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Fig. S1. Hierarchical clustering of chromodomains based upon z scores. Hierarchical 

clustering details of chromodomains based on the z scores of their microarray binding intensities 

towards methylated histone and non-histone peptides. 
 
 

Fig. S2. Two-dimensional hierarchical clusters of peptides binding to chromodomains 

based on z scores (as separate PDF file). Details of two-dimensional hierarchical clusters of 

methylated peptides binding to chromodomains using z scores of the microarray binding 

intensities. Peptide sequences and annotations in the six clusters of methylated peptides are listed. 

Orange lines separate the six clusters. 

 

 

 

 

 

 
 

  



 

 
 

Fig. S3. Multiple sequence alignment of the chromodomains. Protein sequences of the 13 

chromodomains that bind to peptides with single chromodomains were extracted from 

Uniprot/Swissprot (https://web.expasy.org/docs/swiss-prot_guideline.html) and ClustalW2.0 

(https://www.ebi.ac.uk/Tools/msa/clustalw2/) was used to generate multiple sequence alignment 

of these 13 chromodomains, which were used in building the molecular interaction energy 

components-support vector machine (MIEC-SVM) model (32). 
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Fig. S4. Getis-Franklin single-molecule coclustering analysis (35) of H3K9me3 and the 

CBX1 (V22E/K25E/D59S) chromodomain. An anti-H3K9me3 antibody, labeled with 

Alexa647 2° antibody, and FLAG-CBX1 chromodomain (V22E/K25E/D59S), labeled with 

Alexa568 2°  antibody, were co-imaged in fixed HeLa cells using STORM microscopy. (A). 

Representative scatter plot showing molecular localizations for the anti-H3K9me3 antibody, 

color-coded with the values for L(200) (left) and Lcross(200) (center), which reflect the number 

of localizations in its own species or of the other species, respectively, within a 200 nm radius of 

each localization. A scatter plot of Lcross(200) and L(200) is shown (right). Localizations with a 

Lcross(200) score above 150 were considered co-clustered. (B). Representative scatter plots 

showing molecular localizations of CBX1 chromodomain (V22E/K25E/D59S) in the same 

region, color-coded with L(200) (left) or Lcross(200) (center). A scatter plot of Lcross(200) vs. 

L(200) is shown (right). 
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Table S1. List of chromodomains screened by peptide microarray. 

Protein Chromodomain Cloned Sequence 

CBX1 21-79 20-73 

CBX2 12-70  9-66  

CBX3 30-88  29-81  

CBX4 11-69  8-65  

CBX5 20-78  18-75  

CBX6 11-69  8-65  

CBX7 11-69  8-62  

CBX8 11-69  8-61  

CHD1 272-364, 389-452 262-448, 379-448 

CHD3 494-594, 631-673 529-579, 529-688 

CHD4 494-594, 622-697 521-582, 521-679 

CHD5 497-554, 592-653 489-543 

CHD6 292-343, 375-439 282-359, 282-434 

CHD7 800-867, 882-947 790-867, 790-940 

CHD8 642-709, 724-790 632-709, 632-783 

CHD9 690-761, 773-839 680-757, 680-832 

MPP8 59-118 55-121 

CDY1/CDY2 6-66 1-71 

CDYL1 61-121 61-122 

CDYL2 7-67 1-70 

SUV91 43-101 40-106 

SUV92 47-105 42-107 

MYST1 69-123 67-124 

MS3L1 32-90 29-94 

  
Table S2. Four hundred sixty-seven peptide sequences printed on microarray (as separate 

Excel file). 

 
Table S3. Sequence and averaged signal intensities of identified binders from the peptide 

microarray for all 29 chromodomains (as separate Excel file). 

 

Table S4. Receptor-ligand residue pairs after LASSO feature selection (as separate Excel 

file) 
 

Table S5. Nested cross-validation performed to evaluate overfitting in the training process 

(as separate Excel file). 

 

Table S6. List of ranked sites for the CBX1 chromodomain that were considered for 

randomization (as separate Excel file). The lower the number, the higher the value was for that 

position.   

