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1 Structural properties of individual STRING networks

Yeast Human
network type ρ 〈k〉 R D 〈C〉 ρ 〈k〉 R D 〈C〉
neighborhood 0.019 41.99 4 8 0.23 0.009 30.04 5 9 0.22
fusion 0.011 3.49 8 14 0.05 0.017 4.17 7 13 0.05
cooccurence 0.016 6.94 8 15 0.45 0.005 13.01 11 21 0.45
coexpression 0.019 109.01 6 11 0.42 0.006 102.25 7 14 0.38
experimental 0.011 71.34 3 6 0.16 0.002 37.28 5 9 0.19
database 0.011 27.11 10 19 0.62 0.005 41.46 6 11 0.59

Table S1: Basic measures of individual STRING networks: network density ρ =
2L

N(N−1) ; average node degree 〈k〉; network radius (minimum eccentricity)R; network diameter

(maximum eccentricity) D; average clustering coefficient 〈C〉. All measures are computed
on a network’s largest connected component.
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2 Annotation data for temporal holdout

Yeast Human
# (train, test, valid) GO terms # (train, test, valid) GO terms

MF (3436, 202, 966) 20 (8633, 1131, 3596) 74
BP (3293, 170, 1561) 43 (6818, 1272, 5107) 331
CC (3424, 246, 879) 11 (7656, 1254, 4843) 54

Table S2: Train, test and validation annotations used in the temporal holdout
validation of our method.
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deepNF Algorithm

Input: Adjacency matrices {A(1), . . .A(N)},
annotation matrix Y ∈ Rn×f

Output: Predicted function score matrix Ŷ ∈ R|r|×f

for j ∈ {1, . . . N} do
P(j) = RWR(A(j)); (Eq. 1)
X(j) = PPMI(P(j)); (Eq. 2)

end

θ = MDATrain({X(1), . . . ,X(N)}); (Eq. 3)
Hc = ExtractMDAFeatures({X(1), . . .XN});
for h ∈ {1, . . . f} do

βh = SVMTrain(Hc{q}, Y:h{q});
end
for h ∈ {1, . . . f} do

Ŷ:h{r} = SVMPredict(βh, Hc{r});
end

Algorithm 1: deepNF protocol. N is the number of protein networks, n is the
number of proteins in each network, and f is the number of function columns in Y.
The training and test protein indices are given by q and r, respectively. θ is the set of
the MDA parameters trained to reconstruct the input PPMI matrices. βh is the set of
SVM parameters trained for function h.
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3 Model configuration

We implemented our MDA model in Keras [1] with the TensorFlow [2] backend and trained
it using the standard backpropagation algorithm. Each layer in the MDA is implemented as
a Dense layer with the sigmoid activation function. Our MDA consists of multiple hidden
layers that map multiple inputs, represented by 6 PPMI matrices of STRING networks, to
multiple outputs (see Fig. 1 in the main manuscript). After mapping the input layers to 6
hidden layers, we concatenated them to a single layer that is further used as an input to
next hidden layer. Different MDA encoding architectures that we use in our method, are
provided in Table S3.

• Model encoding architecture:

Yeast Human
[6× n, 600] [6× n, 1200]

[6× n, 6× 2000, 600] [6× n, 6× 2500, 1200]
[6× n, 6× 2000, 6000, 600] [6× n, 6× 2500, 9000, 1200]

[6× n, 6× 2000, 6000, 3000, 600] [6× n, 6× 2500, 9000, 6000, 600]
[6× n, 6× 2000, 7200, 4800, 600] [6× n, 6× 2500, 12000, 9000, 6000, 1200]

[6× n, 6× 2000, 7200, 4800, 2400, 1200] [6× n, 6× 2500, 12000, 9000, 6000, 1200]

Table S3: MDA architectures for Yeast and Human STRING networks. See the
Architecture Example in Fig. S1 for the expansion of the shorthand notation.
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Figure S1: Architecture Example.

