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event prediction in advanced prostate cancer, applied to real-world patient cohorts. 

  

Real-world registry data processing 

A notification of the registry-based study design was made to the Office of the Data Protection 

Ombudsman according to the appropriate legislation, and the data gathering and analysis was performed 

with the study permission of Varsinais-Suomen sairaanhoitopiirin kuntayhtymä (approval T287/2016). The 

patient registry data were provided by the Turku University Hospital Centre for Clinical Informatics in an 

SQL database. The database contains information of the prostate cancer patients treated in the hospital, 

mainly during the years 2004-2016, although some diagnoses were also present from the years 2002-2003. 

There were altogether 8493 patients, of which 7997 had a diagnosis of prostate cancer, identified with 

ICD10 code C61 or C61&. Information on prescription medications was mainly available since the mid-2010. 

Regular expressions were found to be sufficient for extracting the model variables, originally derived from 

the US-based clinical trials. Prescription medications were matched based on their ATC codes, and clinical 

diagnoses based on ICD 10 codes. Medical operations, such as surgeries, and the values for the clinical 

measurements were identified by national and hospital-specific codes1. For routine clinical measurements, 

such as BMI, height, weight and blood pressure, variable matching was based on their Finnish labels. Except 

for patient cohort selection (see below), only the structured data was used in these analyses, that is, we did 

not extract information from the patient medical records that were available as free-form text only. 

Patient cohort selection criteria 

Two sub-cohorts of advanced prostate cancer patients were extracted from the pool of all the available 

prostate cancer patients in the real-world registry data (n=7997). 

The first cohort was identified using selection criteria similar to Seyednasrollah et al (2017). We tried to 

replicate as closely as possible their analyses, in terms of the clinical variables and modelling choices, as 

well as the reported patient selection criteria using medication information only (personal communication 

and the supplement of Seyednasrollah et al., 2017). More precisely, all the diagnosed prostate cancer 

patients were included that had been treated with both antiandrogens (ATC codes L02BB*, G03H*, where * 

means that anything is allowed) and docetaxel. Docetaxel treatments were identified using all common 

Finnish spellings of the treatment name, as ATC codes were not available for the treatments given at the 

hospital. Different from Seyednasrollah et al. (2017), we did not implement further exclusion criteria using 

clinical trial eligibility status or other malignancies, to extract as large cohort as possible. 180 patients 

matching these selection criteria were identified, referred to as “patient selection by medication only”. 

The second cohort was found by text mining of the patient medical records, referred to as “patient 

selection by medical records”. The implemented algorithm searched for sentences containing phrases, such 

as “castration resistant” or “hormone refractory”, which did not include words indicating uncertainty, such 

as “suspicion” or “is developing”2. Common spelling errors were also accepted in the search process. The 

                                                           
1
 These codes are  available at http://www.terveysportti.fi/terveysportti/toimenpideluokitus.koti and 

https://webohjekirja.mylabservices.fi/TYKS/ (in Finnish) 
2
 The medical records were in Finnish and the exact regular expressions were: one of  '.*kastraatioresist', '.*crpc', 

'.*hormoniresist', '.*hormooniresist', '.*gastraatioresist', '.*hormonirefr', '.*hormoonirefr', '.*kastraatiorefr', 

http://www.terveysportti.fi/terveysportti/toimenpideluokitus.koti
https://webohjekirja.mylabservices.fi/TYKS/
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vocabulary for the text search was iteratively improved manually by trial-and-error. An evaluation by a 

clinical expert found that less than 2% of the CRPC classifications were erroneous, while ca. 15% were 

uncertain. The text search resulted in a larger cohort of 587 patients. Since we only looked for castration 

resistance, and did not explicitly include criteria for metastases, this cohort was larger but potentially more 

heterogeneous in terms of the advanced stage of the disease, in comparison to the first cohort. 

Survival analyses 

Survival and time-to-event prediction was based on ensemble of penalized Cox regression (ePCR) model 

(Guinney et al., 2017). The start time was selected based on the first time of the docetaxel treatment in the 

medication-selected cohort, and on the first recorded identification of castration resistance in the second 

cohort. The time-to-event was computed as the difference (in days) between the patient-specific start time 

and death (observed end-point event), or the last observation of the patient (censoring). This resulted in a 

right-censored observation vector, which is typical for survival analysis, consisting of two components: the 

day to event or censoring and an indicator for event or censoring. Clinical features for the prognostic model 

included the latest eligible observations dated before or on the start day of the given patient.  