 



Movies S1 to S4. Movies from raw PALM images of WT CBX1-PAmCherry and 

V22E/K25E/D59S CBX1-PAmCherry expressed transiently in either HeLa or MEF cells and 

imaged using near total internal reflection fluorescence (TIRF) microscopy (excitation with 561 

nm laser, photoactivation with 405 nm laser).  Video 1:  WT CBX1 in MEF cells, Video 2:  

Mutant CBX1 in MEF cells, Video 3:  WT CBX1 in HeLa cells, Video 4:  Mutant CBX1 in 

HeLa cells.          

 

Supplementary Methods and Materials 

Non-histone peptides selected from the human proteome 

In our previous work (19, 20), we developed a bioinformatics pipeline integrating multiple filters 

to select non-histone peptides that are possibly methylated and bound by chromodomains (Figure 

1A and see details in (19, 20)). Briefly, we first identified all the 9-amino-acid-long peptides that 

contain lysine at the 8th position in the human proteome. If the peptides are involved in protein 

interaction with chromodomains, they are likely conserved across species (Sequence 

Conservation). Because chromodomains recognize methyllysine, we searched 30 million mass 

spectra from human tissues for evidence of methylation at the 8th Lys in the candidate peptides 

(Mass Spectrometry). Peptides that passed the first two filters were subject to examination of 

their structural features characterizing peptides bound by the chromodomains: low propensity to 

form α helix (Secondary Structure) and accessible for binding (Solvent Accessibility). Because 

we were interested in identifying non-histone proteins that may contribute to regulating 

chromatin remodeling, we required that the proteins containing the peptide exist in the nucleus 

(Cellular Compartment). Furthermore, we used the CBX6 chromodomain as the template and 

applied additional criteria to narrow down the candidate peptides. Because interacting proteins 

are often co-expressed, we required proteins containing the candidate peptides share similar 

expression profiles with CBX6 across diverse cell types or conditions (Gene Co-Expression). To 

prioritize the peptides to be printed on the microarray, we ranked them based on the estimated 

binding affinity (Estimated Binding Score).  

 

Peptide Microarray experiments   
A total of 29 chromodomains were expressed as GST fusion proteins using pGEX-KG vector in 

E. coli strain BL21. Protein expression was induced at O.D.(600 nm) = 0.7 using 0.4 mM IPTG 

at 20°C overnight and purified on GST-BindTM resin (Novagen) based on a previously described 

protocol (20). The purity of the protein was examined by SDS-PAGE electrophoresis followed 

by both Coomassie staining and western blot using an anti-GST-HRP conjugate (Santa Cruz 

Biotechnology). The concentration of purified protein was determined by BCA assay (Amresco).  

 

A total of 467 unmodified and modified peptides were synthesized by Sigma Aldrich (desalted, 

mass spectrometry checked). The peptides were then printed as triplets onto glass slides (ArrayIt), 

together with a Cy3 marker and an anti-GST (mouse monoclonal) antibody (Thermo) as 

references. 

 

The peptide microarray was rinsed with TBST buffer (25 mM Tris, 125 mM NaCl, 0.05% 

Tween-20, pH 8) followed by blocking with 5% non-fat milk in TBST (room temperature 1 hour 

or 4°C overnight). The slide was then incubated at 4°C with chromodomain-GST fusion protein 

at a final concentration of 5 µM in 5% non-fat milk/TBST for 12 hours. After washing three 

times for 10 minutes each with TBST, the slide was incubated with an anti-GST mouse 



monoclonal IgG antibody (Thermo) at a final concentration of 1 µg/mL in 5% non-fat 

milk/TBST and shaken gently for 1 hour at room temperature. A secondary anti-mouse IgG 

Dylight-488 conjugated antibody (Thermo) was added to a final concentration of 0.1 µg/mL after 

three more cycles of 10 minute washes with TBST. The slide was shaken for 1 hour at room 

temperature and washed three times with TBST. 