• Model hyperparameters:

We optimize the cost function (Eq. 4 in the main manuscript) using stochastic gradient
descent (SGD) optimizer with momentum. We have tried a variety of activation functions
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hyperparameters Yeast Human
batch size 128 256

epochs 10 20
lr 0.2 0.2

momentum 0.95 0.95

Table S4: Model hyperparameters.

including tanh and ReLU, and have found empirically that the sigmoid activation performed
the best. Optimizers such as Adam and Adagrad seemed not to have much of an effect
on final performance of our models, so for simplicity we chose to train our models using
stochastic gradient descent with momentum. The model is trained with different batch sizes
and number of epochs. To prevent overfitting, we also implemented early stopping by
training our model on 90% of the data and computing the validation loss of reconstruction
on the remaining 10% of the data. We monitor the validation loss at the end of every epoch
and stop the training when validation does not decrease for 2 consecutive epochs. The values
of hyperparameters are provided in Table S4. The implementation of our method is freely
available online [3].

Regarding the SVM step of our method, we used the exact same grid search procedure
as in the Mashup paper for choosing the optimal hyperparameters:

• RBF kernel bandwidth: γ ∈ {0.001, 0.01, 0.1, 1.0}

• regularization parameter of the SVM: C ∈ {0.1, 1.0, 10.0, 100.0}

We use this grid for both Mashup and deepNF. We re-run Mashup for both cross-validation
and temporal-holdout validation using its MATLAB implementation downloaded from http:

//cb.csail.mit.edu/cb/mashup/.
Similar to Mashup, we also run GeneMANIA for both cross-validation and temporal-

holdout validation using its MATLAB implementation downloaded from: http://morrislab.
med.utoronto.ca/sara/SW. We use Platt calibration [4] to convert GeneMANIAs scores
into probability score before evaluation, as suggested in the Mashup paper [5].

6

http://cb.csail.mit.edu/cb/mashup/
http://cb.csail.mit.edu/cb/mashup/
http://morrislab.med.utoronto.ca/sara/SW
http://morrislab.med.utoronto.ca/sara/SW


4 Study of different MDA architectures: cross-validation

and temporal holdout validation performance

Figure S2: Comparison of deepNF’s 5-fold cross validation performance in yeast, mea-
sured by macro-averaged AUPR (M-AUPR) and computed on the low-dimensional features
extracted from the MDA with different architectures and hidden layer sizes shown on the
x-axis. We show the performance on different hierarchical levels of MIPS annotations, i.e.,
level 1 (left), level 2 (middle) and level 3 (right). Average performance of Mashup on the
same annotations along with error bars is shown in red. Results are summarized over ten
CV trials.

Figure S3: Comparison of deepNF’s temporal holdout performance in yeast, measured by
macro-averaged AUPR (M-AUPR) and computed on the low-dimensional features extracted
from the MDA with different architectures and hidden layer sizes shown on the x-axis. We
show the performance on different GO ontologies, i.e., MF (left), BP (middle) and CC (right).
The performance of Mashup on the same annotations is shown in red.
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Figure S4: Comparison of deepNF’s 5-fold cross validation performance in human, mea-
sured by macro-averaged AUPR (M-AUPR) and computed on the low-dimensional features
extracted from the MDA with different architectures and hidden layer sizes shown on the
x-axis. We show the performance on GO annotations with different levels of frequencies,
for every ontology, i.e. MF (top), BP (middle) and CC (bottom). Average performance
of Mashup on the same annotations along with error bars is shown in red. Results are
summarized over ten CV trials.
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Figure S5: Comparison of deepNF’s temporal holdout performance in human, measured
by macro-averaged AUPR (M-AUPR) and computed on the low-dimensional features ex-
tracted from the MDA with different architectures and hidden layer sizes shown on the
x-axis. We show the performance on the three GO branches, i.e., MF (top), BP (middle)
and CC (bottom). The performance of Mashup on the same annotations is shown in red.
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5 Cross-validation performance
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Figure S6: Performance of our method in integrating Human STRING networks, with the
MDA architecture [6 × N, 6 × 2500, 9000, 1200], in 5-fold cross validation in comparison to
prediction performance of the state-of-the-art integration method, Mashup, and GeneMA-
NIA. Performance is measured by the area under the precision-recall curve, summarized over
all GO terms both under the micro-averaging (m-AUPR) and macro-averaging (M-AUPR)
schemes; F1 score and accuracy (ACC). Performance of the methods is shown separately for
BP (top) and CC (bottom) ontologies, where each ontology is further divided into three
levels: level 1, level 2 and level 3 annotating 101-300, 31-100 and 11-30 proteins respectively.
The error bars are computed based on 10 trials and asterisks indicate where the performance
of deepNF is significantly higher than the performance of Mashup (rank-sum p-value < 0.01).

