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APPENDIX: Additional Computational Details

Occurrence data and observed likelihood inference. Assuming that for
each of M households we have diarrhea occurrence data for two age
compartments (groups) k 2 {A, J}, denoted Dk,i, the total compartment size
Nk,i, and the environment status Vi (i = 1, . . . ,M). Assuming the occurrence
probability is pk(E), the data generating log-likelihood `M as a function of the
parameters vector ⌘ = (pA, pJ ,�A,�J) and the environment E 2 {0, 1} is given
by

`M (pA, pJ ,�A,�J |E) =
MX

i=1

X

k

X

E

(Dk,i log(pk(Vi)) + (Nk,i �Dk,i) log(1� pk(Vi))) (Vi = E)

+
MX

i=1

X

k

X

E

(Nk,i log(�k(Vi))� �k(Vi)) (Vi = E) +O(Dk,i, Nk,i),

yielding the maximum likelihood estimates

p̂k(E) =

PM
i=1Dk,i (Vi = E)

PM
i=1Nk,i (Vi = E)

�̂k =

PM
i=1Nk,i

M
, for k 2 {A, J}. (A.1)
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SID model and synthetic likelihood inference. The SID model is given
by the deterministic, mass-action ODE system which describes the evolution of
the average number of susceptible (S), infected and asymptomatic (I) and
diseased (D) individuals across two compartments (A and J) as follows. Note
that we have two separate models describing, respectively, contaminated and
uncontaminated water supplies (V = 1 and V = 0).

d

dt
SJ = ��JASJIA � �JJSJIJ � V �JSJ � ↵JSJ + �JDJ + (�J � ⌫J)IJ

d

dt
SA = ��AJSAIJ � �AASAIA � V �ASA � ↵ASA + �ADA + (�A � ⌫A)IA

d

dt
IJ = �AJSAIJ + �JJSJIJ + V �JSJ � �JIJ

d

dt
IA = �JASJIA + �AASAIA + V �ASA � �AIA

d

dt
DJ = ↵JSJ + ⌫JIJ � �JDJ

d

dt
DA = ↵ASA + ⌫AIA � �ADA (A.2)

As in the main text, denoting the set of SID model rate parameters by ✓, the
Markov Chain Monte Carlo (MCMC) procedure is used to estimate the rate
parameters ✓ and the unobserved species, IA and IJ separately for V = 0 and
V = 1.

Recall that we denote ✓ = (✓1,✓2,✓3,✓4) where ✓1 = (�JJ ,�JA, V �J , �J),
✓2 = (�AA,�AJ , V �A, �A), ✓3 = (↵J , ⌫J , �J), and ✓4 = (↵A, ⌫A, �A). As
discussed in the main text, we first generate the n data points from the
M -averages of the occurrence data from (1), denoted by (d̃Ji , d̃

A
i , i = 1, . . . , n)

and treat them as the observed pseudo-data. The likelihood functions are now
constructed based on the fact that the pseudo-data is approximately normally
distributed with the respective mean vector given by the equations (2) and (3).
Accordingly, we set

lJ(✓) / exp

✓
�

nX

i=1

(d̃Ji � (f✓1
1 + f✓3

3 )/2)2/2�2
J

◆
,

lA(✓) / exp

✓
�

nX

i=1

(d̃Ai � (f✓2
2 + f✓4

4 )/2)2/2�2
A

◆
. (A.3)

where in the above we assign the standard deviation values based on the
empirical estimates as �J = 2.7434 and �A = 2.0345. These values are also
(appropriately) smaller then the assigned prior variance discussed below.

Prior for ✓. Since all the parameters included in ✓1, ✓2, ✓3, ✓4 are rate
parameters and hence should have positive values, we assign the independent
gamma distribution for all 14 rate parameters with non-informative
hyperparameters of 3/2 for the location and 1/3 for and scale.
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Prior for unobserved IJ and IA. In the observed data set, we don’t have a
value for the numbers of infected IJ and IA. These unobserved IJ and IA are
treated as missing data. Hence we use a missing data imputation procedure for
IJ and IA during the MCMC simulation. In particular, the missing values of IJ
and IA act as unknown parameters to be estimated and need to be assigned
suitable priors. Here use gamma priors distribution for IJ and IA. Since the
ranges of IJ and IA are 0  IJ  max(d̃Ji ) and 0  IA  max(d̃Ai ), respectively,
we select the hyper-parameters of the gammas in order for their respective 95%
confidence interval to cover these ranges.