  

Data Acquisition and Analysis  
The dried microarray slides were scanned using a Hamamatsu NanoZoomer 2.0HT Slide 

Scanning System (Neuroscience Light Microscopy Facility, UCSD). Data quantification were 

processed using the microarray processing software ImageJ, where the fluorescent intensity of a 

microarray spot was defined as the signal mean intensity minus the mean background intensity 

around it on the scanned image. For each peptide, the fluorescent intensity of the printed triplet 

was individually measured and all the intensities from one array were fit to a mixed Gaussian 

distribution with two components (non-binding background vs binder) (19, 20). A statistical 

cutoff of p < 0.05 (from the background Gaussian distribution) was selected to quantitatively 

distinguish the binders from the non-binders.  

 

Cluster Generation Process 

The clusters were generated according to the dendrogram (see figure S2). First, we selected 

clusters that at least contain more than 30 peptides and got 12 clusters. Then these clusters were 

merged into 6 clusters with unique patterns. We made cluster 3 an independent cluster regardless 

of its size owing to its unique pattern. There are a few small clusters that contained 2, 2, 16 and 

17 peptides respectively. We merged them into clusters 1 and 2 based on the pattern similarity. 

Also, small clusters that contains 11, 1, and 5 peptides were merged into clusters 5 and 6 

respectively.  

  

Fluorescence Polarization  
Fluorescein-labeled methylated histone peptides (Karebay) were titrated with chromodomains in 

Tris buffer (25 mM Tris-HCl, pH 8, 125 mM NaCl) at room temperature for KD determination. 

Final peptide concentration was 1 nM and incubation time was 30 minutes for each titration 

before reading. Data were acquired on a DTX 880 Multimode Detector Beckman Coulter plate 

reader with excitation filter at 485 nm and two emission filters at 535 nm equipped with 

polarizers. The dissociation constant (KD) values were obtained by fitting data to a nonlinear 

regression equation with GraphPad Prism 4 software. 

 

Sequence pattern analysis 
For each chromodomain, the amino acid propensity of the 9 sites was calculated from the 

sequences of all single tri-methylated binders and illustrated by web logo 

(http://weblogo.berkeley.edu/logo.cgi). No obvious sequence pattern was detected other than the 

8th position, which represents the tri-methylated lysine site. 

 

Multiple sequence alignment of CBX chromodomains 
Protein sequences of the 13 chromodomains that bind to peptides with single chromodomains 

were extracted from Uniprot/Swissprot (https://web.expasy.org/docs/swiss-prot_guideline.html) 

and ClustalW2.0 (https://www.ebi.ac.uk/Tools/msa/clustalw2/) was used to generate multiple 

http://weblogo.berkeley.edu/logo.cgi
https://web.expasy.org/docs/swiss-prot_guideline.html
https://www.ebi.ac.uk/Tools/msa/clustalw2/


sequence alignment of these 13 CBX chromodomains with some local adjustment using 

structural information, which were used in building the MIEC-SVM model (32) (figure S3). 

 

Building the MIEC-SVM model 

Template complex structures of chromodomain-peptide interaction 
The chromo-peptide complex structures were obtained from either PDB or structural modeling. 

The peptide in each chromo-peptide structure must be 9 residues (truncated if more than 9) with 

tri-methylated lysine on the 8th position.  

 

Among the 13 chromodomains, 7 domains, including CBX1 (1GUW), CBX2 (3H91), CBX3 

(2L11), CBX5 (3FDT), CBX6 (3I90), CBX7 (2L12), and MPP8 (3QO2), have available chromo-

peptide complex structures with at least 9 residues of the peptide in PDB. The complex structures 

were used as templates.  

