Structure, Volume 26

Supplemental Information

Trypanosomatid Deoxyhypusine Synthase Activity Is Dependent on Shared Active-Site Complementation between Pseudoenzyme Paralogs

Gustavo A. Afanador, Diana R. Tomchick, and Margaret A. Phillips

Table S1. Role of active site residues, based on published mutational and structural analysis on hDHS (related to Figure 7).

TbDHSc:DHSp	hDHS	Role and/or mutation effect
H377A-DHSc:DHSp [^]	H288- hDHS(Lee et al., 2001, Liao et al., 1998)	Proposed hydride acceptor in (Step 1, Fig. 2)
DHSc:DHSp-H266A [^]		
DHSc:DHSp-E103A [#]	E136- hDHS(Umland et al., 2004)	Required for binding of spermidine based on GC7 structure
E166A-DHSc:DHSp [#]		
D405A-DHSc:DHSp	D316- hDHS(Umland et al., 2004, Lee et al., 2001)	Required for spermidine binding; H-bond with amino group in GC7; possible catalytic base? (Step 2, Fig. 2)
DHSc:DHSp-E104A	E137- hDHS(Umland et al., 2004, Lee et al., 2001)	Required for spermidine binding; mutants are unable to bind spermidine or catalyze spermidine cleavage (Step 2, Fig. 2); NAD binding unaffected
DHSc:DHSp-D218A	D243- hDHS(Umland et al., 2004, Lee et al., 2001)	Prevents spermidine cleavage (Step 2, Fig. 2) due to lack of spermidine binding; NAD binding unaffected

Table S2. Thermal stability of *Tb***DHSc:DHSp WT and mutants (**Related to Figure 7). The melting temperature (T_m) of each enzyme was measured using a Thermal Shift Assay. All enzymes showed good thermal stability with T_m above 51°C. Errors represent standard deviation for 6 replicates.

Sample	T _m (°C)
TbDHSc:DHSp	56.0 ± 0.45
E166A-DHSc:DHSp	51.1 ± 0.66
DHSc:DHSp-E103A	56.1 ± 0.20
DHSc:DHSp-E104A	57.2 ± 0.61
DHSc:DHSp-D218A	57.6 ± 0.58
D405A-DHSc:DHSp	55.5 ± 0.84
DHSc:DHSp-H266A	57.4 ± 1.39
H377A-DHSc:DHSp	55.7 ± 0.41

Figure S1. *Tb*DHSc:DHSp structure (related to Figure 3). Tetramer corresponding to chains A-D as shown in Figure 3. A) *Tb*DHSc:DHSp crystal structure showing the 3 tetrameric molecules in the asymmetric unit. B) Overlay of the 3 tetramers from the asymmetric unit. For each tetramer 5581 atoms were aligned yielding a RMSD < 0.5 Å. Alignments were performed in PyMol using superimpose.