Prognostic modelling 

Four prognostic models were included in the analyses: the Halabi model (Halabi et al., 2014), the winning 

ePCR model of the Prostate Cancer DREAM Challenge (Guinney et al., 2017), a reduced version of the full 

ePCR model (see below), and the version of the original ePCR model used by Seyednasrollah et al. (2017). A 

clinical variable of the full ePCR model was included in the reduced model only if there were less than 40% 

of missing values of the particular variable in the patient cohort identified by text searches of the medical 

records. Here, a value was considered missing for a patient if it had never been measured for the patient 

before the time of the diagnosis (start time). Since the clinical measurements were not always provided 

using the same unit, the pint library3 was used for automatically converting the clinical features to the same 

units as in the DREAM clinical trial data. The cases where the conversion failed were corrected manually. 

Finally, the values of certain features were log-transformed. The exact variables used by Seyednasrollah et 

al. (2017) remained somewhat uncertain since some variables were not specifically reported in their 

original work. The feature abbreviations in Suppl. Table 1 are as presented in the DREAM Challenge data 

and their full descriptions can be found from the Data Dictionary accompanying Guinney et al. (2017). 

For comparison of our results to those of Seyednasrollah et al. (2017), an additional four-week limit on the 

time period of observations (based on the start time of each patient) was imposed, similarly as in 

Seyednasrollah et al. (2017). The ePCR models were also tested without the time limit, which generally 

improved the prediction performances (see Figure 1 in the manuscript). When no measurement for a 

clinical variable was available, it was replaced by an imputed value. Two imputation methods were tested 

for the real-world hospital patient cohort: median imputation and k-NN imputation, with default k = 10. In 

both cases, only the information present in the variable table for the patient cohort was taken into account. 

For two of the variables of the full ePCR model (urine specific gravity SPEGRA and patient performance 

status ECOG_C), there were no observations in the raw data tables. These missing values were replaced by 

a constant value (the median of the same variable in the DREAM Challenge clinical trial data). We note that 

these variables were not included in our reduced ePCR model (see Suppl. Table 1).  

                                                                                                                                                                                                 
'.*gastraatiorefr' and none of '.*kehittymässä', '.*muuttumassa', '.*epäily', '.*mikäli', '.*kehittyy', '.*jos[\s,\.]', 
'.*vaikuttaa'. 
3
 https://pint.readthedocs.io/en/latest/ 

https://pint.readthedocs.io/en/latest/
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The patient registry data was used for selecting the subset of clinical variables available in the real-world 

cohorts and included in the reduced model (60 variables that were available for at least 60% of patients in 

the patient cohort selected by medical records), but this selection was done based on the missing value 

rate only, without using the prediction accuracy as a selection criterion (i.e., not leading to over-fitting). 

This is because in a real predictive setting with newly-hospitalized patients, the survival of those patients is 

obviously unknown and cannot therefore be used as a criterion for selecting the model variables. In Fig. 1A, 

however, the rightmost bars were obtained by testing two models and selected best ways to pre-process 

the real-word data in the same cohort used for evaluating the prediction accuracy. In particular, we tested 

the effect of imposing a time limit on the observations (similar to Seyednasrollah et al, 2017), as well as 

different imputation methods (K-NN and median imputation). In real applications, one could not expect to 

obtain as good results as in the best cases of Fig. 1A, where survival information was used for selecting the 

best model, and therefore these particular results are expected to be optimistically biased to some degree. 

Ensemble model objects available 

The readily-fitted ensemble components for the DREAM clinical trial cohort from Guinney et al. (2017) and 

the ensemble combining the two real-world patient cohorts from Turku University Hospital (e.g. regarding 

the selected variables and their estimated penalized coefficients) are provided as-is in the ePCR R-package. 

As such, the provided ensembles can be used for model inference and future predictions, but the S4-class 

R-object of the original data matrix has been omitted, due to personal data and security reasons. The 

original clinical data matrices can be obtainable from their respective owners (Project Data Sphere, 

https://www.projectdatasphere.org; and the Turku University Hospital, Centre for Clinical Informatics 

http://cci.vsshp.fi with an appropriate study permit). The ensemble model for the synthetic patient data 

simulated based on the Turku University Hospital cohort (see below) is available as an ePCR-package S4-

object. All the R-functions for the clinically relevant prediction tasks, including overall survival and time-to-

event prediction for future data, as well as incorporated analytics and diagnostic plots for the penalized Cox 

regression models, can be run on model objects without including the original data matrices. The prediction 

accuracy was evaluated using the c-index and iAUC functions in the ePCR-package; for more detailed 

instructions, please see the reference manual (https://cran.r-project.org/web/packages/ePCR/ePCR.pdf).  