  

Another 4 domains, including CBX4 (2K28), CBX8 (3I91), CDYL1 (2DNT), and SUV91 

(3MTS), have either chromodomain-only structures or chromo-peptide structure with peptides 

shorter than 9 residues. A structural alignment based modeling was used to construct respective 

chromo-peptide structures. First, the chromodomains in the chromo-only structure and each of 

the four crystal chromo-peptide templates (3H91, 3FDT, 3I90, and 3QO2) were aligned by the 

program LSQKAB (36) in the CCP4 software package (http://www.ccp4.ac.uk/). Then, based on 

the structural alignment, the peptide conformations from the four crystal templates were taken to 

the chromo-only structure to form four candidate complex templates. Finally, these candidate 

templates were optimized by molecular dynamics (MD). The one with the best RMSD and no 

steric clash (heavy atom distance < 3 Å) was selected as the template for further modeling.  

 

The remaining two domains have no available structure (CDYL2 and SUV92). Their 

chromodomain structures were modeled by homology modeling using MODELLER 
(https://salilab.org/modeller/) and the chromo-peptide complex structure was constructed by the 

three-step procedure described above. 

 

Force field parameters in structural modeling 
The topology and coordinate files were prepared for the 13 chromo-peptide systems by tleap in 

AMBER11 (21). AMBER ff03 force field (22) was used for all the standard amino acids and 

AMBER gaff force field (23) for modified amino acids. Electrostatic potential of modified 

residues was calculated by Gaussian09 (37) using Hartree-Fock HF/6-31G* basis set and their 

atomic charges were obtained using the RESP method (38) implemented in the program 

antechamber (39) in the AMBER package. TIP3P water boxes (40) were added around the 

protein molecule to 12 Å. The charge neutrality for each system was ensured through adding 

counter-ions Na+ or Cl-. 

 

Conformational sampling 
For each chromo-peptide template, molecular dynamics (MD) simulation was performed for 

conformational optimization and sampling. The system was relaxed by 10,000 steps of energy 

minimization with the first 3,000 steps of steepest descent followed by 7,000 steps of conjugate 

gradient minimization. After relaxation, the system was heated from 0 K to 300 K in 60 ps under 

NVT ensemble. Then, 5 ns of equilibrium and production run were performed under NPT 

http://www.ccp4.ac.uk/
https://salilab.org/modeller/


ensemble. SHAKE (41) was used to constrain all bonds involving hydrogen atoms. Langevin 

dynamics and isotropic position scaling were used for temperature and pressure control. Time 

step was set to 1 fs. Binding interface residue backbone RMSD was evaluated for the 13 

chromodomains to verify the equilibrium. After the production run, 8 snapshots were evenly 

selected from the trajectory between 3 to 5 ns as chromo-peptide binding complex templates for 

each system. The chromo-peptide binding complex templates were mutated in silico to each of 

the 457 peptides by SCWRL4 (42). Restrained by the computational cost, we performed 5,000 

steps of energy minimization instead of MD simulation to optimize all the complex structures 

obtained through mutation.   

 

Calculation of MIECs 
Residue pair-wise energy decomposition on minimized structures was performed by mm_pbsa.pl 

in the AMBER package (21). For each residue pair between the chromodomain and the peptide, 

the interaction energy was decomposed into four terms: van der Waals energy ΔEvdw, 

electrostatic energy ΔEele, polar contribution to the desolvation energy ΔEgb, and non-polar 

contribution to the desolvation energy ΔEsa. Dielectric constant of 1 was used to calculate ΔEele. 

ΔEgb was calculated using the generalized Born (GB) model with parameters developed by 

Onufriev et al. (43). The interior and the exterior dielectric constants in the GB calculation were 

set to 1 and 80, respectively. ΔEsa was estimated according to the solvent accessible surface area 

(SASA) as ΔEsa = 0.0072 × SASA.  

 

MIEC profile was generated based on the energy decomposition result. It consists of chromo-

peptide MIEC profile and peptide internal MIEC profile. For chromo-peptide MIEC profile, all 

residue pairs less than 10 Å were included to reflect binding characteristics of the chromo-

peptide interactions. For peptide internal MIEC profile, MIECs of the adjacent peptide residue 

pairs were calculated to represent the conformational preference of the peptide. MIEC profile for 

each chromo-peptide interaction contains 158 chromo-peptide residue pairs and 8 peptide-

peptide pairs (664 energy components in total). 

