRK2123	CAGCACAGACTCCAACTTCTCCCTG	CgVAC7 5'UTR Forward
OgRK2124	GCGTCGACCTGCAGCGTACGCAACTTCTACCTTAGTGTGG	CgVAC7 5'UTR Reverse
OgRK2125	CGACGGTGTCGGTCTCGTAGCGGTGAACTGCATTCCACC	CgVAC7 3'UTR Forward
OgRK2126	CCTCGATACTTCACTAGACTAAGAG	CgVAC7 3'UTR Reverse
OgRK2127	CAGAGGACAGCAAAGGCTCAAC	<i>CgVAC7</i> Internal check Forward
OgRK2128	GAGCCCACTTCATTGTGTTCCG	<i>CgVAC7</i> Internal check Reverse
OgRK2129	GACCACTCACACCACCATACAG	<i>CgVAC7</i> 5' Integration check Forward
OgRK2130	CGTTGTTATAAATATAGTCGGTAC	<i>CgVAC7</i> 3' Integration check Reverse
OgRK2131	CCAGGACACTGACAAAAGGACCC	CgVAC14 5'UTR Forward
OgRK2132	GCGTCGACCTGCAGCGTACGGCTGATCCTGATCCAAGGTG	CgVAC14 5'UTR Reverse
OgRK2133	CGACGGTGTCGGTCTCGTAGCACATGAATAGGATTATGAG	CgVAC14 3'UTR Forward
OgRK2134	GCACATATGGACTCCAAGCGTC	CgVAC14 3'UTR Reverse
OgRK2135	CTTATGACGGCTCCTGAGCTT	<i>CgVAC14</i> Internal check Forward
OgRK2136	GTTGAACGCTTCAGACTGTGG	<i>CgVAC14</i> Internal check Reverse

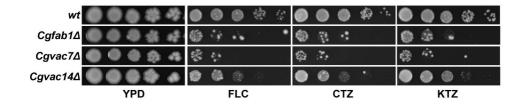
OgRK2137	GTATGCCACATCGGGAGAAAC	<i>CgVAC14</i> 5' Integration check Forward
OgRK2138	GTGTTGCAATTATCAAGGCTCC	<i>CgVAC14</i> 3' Integration check Reverse
For gene clor	ling	
OgRK1177	CGCGGATCCATGGCTATTGGTCAAGGGACG	CgFAB1 Cloning Forward
OgRK1178	CGCGTCGACTTAGTTTGTATCTTGATACCA	<i>CgFAB1</i> Cloning Reverse, SDM 2 nd half Reverse
OgRK1903	CCGTGGATCCATGGCTATTGGTCAAGGGACGC	CgFAB1 Cloning Forward
OgRK1904	CGATCCCGGGGTTTGTATCTTGATACCATGGG	CgFAB1 Cloning Reverse
OgRK2628	CAGAACTAGTATGGATGAGAAATATGATGC	CgCAP2 Cloning Forward
OgRK2629	CTGTCCCGGGTAGATTTTGAAGACCCTTGAT	CgCAP2 Cloning Reverse
OgRK2630	CAGAACTAGTATGTCCAGATCAGGGTATGT	CgCOF1 Cloning Forward
OgRK2631	GTCTGGATCCGTGAGAACCAGCACCTCTGC	CgCOF1 Cloning Reverse
OgRK2739	GTAGAATTCGATTACAAGGATGACGACGATAAGATGTCCAGA TCAGGTGTTGCCG	<i>CgCOF1</i> Cloning in pET28a Forward
OgRK2740	GTACTCGAGTTAGTGAGAACCAGCACCTCTGC	<i>CgCOF1</i> Cloning in pET28a Reverse
For qRT-PC	R	
OgRK127	TGCAGGACCAAGTCAGACAG	CgCDR1 Forward
OgRK128	CTCATCGGAAGTAGGGTCCA	CgCDR1 Reverse
OGRK133	ACGGTACCAAGCCATACGAG	CgERG11 Forward
OGRK134	GAACACTGGGGTGGTCAAGT	CgERG11 Reverse
OgRK135	AAAGGGAGTGACAGCGAGAA	CgPDR1 Forward
OgRK136	CTCAATGGCGTCAATGGATGA	CgPDR1 Reverse
OgRK191	TTTCAGAGTGCCAACTGTCG	CgGAPDH Forward
OgRK192	TGAAACAACAGCGTCCTCAG	CgGAPDH Reverse
OGRK1535	GACCGTGAGAAGGTCTTGGA	CgERG1 Forward
OGRK1536	TCACCACCACGTTGGAAATA	CgERG1 Reverse
OGRK1537	TCGACGGTTACTTCCAATCC	CgERG3 Forward
OGRK1538	TTGACAACTGGGTTGTTGGA	CgERG3 Reverse
OGRK1539	CCCATTTTTGCCATACCAAG	CgERG4 Forward
OGRK1540	AACCACAAGACATAGCCCAGA	CgERG4 Reverse
OGRK1541	AAGGATCTTGCTGACGAGGA	CgERG6 Forward
OGRK1542	CGACACCAACCTTTTCCATT	CgERG6 Reverse
OGRK2015	CAGGATTCTAGTGATGAAGAG	CgFAB1 Forward
OGRK2016	TGGAGGTGGAGGAGGAGTGGA	CgFAB1 Reverse
For site-dired	ted mutagenesis	1
OgRK2025	GTCGTCCGATTAGAATATTCTG	<i>CgFAB1</i> SDM 2 nd half Forward
OgRK2030	GTGGCATTCAAACGGTGTAAAATCTGTGAGTGGATTCTTAAAG AC	CgFAB1 SDM 1 st half Forward
OgRK2031	GTCTTTAAGAATCCACTCACAGATTTTACACCGTTTGAATGCC AC	<i>CgFAB1</i> SDM 1 st half Reverse

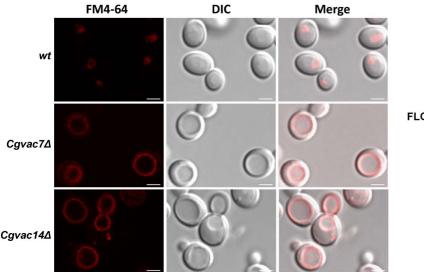
Figure S1

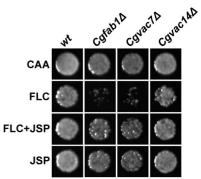







Figure S2









в

С

A