Supplemental Tables

Table 1 List of partial VGLL4 MS candidates

Gene names	Protein names	Peptides vgll4	Peptides IGG	Unique peptides vgll4	Unique peptides IGG	Unique sequence coverage [%]	Mol. weight [kDa]	Sequence length
VGLL4	Transcription cofactor vestigial-like protein 4	19	6	14	6	60.5	31.864	296
CTBP2	C-terminal-binding protein 2	5	0	3	0	9.7	56.101	513
CTBP1	C-terminal-binding protein 1	4	0	2	0	6.8	47.535	440
SLC25A5	ADP/ATP translocase 2	14	4	5	1	14.9	35.293	323
YWHAQ	14-3-3 protein theta	12	2	9	1	39.2	27.764	245
DNAJA1	DnaJ homolog subfamily A member 1	11	1	11	1	41.1	44.868	397
TUBB4B	Tubulin beta-4B chain	18	8	1	1	2.7	49.83	445
HSP90AB1	Heat shock protein HSP 90-beta	14	5	10	3	17.1	83.263	724
PKM2	Pyruvate kinase isozymes M1/M2;Pyruvate kinase	9	0	9	0	28.2	57.936	531
DNAJC7	DnaJ homolog subfamily C member 7	9	0	9	0	27.1	56.44	494
STUB1	E3 ubiquitin-protein ligase CHIP	9	0	9	0	33	34, 856	303

Table 2 List of all used shRNA sequences

Gene	Direction	Sequence
shmTEAD4-1	sense	CCGGGCTGAAACACTTACCCGAGAACTCGAGTTCTCGGGTAAGTGTTTCAGCTTTTTG
	antisense	AATTCAAAAAGCTGAAACACTTACCCGAGAACTCGAGTTCTCGGGTAAGTGTTTCAGC
shmTEAD4-2	sense	CCGGCCGCCAAATCTATGACAAGTTCTCGAGAACTTGTCATAGATTTGGCGGTTTTTG
	antisense	AATTCAAAAACCGCCAAATCTATGACAAGTTCTCGAGAACTTGTCATAGATTTGGCGG
shmVGLL4-1	sense	CCGGACACATGGCTTCAGATCAAAGCTCGAGCTTTGATCTGAAGCCATGTGTTTTTTTG
	antisense	AATTCAAAAAACACATGGCTTCAGATCAAAGCTCGAGCTTTGATCTGAAGCCATGTGT
shmVGLL4-2	sense	CCGGGACAAGATGAACAACAATATCCTCGAGGATATTGTTGTTCATCTTGTCTTTTTG
	antisense	AATTCAAAAAGACAAGATGAACAACAATATCCTCGAGGATATTGTTGTTCATCTTGTC
shmYAP-1	sense	CCGGTGAGAACAATGACAACCAATACTCGAGTATTGGTTGTCATTGTTCTCATTTTTG
	antisense	AATTCAAAAATGAGAACAATGACAACCAATACTCGAGTATTGGTTGTCATTGTTCTCA
shmYAP-2	sense	CCGGGAAGCGCTGAGTTCCGAAATCCTCGAGGATTTCGGAACTCAGCGCTTCTTTTTG
	antisense	AATTCAAAAAGAAGCGCTGAGTTCCGAAATCCTCGAGGATTTCGGAACTCAGCGCTTC
shmCtBP2	sense	CCGGTACGAAACTGTGTCAACAAAGCTCGAGCTTTGTTGACACAGTTTCGTATTTTTG
	antisense	AATTCAAAAATACGAAACTGTGTCAACAAAGCTCGAGCTTTGTTGACACAGTTTCGTA

Table 3 List of the primers used for ChIP-PCR

Primer	Direction	Sequence	Length(bp)
PPARG-E	forward	5' -CAATATTGAACAATCTCTGCTCTG-3'	
	reverse	5'-ACAAGGAAAACGTTGCTACATT-3'	113
PPARG-A	forward	5' -TCCCGATGGTTCCTGAGCA-3'	
	reverse	5'-GGAGTGTAAAAAGATGAGAAATGG-3'	116
KLF8	forward	5' -AAATTCCTGCACTCACAAGACTCT-3'	
	reverse	5' -TCCCCTAGAACTGCAGTTACAGAC-3'	173
Adipo2-3	forward	5'-GATTGGGTTACCTCACTCAG-3'	
	reverse	5' -CCAGATGCCCCTCAACAG-3'	152
PLINB	forward	5' -AGAGACAGTGTTGGGAGGGTGGAG-3'	
	reverse	5'-GAGAGGGTTAGCTGAGGAGAAAGA-3'	104
CTGF	forward	5' -TGTGCCAGCTTTTTCAGACG-3'	
	reverse	5'-GAACTGAATGGAGTCCTACACA-3'	

Supplemental Figures

Supplemental Figure 1. Default repression of adipogenesis by TEADs in 3T3-L1 cells. (A and B) Oil Red O staining of lentiviral-mediated knock-down of TEAD1, 2, 3, 4 3T3-L1 stable cells after adipogenic cocktails induced for 7 days (A), and quantified by measurement of the absorbance at 510 nm (B). Data were shown as mean \pm SD (*n=3*). *, p<0.05 by Student's t test.