 

Feature Selection for the MIEC-SVM model 

LASSO (Least Absolute Shrinkage and Selected Operator) logistic regression method was 

applied to the MIEC profile to select informative features to construct the MIEC-SVM model. 

Package “glmnet” (44) in R was used to train and test LASSO logistic regression models. The 

222 MIEC components with non-zero coefficients (table S4) were kept as informative features 

for discriminating the chromo-peptide interactions. 

  

A nested cross validation was performed to evaluate whether the over-fitting problem exists in 

the current training process. All data was randomly divided into two parts: the training set (90% 

of the data) and the test set (10% of the data). LASSO logistic regression-based feature selection 

was applied to the whole training set to select informative features. Then, 3-fold cross validation 

was performed on the training set with the informative features to select an optimal combination 

of SVM kernel and hyper-parameter (such as C, gamma, and kernel parameters). Lastly, the 

SVM model was trained on the training set using the selected features and SVM parameters. This 

model was used to make predictions on the test set. The comparison of the prediction 

performance between CV and the test set was used to evaluate the over-fitting issue on the 

training process. Such a design is used to avoid the use of any information from the test set in the 



feature, kernel, and hyper-parameter selection processes. To avoid sampling bias, the random 

split of training and test set is repeated 10 times.  

 

The nested CV result supports the lack of an over-fitting issue in the current training process 

since the prediction performance on the training set (CV result) and the test set is comparable 

(table S5). Moreover, the polynomial kernel and related kernel parameters (Poly1 in table S5) are 

selected from the 3-fold cross validation results because the parameter combination is selected as 

the best combination most frequently observed among the 10 repeats of the cross validation. 

 

Training and testing of the MIEC-SVM model 
All SVM training and tests were conducted using the LIBSVM package (25). The polynomial 

kernel function was used. Both 3-fold cross validation and leave-one-domain-out (LODO) test 

were performed to evaluate the prediction accuracy of the MIEC-SVM model. For 3-fold cross 

validation tests, the peptides were randomly divided into three groups. The SVM models were 

trained on any two groups and tested on the third group. Cross validations were repeated for 500 

times to avoid overfitting and the average area under the curve (AUC) was used to evaluate the 

prediction performance. For leave-one-domain-out (LODO) test, one domain and all its 

associated interacting data were left out for testing while the model was trained on the remaining 

data. The LODO test was conducted for each of the 13 chromodomains and the average AUC 

was reported. 

 

Background distribution for Jensen-Shannon Divergence 

Jensen-Shannon divergence (JS divergence) is a symmetric metric to evaluate the distance 

between two distributions. Each JS divergence in Figure 3 (JS Divergence of SVM decision 

values) was calculated from the two foreground datasets of SVM decision values. To generate 

the background distribution for JS divergence, JS divergences were calculated between the larger 

foreground dataset and random background datasets which had the same number to the smaller 

foreground dataset and were randomly selected from all 5,941 SVM decision values. The 

random selection was repeated 1 million times. The mean and standard deviation were calculated 

from the random distribution. P-values were computed by assuming the background distribution 

to be a Gaussian distribution. 

 

Selection of Candidate Sites to Randomize on the CBX1 Chromodomain 

 
The rationale of the site selection was to find the sites that contribute most to binding and also 

particularly to recognition of H3K9me3. For this purpose, we should identify the residues where 

the binding energy profile of CBX1-H3K9me3 differs significantly from that of the CBX1-

nonbinders. To achieve the goal, we used the MIEC to characterize the binding energy between 

CBX1 and the peptide.  

 

First, we selected sites that are important for H3K9me3 binding. The total number of interacting 

residue pairs is 50*9=450 and each interacting residue pair is represented by two interaction 

types: polar (electrostatic + generalized Born) and non-polar (van der Waals + surface area). 