Generating simulated patient data  

Due to the patient data security and confidentiality issues, the exact patient cohort measurements cannot 

be embedded to the open-source, freely available R-package itself. For simulating realistic, yet synthetic 

data, a nonparametric mixture kernel density function was estimated based on the real-world patient data 

using the np-package in R (Hayfield & Racine, 2008), after which simulated observations were drawn from 

the estimated mixture probability density functions. As bandwidth length is a key aspect in nonparametric 

kernel density estimation in the np-package, our simulation approach made use of computationally 

intensive cross-validation for selecting optimal bandwidths for each dimension. In order to avoid getting 

stuck at local minima, the adaptive bandwidth selection procedure was run with multi-start mode, i.e., 

varying multiple starting parameters were used for the optimization procedure. For continuous numeric 

variables, conventional second-order Gaussian kernels were used. For non-continuous clinical variables, the 

np-package offers the possibility to take into account the mixture nature of clinical data regarding 

unordered (binary or nominal) and ordered (ordinal) categorical features, for which the default kernels 

(Aitchison-Aitken and Wang-van Ryzin, respectively) were used. These latter, non-conventional kernels for 

categorical features are documented in the corresponding R-package publication (Hayfield & Racine, 2008).  

https://cran.r-project.org/web/packages/ePCR/ePCR.pdf


4 
 

After estimating the kernel density probability density function (PDF), an importance sampling procedure 

was adopted to generating synthetic patients by sampling from the true observed values of each feature 

independently. A large number of such synthetic patients were generated (>100k), thus approximating the 

full spectrum of possible patient characteristic combinations in the high-dimensional space (>100 features).  

A smaller sample of patients from this pool of candidates was randomly chosen as the final synthetic 

dataset by sampling with weighting by the corresponding kernel-based PDF. Furthermore, a representative 

survival response vector was generated from the Weibull distributions with censoring characteristics similar 

to the true observed event and censoring time quantiles. More specifically, 150 and 500 synthetic patients 

were sampled from the kernel density estimated PDFs for the two sub-cohorts of the Turku University 

Hospital registry data, with the original patient sample sizes of 180 and 587, respectively. Based on the 

exploratory diagnostics for PCA and boxplots (PCA shown for various subsets and in relation to the DREAM 

cohort in Supplementary Figures 1A-D), the key distributional characteristics were well-captured for all the 

mixture data types: continuous, ordered variables and unordered variables. The representativeness of the 

simulated response vectors were verified using the Kaplan-Meier plots (Supplementary Figures 1E-F). These 

simulated data matrices and the corresponding response vectors are provided in the ePCR-package for 

illustrating the use of the package, as well as to provide representative data emerging from the real-world 

hospital patient cohorts. The kernel density-simulated data captured the relevant data characteristics also 

based on visual diagnostics for the univariate continuous or binary/ordinal features in Supplementary 

Figure 2 and Supplementary Figure 3, respectively. 
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Supplementary Tables 

Supplementary Table 1. Model variables in the four prognostic models used in the analyses.  
 

Variable Unit Full ePCR Seyednasrollah et al. Reduced ePCR Halabi et al. 

BMI kg/m2 X X   

HEIGHTBL cm X X   

WEIGHTBL kg X X X  

ALP* U/l X X X X 

ALT* U/l X X X  

AST* U/l X X   

CA mmol/l X X   

CREAT* µmol/l X X X  

HB g/dl X X X X 

LDH* U/l X   X 

NEU* 109/l X X   

PLT 109/l X X X  

PSA*  ng/ml X X X X 

TBILI* µmol/l X X   

TESTO* nmol/l X X   

WBC* 109/l X X X  

CREACL* ml/min X    

NA. mmol/l X X X  

MG* mmol/l X    

PHOS* mmol/l X    

ALB g/l X X  X 

TPRO g/l X X   

RBC 1012/l X X X  

LYM* 109/l X    

BUN* mmol/l X    

CCRC* ml/min X    

GLU* mmol/l X    

SYSTOLICBP mmHg X X   

DIASTOLICBP mmHg X X   

PULSE bpm X X   

HEMAT % X X X  

SPEGRA kg/l X X   

LYMperLEU % X    

MONO 109/l X X   

MONOperLEU % X X   

NEUperLEU % X X   

POT mmol/l X X X  

BASOperLEU % X X   
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EOS 109/l X X   

