
Models of transcription factor (TF) sensing and transcription 

1) Model of TF sensing 
We assume the previously suggested [4-6] model of transcription factor sensing through the multiple TF 
binding sites: 
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N is the number of operator sites for TF binding. Pi is the promoter state when bound by i transcription 
factor (TF) molecules. The operator sites are assumed to be identical, thus do not need to keep track of 
which operator sites are currently occupied in Pi. [TF] is the TF concentration normalized by the TF 
concentration at the boundary position X0. In the case of the Bcd-hb system, [TF] follows a decaying 
gradient from the anterior with the decay length L ~ 100 μm or 20 % EL [3]: 

/ . (4) 

ki and k-i are the binding and unbinding rate constants respectively. We assume that there is no cooperativity 
in the searching of the TF for the operator sites: when the promoter is at state Pi-1, TFs can bind to any of 
the remaining free operator sites independently at a rate: 

1 / . (5) 

τbind is the time for a free operator to be bound by any TF at the hb expression boundary (X=X0, [TF]=1). 
Assuming that the TF can only search for OS by diffusing in the nucleus and that each collision between 
TF and OS is one successful binding event, τbind depends on the diffusion coefficient of the TF (D ~ 7.7 
μm2/s [7] the absolute TF concentration at the boundary (c ~ 11.2 molecules/μm3) [8] and the size of the 
operator site (a ~ 0.003 μm [6]). 
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(6) 

We call P(Pi,X,t) the probability of the promoter to be in state Pi at time t and position X. The time evolution 
of P(Pi,X,t) is given by: 
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(7) 



For convenience, we define the effective equilibrium constants ∑ /  for i>0 and 1 for 

i=0. By solving the linear differential equations corresponding in Eq. 7, we have the probability of the 
promoter in state Pi at steady state at a given position X [9]: 
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In this work, we consider the “all-or-nothing” case: the hb gene becomes active only when all the OS of the 
hb promoter are bound (Pactive ≡ PN). 

2) Transcription initiation 
While the gene is activated (i.e. the promoter is fully bound by TF), RNAP can bind stochastically to the 
promoter and initiate transcription at a rate λ ~ 0.15 s-1. In the initiation process, it occupies the promoter 
for a duration tblock ~ 6 s [10] preventing the binding of another RNAP to the promoter until the RNAP frees 
the promoter site. The values of λ and τblock are extracted from the transcription dynamics of hb at the anterior 
pole [11]. 

3) Transcription elongation 
Promoter escape is followed by a deterministic transcription elongation process [12] with a rate constant 
40bp/s [13]. During this process, MCP-GFP can quickly bind to the newly transcribed MS2 binding sites 
on the nascent RNA. 

We denote L(t) the number of MS2-MCP binding sites on a nascent RNA at time t after its transcription 
initiation. L(t) depends only on the reporter gene construct. In this work, with the ms2 binding site array 
located at the 3” end of the reporter gene, L(t) is given in S10 Fig.  

The intensity of the transcription loci is therefore given by the convolution of the transcription initiation 
signal IRNAP(t) with the reporter gene configuration function L(t): 

∗ . (9) 

Here, I0 is the intensity of a single bound MS2-MCP binding site. 

4) The pattern steepness and the promoter dynamics out of steady state 

For a given set of kinetic parameters ,  in Eq. 3, we quantify the pattern steepness and the 
evolution of the promoter mean activity over time. We only focus on the boundary position (X=X0) where 
the gene is 50% activated at steady-state (P(Pactive, X0,∞)=0.5). 

Pattern steepness 
We calculate the pattern steepness H from the slope of the promoter activity pattern at the boundary position 
(X=X0) at steady state: 
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Promoter dynamics of steady state 
The vector s(t)=[P(P0,X,t), P(P0,X,t),… P(P0,X,t)]T describes the probability for nuclei at a position X and 
time to be in a given  promoter state.  The change in the vector s(t) is described by the transition matrix U, 
whose elements are defined by the stochastic equations in Eq. 7 evaluated at the boundary position (X=X0). 
At time t=0, we assume that the promoter is free of TF: s(0)=[1,0…,0]T and the TF interact with OS of the 
promoter. The mean promoter activity at time t is given by: 

0  (11) 

We define a vector α indicating which promoter state is associated with the target being activated. In the 
case of “all-or-nothing” (Pactive ≡ PN), α=[0,0…,1]T. The distribution of nuclei with active loci is given by: 

. 0 . (12) 

5) Fitting the transcription pattern 

We find the kinetic parameter set ∗ ∗, ∗  that matches the observed Hill coefficient and the promoter 
state probability at the boundary (X=X0) at near steady state (330 s from the beginning of nuclear cycle or 
~180 s after first spot appearances). For simplicity, we approximate the probability of the activated gene 
sactive(t=180 s) by the probability of the spot appearance in each nuclei PSPOT at 330 s following mitosis. 

From the measurements, we infer the Hill coefficient H ~ 7.1 + 0.53, sactive(180 s) ~ 0.45 + 0.02.   

We fit the model’s Hill coefficient and the promoter active state distribution to the data using least square 
fit, weighted by the margin of error. The value of  ∗ can be found by minimizing the objective: 
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Where  and  are respectively the steepness and the probability of activated gene calculated 

numerically from Eq. 10 and 12 for any given parameter set . 

Due to the model complexity and the high number of parameters involved with N ≥ 6, ∗ is obtained by a 
brute force search, followed by local optimization (~ 105 iterations for each value of N). The unbinding 
rates k-i are randomized from 10-20 s-1 to 1020 s-1 while the binding rates ki are kept constant (Eq. 5). 

The fitted kinetic parameters are shown in S2 Table. 

Given the p-value of the likelihood ratio test between the models and the Bayesian Information 
Criterion (BIC) for each model, we find that increasing N up to 9 results in significant better fit of 
the model with data. Increasing N beyond 9 does not improve the fit significantly. 



6) Stochastic simulations 
We use the Stochastic Simulation Algorithm [14, 15] to simulate the promoter dynamics under the 
regulation of the TF and the timing of the transcription initiation events by RNAP IRNAP(t). The trajectory 
of IRNAP(t) is then convoluted with the gene configuration function L(t) to achieve the spot intensity I(t) over 
time. An example of the intensity trace is shown in S11 Fig. 

At each position along the AP axis, with the fitted kinetic parameters, we simulate 500 nuclei intensity 
traces, from which the heatmap of PSPOT over time and along AP axis can be constructed (Fig. 8 in main 
Manuscript). 