Each of the 900 MIEC components from the CBX1-H3K9me3 binding profile is compared to the 

respective components from the 389 CBX1-nonbinder MIECs. For each comparison, a two sided 

p-value is calculated to quantify the deviation of CBX1-H3K9me3’s MIEC component to the 



non-binder distribution. Then, two filters are applied to remove trivial components that do not 

have a major contribution to the binding energy: 1) contribution filter: for one component, the 

mean value between 68 binders and 389 nonbinders must be larger than 0.2 kcal/mol; 2) 

conservation filter: the site should not be conserved (identity≤9/13) in the multiple sequence 

alignment of 13 human chromo domains (figure S3). Third, for each CBX1 site, the mean 

logarithm p-value of all corresponding components is calculated. We then ranked all sites using 

the mean log-p value.  

 

Second, we selected sites that are generally important for binding. For this purpose, we 

compared all CBX1 binders to a non-binder. Because H3K27me3 peptide is similar to H3K9me3 

(4 amino acids in common) and the WT CBX1 chromodomain does not bind to H3K27me3, we 

used H3K27me3 to represent non-binders. We used a similar procedure as described above 

except that each component of CBX1-H3K27me3 was compared to that of 68 CBX1-binder 

MIECs.  
 
Then, we combined the CBX1-H3K9me3 and CBX1-generally important residue lists into one 

list, which resulted in selection of sites 59, 60, 62, 25, and 22 (see table S6).  Sites 21 and 56, 

which also ranked high in the prediction, were not chosen because they were part of the aromatic 

cage critical for methyl-lysine recognition (site 21) or because they pointed to the conserved C-

terminus in the truncated peptide structure (site 56, which points to serine for both H3K9 and 

H3K27). 

 

Two-Color Stochastic Optical Reconstruction Microscopy (STORM) Imaging Co-Localization 

Analysis 

 

For two-color STORM imaging, acquisitions for the two channels were interleaved. Image 

analysis and reconstruction were performed using the N-STORM software package.  Before the 

co-clustering analysis was performed, over-counting of localizations due to persistence of the 

fluorescence of an emitter for multiple frames and blinking was corrected by grouping 

localizations within 100nm separated by less than a particular dark time (td) and treating them as 

coming from a single emitter. The appropriate dark time for each fluorophore was determined 

using a published method (45).The number of localizations after such grouping was determined 

for varying values of td, and the data were fit to the following equation 

 

𝑁(𝑡𝑑) =  𝑁(1 + 𝑛𝑏𝑙𝑖𝑛𝑘,1𝑒

(1−𝑡𝑑)

𝑡𝑜𝑓𝑓,1  + 𝑛𝑏𝑙𝑖𝑛𝑘,2𝑒

(1−𝑡𝑑)

𝑡𝑜𝑓𝑓,2 ) 

 

Here, N(td) is the number of localizations after grouping with a particular dark time, N is the real 

number of fluorescent molecules, nblink,1 and nblink,2 are the number of dark state conversions 

occurring with average dark state lifetimes toff,1 and toff,2, respectively. For Alexa568, the fit 

showed that 0.8 blinks per molecule occurred for dark states with a lifetime of 11.4 frames, and 

1.4 blinks per molecule occurred for dark states with a lifetime of 90 frames. For Alexa647, the 

fit showed that 0.3 blinks per molecule occurred for dark states with a lifetime of 9.2 frames, and 

0.7 blinks per molecule occurred for dark states with a timescale of 171 frames. Values of the 



dark time were chosen to be approximately double the lifetime of the longer blinking timescale, 

or 180 frames for Alexa568 and 340 frames for Alexa647. 

 

Co-clustering analysis was performed using a published method (35), based on Getis and 

Franklin’s local point pattern analysis using MATLAB software. For each localization in one 

channel, the number of localizations in the other channel within 200nm was counted, with that 

statistic being called L(200)cross. A threshold of L(200)cross of 150 was set for a particular 

localization to be considered co-localized with a cluster of the other channel. We then 

determined the percentages of localizations in each channel that were localized within clusters of 

the other channel for each cell. 