Given that the procedure for selecting the training proteins in temporal holdout validation
might result in data that happens to give our method an advantage over prior methods,
we performed an additional cross-validation analysis on the same set of GO terms used
in the temporal holdout validation using the annotations from Uniprot-GOA released in
2017 for both yeast and human proteins. Unlike temporal holdout validation, which uses
a fixed set of training proteins, the cross-validation procedure randomly selects proteins in
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each trial so that final evaluation of the method is independent of the choice of training
proteins. The temporal holdout-oriented cross-validation results for human and yeast are
shown in Figure S6 in the Supplementary Material. Even in this way of evaluation, we show
that deepNF outperforms Mashup and GeneMANIA in every ontology except in the cellular
component branch of yeast. Since we report improvements in performance consistently in
cross-validation for both the general set of GO terms (see Figs. 2, 3 in the text) and the
terms selected from the temporal holdout procedure (see Fig. S6 in the Supplementary
Material), we reduce the possibility of bias in splitting the data in favor of our method in
temporal holdout validation. In addition, the temporal holdout validation procedure is a
better simulation of the actual use of protein function prediction methods in the wild, as
discussed in [6].
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Figure S7: Cross-validation performance of our method in comparison to prediction per-
formance of the state-of-the-art integration method, Mashup, as well as GeneMANIA. Per-
formance is measured by the area under the precision-recall curve, summarized over the
same set of GO terms used in temporal holdout in yeast (top) and human (bottom).
Performance of the methods is shown separately for MF (left), BP (middle) and CC (right)
ontologies. The error bars are computed based on 10 trials and asterisks indicate where the
performance of deepNF is significantly higher than the performance of Mashup (rank-sum
p-value < 0.01).
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6 Temporal holdout validation: performance on indi-

vidual GO terms
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Figure S8: Temporal holdout performance of individual BP-GO terms (top) and CC-GO
terms (bottom) in yeast, measured by AUPR. The GO term names are shown on the x-
axis. We compare the performance of deepNF (grey) with Mashup (white).
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Figure S9: Temporal holdout performance of individual BP-GO (top), MF-GO terms (mid-
dle) and CC-GO terms (bottom) in Human, measured by AUPR. We compare the perfor-
mance of deepNF (gray) with Mashup (white). Due to limited space we could not provide
full GO term names on the x-axis. Please refer to the link in [3] for the lists of GO terms
for this figure.
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7 Baseline methods

We compare the performance of deepNF with three baseline methods.

• In the first method (termed SVM-PPMI), we train the SVM on the high-dimensional
protein vectors (i.e., n-dimensional, where n is the number of nodes in the network)
obtained from the PPMI matrices. We used the same grid search procedure for choosing
the optimal parameters (γ of the RBF kernel, and the regularization parameter C) as
described above (see Sec. 3). In Fig. S10 we show the performance of the SVM-PPMI
on the PPMI features from a single network (i.e., PPMI matrix of the experimental
STRING network) and concatenated features from all N = 6 networks (i.e., N = 6
concatenated PPMI matrices representing STRING networks).

• We have also implemented a linear-SVM trained on the random projections of the
input PPMI vectors (termed SVM-RND proj). We adopt Gaussian random projection
method ( [7]) to reduce the dimensionality of the input vectors by projecting the original
input space (PPMI matrices) on a randomly generated matrix with components drawn
from the Gaussian distribution, N(0, 1

ndim
), where ndim = 600 (for Yeast) and ndim =

1200 (for Human). In Fig. S10 we show the performance of SVM-RND proj on the
random projections obtained from a single PPMI matrix (of the experimental STRING
network) and on the random projection obtained from the N = 6 concatenated PPMI
matrices representing the STRING networks.

• To show the difference between our pre-processing step and the Mashups pre-processing
step, we run our method on the RWR diffusion states (with restart probability, pr =
0.5) generated by Mashups pre-processing step (deepNF-mRWR).

Figure S10: Temporal holdout validation performance of our method, with the MDA ar-
chitecture [6 × n, 6 × 2000, 600] for yeast and [6 × n, 6 × 2500, 9000, 1200] for human, in
comparison to prediction performance of baseline methods.
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