Full conditionals for ✓, IJ , and IA. Based on the above form of the prior
distributions and the likelihood functions, the conditional posteriors
⇡(✓k|✓�k, IJ , IA) (k = 1, . . . 4) as well as ⇡(IJ |✓), and ⇡(IA|✓) are, respectively,
proportionate to

⇡(✓⇤
1|✓2,✓3,✓4, IJ , IA, d̃

J
i )

/ exp

(
�

BX

i=1


d̃Ji �

�⇤JIJ
�⇤
JJIJ + �⇤

JAIA + V �⇤
J

� IJ �
(↵J � ⌫J)IJ + �JDJ

↵J

�2
/2�2

J

)

⇥(�⇤
JJ�

⇤
JAV �⇤

J�
⇤
J)

a�1 exp{�(�⇤
JJ + �⇤

JA + V �⇤
J + �⇤J)b}, (A.4)

⇡(✓⇤
2|✓1,✓3,✓4, IJ , IA, d̃

A
i )

/ exp

(
�

BX

i=1


d̃Ai �

�⇤AIA
�⇤
AJIJ + �⇤

AAIA + V �⇤
A

� IA �
(↵A � ⌫A)IA + �ADA

↵A

�2
/2�2

A

)

⇥(�⇤
AJ�

⇤
AAV �⇤

A�
⇤
A)

a�1 exp{�(�⇤
AJ + �⇤

AA + V �⇤
A + �⇤A)b}, (A.5)

⇡(✓⇤
3|✓1,✓2,✓4, IJ , IA, d̃

J
i )

/ exp

(
�

BX

i=1


d̃Ji �

�JIJ
�JJIJ + �JAIA + V �J

� IJ �
(↵⇤

J � ⌫⇤J)IJ + �⇤JDJ

↵⇤
J

�2
/2�2

J

)

⇥((↵⇤
J⌫

⇤
J�

⇤
J)

a�1 exp{�(↵⇤
J + ⌫⇤J + �⇤J)b}, (A.6)

⇡(✓⇤
4|✓1,✓2,✓3, IJ , IA, d̃

A
i )

/ exp

(
�

BX

i=1


d̃Ai �

�AIA
�AJIJ + �AAIA + V �A

� IA �
(↵⇤

A � ⌫⇤A)IA + �⇤ADA

↵⇤
A

�2
/2�2

A

)

⇥(↵⇤
A⌫

⇤
A�

⇤
A)

a�1 exp{�(↵⇤
A + ⌫⇤A + �⇤A)b}, (A.7)
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⇡(I⇤J |✓1,✓2,✓3,✓4, IA, d̃
J
i )

/ exp

(
BX

i=1


d̃Ji �

�JI⇤J
�JJI⇤J + �JAIA + V �J

� I⇤J �
(↵J � ⌫J)I⇤J + �JDJ

↵J

�2
/2�2

J

)

⇥(I⇤J)
aIJ�1 exp{I⇤JbIJ}, (A.8)

⇡(I⇤A|✓1,✓2,✓3,✓4, IJ , d̃
A
i )

/ exp

(
BX

i=1


d̃2i �

�AI⇤A
�AJIJ + �AAI⇤A + V �A

� I⇤A �
(↵A � ⌫A)I⇤A + �ADA

↵A

�2
/2�2

A

)

⇥(I⇤A)
aIA�1 exp{I⇤AbIA}. (A.9)

MH proposal step. Unfortunately, the conditional distributions of
(A.4)-(A.9), being the products of normal distributions and respective gamma
priors, do not have closed forms. Hence, we may only sample from these
conditional distributions with the help of the usual Metropolis-Hastings (MH)
algorithm. The new state proposal in the MH step is generated using the
multivariate normal distribution of the form

✓⇤
k ⇠ MVN(✓m

k , tk Ik), for k = 1, . . . , 4

where ✓m is the current value of the sampled parameters, Ik is the identity
matrix and the tuning constants tk, k = 1, . . . , 4 are selected so as to achieve an
acceptance ratio of between 20% and 40%.

In a similar manner, we use a univariate normal distribution as a proposal
distribution for the conditional posterior of (A.8) and (A.9). The proposal
distribution has it’s mean of current sample and standard deviation of ⌧IJ and
⌧IA for IJ and IA respectively. The ⌧IJ and ⌧IA are tuning constants and are
tuned so that acceptance ratio of the Metropolis-Hastings algorithm is about
44% in order to improve the chain convergence. Final diagnostic trace plots as
well as the marginal plots for the posterior parameters are provided in S1 Fig –
S4 Fig of Supporting Information.
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