(C) qRT-PCR analysis of adipocytes markers expression in TEADs knock-down 3T3-L1 cells after adipogenic cocktails induced for 7 days.

(D and E) Overexpression or knock-down of TEAD4 effect on C/EBP α -Luc (C), and CIDEA-luc (D) activity in 293T cells. Data were shown as mean ± SD (n=3). **, p<0.01 by Student's t test. *, p<0.05 by Student's t test.

Supplemental Figure 2. TEAD4 modulates adipogenesis-related pathways.

(A) Immunoblot analysis of TEAD4, VGLL4 and YAP in lentiviral-mediated expression of shluc/shTEAD4/shVGLL4/shYAP 3T3-L1 stable cell lines after adipogenic cocktails induced for 7 days. GAPDH was used as an internal control. Positions of protein molecular mass marker are indicated on the right.

Supplemental Figure 3. CtBP2 binds to both TEAD4 and VGLL4.

(A) Co-IP assay detected no interaction between YAP and CtBP2. The indicated plasmids were transfected into 293T cells and analyzed by Co-IP.

(B) GST pull-down assay to detect the interaction between TEAD4 and CtBP2, using YAP as a positive control.

(C and D) Co-IP assay to map the interaction between CtBP2 and VGLL4 (C), and TEAD4 (D), respectively. The plasmids of CtBP2 full-length (FL), CtBP2 N-terminal, CtBP2 Cterminal, VGLL4 and TEAD4 were transfected into 293T cells and analyzed by Co-IP. The arrowhead indicates the IgG heavy chain and the asterisk denotes the nonspecific band.

Supplemental Figure 4. VGLL4 mediates the interaction between TEAD4 and CtBP2.

(A) Co-IP assay to detect exogenous VGLL4 effect on the interaction between TEAD4 full-length, TEAD4 N-terminal or TEAD4 C-terminal and CtBP2. The indicated plasmids were transfected into 293T cells and analyzed by Co-IP. The arrowhead indicates the IgG heavy chain.

(B) Sequence alignment of TEADs YAP interactions.

(C) Co-IP assay to detect TEAD4Y429 site function on its interaction with YAP or VGLL4,

respectively. The indicated plasmids were transfected into 293T cells and analyzed by

Co-IP. The arrowheads indicates the IgG heavy chains.

(D) Co-IP assay to detect TEAD4Y429 site function on its interaction with TAZ. The indicated plasmids were transfected into 293T cells and analyzed by Co-IP.

Supplemental Figure 5. TEAD4 directly regulates adipogenesis and targets PPARy, PLIN1, KLF8 and Adipoq.

(A and B) Oil Red O staining of lentiviral-mediated overexpression of pLEX, TEAD4,

VGLL4 and CtBP2 3T3-L1 stable cell lines after adipogenic cocktails induced for 7 days

(A) and quantified by measurement of the absorbance at 510 nm (B).

(C) Immunoblot analysis of TEAD4, VGLL4, CtBP2, PPAR γ , C/EBP α and FABP4 expression in the above cell samples. GAPDH was used as an internal control. Positions of protein molecular mass marker are indicated on the right.

(D) Co-IP assay to verify TEAD4 antibody immunoprecipitation efficiency in 3T3-L1 cells. TEAD4 or IgG antibodies were incubated with cell lysates stable-expressing TEAD4 and analyzed by Co-IP. The arrowheads indicate the IgG heavy chains.

(E) Positive binding peaks of TEAD4 in PPARγ, PLIN1, KLF8 and Adipoq promoter regions.

3T3-L1 cells adipogenesis at day 7 (Oil Red O staining)

Supplemental Figure 6. Ectopic expression of CtBP2 in the depletion of TEAD4 inhibits adipogenesis.

(A and B) Oil Red O staining of lentiviral-mediated overexpression of CtBP2 in TEAD4-

depletion 3T3-L1 stable cell lines after adipogenic cocktails induced for 7 days (A) and

quantified by measurement of the absorbance at 510 nm (B). **, p ${<}0.01$ by Student's

t test.

(C) Immunoblot analysis of TEAD4, VGLL4, CtBP2, PPARγ, C/EBPα and FABP4 expression in the above cell samples. GAPDH was used as an internal control. Positions of protein molecular mass marker are indicated on the right.