EOSperLEU % X X   

TARGET  X X   

LYMPH_NODES  X X X  

KIDNEYS  X X X  

LUNGS  X X X  

LIVER  X X X  

PLEURA  X X X  

OTHER  X X X  

PROSTATE  X X   

ORCHIDECTOMY  X X X  

PROSTATECTOMY  X X X  

LYMPHADENECTOMY  X X X  

BILATERAL_ORCHIDECTOMY  X X X  

PRIOR_RADIOTHERAPY  X X X  

ANALGESICS  X X X X 

ANTI_ANDROGENS  X X X  

GLUCOCORTICOID  X X X  

GONADOTROPIN  X X X  

BISPHOSPHONATE  X X X  

CORTICOSTEROID  X X X  

IMIDAZOLE  X X X  

ACE_INHIBITORS  X X X  

BETA_BLOCKING  X X X  

HMG_COA_REDUCT  X X X  

ESTROGENS  X X X  

ANTI_ESTROGENS  X X X  

CEREBACC  X  X  

CHF  X  X  

DVT  X  X  

DIAB  X  X  

MI  X  X  

PULMEMB  X  X  

SPINCOMP  X  X  

COPD  X  X  

MHBLOOD  X X X  

MHCARD  X X X  

MHCONGEN  X X X  

MHEAR  X X X  

MHENDO  X X X  

MHGASTRO  X X X  

MHHEPATO  X X X  

MHIMMUNE  X X X  

MHINFECT  X X X  
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MHINJURY  X  X  

MHINVEST  X    

MHMETAB  X X X  

MHPSYCH  X X X  

MHRENAL  X X X  

MHRESP  X X X  

MHSKIN  X X X  

MHVASC  X  X  

ECOG_C  X X  X 

AGEGRP2  X X X  

RaceAsian  X X   

RaceBlack  X X   

RaceOther  X X   

RaceWhite  X X   

RegionAsia  X X   

RegionEastEuro  X X   

RegionNorthAmer  X X   

RegionSouthAmer  X X   

RegionWestEuro  X X   

Disease site4  
 

  X 

* Log-transformed variables. 

 

 

  

                                                           
4
 The variable ”Disease site” in the Halabi model indicates the site of metastases (lymph nodes, bone or visceral). The 

same information is used also in the ePCR models but represented as separate binary variables. 
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Supplementary Figures 
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Supplementary Figure 1. Comparison of the simulated data estimated based on Turku University Hospital 

cohort with the true patient registry data, as well as with the DREAM Challenge 9.5 mCRPC cohorts utilized 

in the original top-performing ePCR model. All the 101 variables of the full ePCR model were used for 

generating the figures (see Supplementary Table 1). (A) PCA plot of simulated real-world data versus true 

data; (B) PCA plot of simulated text search-based patient cohort versus the true text search-based cohort; 

(C) PCA plot of simulated medication-based cohort versus the true medication-based cohort; (D) PCA plot 

of simulated real-world data versus two DREAM clinical trial cohorts; (E) Kaplan-Meier survival plots for the 

simulated and true real-world cohorts based on the simulated response vector; (F) Kaplan-Meier survival 

plots for the simulated real-world cohorts as well as the DREAM clinical trial training cohorts. 
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Supplementary Figure 2. Diagnostic boxplots for numeric variables in the simulated and true medication 

and text search-based cohorts. 
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Supplementary Figure 2 (continued). Diagnostic boxplots for numeric variables in the simulated and true 

medication and text search-based cohorts. 
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Supplementary Figure 2 (continued). Diagnostic boxplots for numeric variables in the simulated and true 

medication and text search-based cohorts. 
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Supplementary Figure 2 (continued). Diagnostic boxplots for numeric variables in the simulated and true 

medication and text search-based cohorts. 
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Supplementary Figure 2 (continued). Diagnostic boxplots for numeric variables in the simulated and true 

medication and text search-based cohorts. 
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Supplementary Figure 2 (continued). Diagnostic boxplots for numeric variables in the simulated and true 

medication and text search-based cohorts. 
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Supplementary Figure 2 (continued). Diagnostic boxplots for numeric variables in the simulated and true 

medication and text search-based cohorts. 
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Supplementary Figure 2 (continued). Diagnostic boxplots for numeric variables in the simulated and true 

medication and text search-based cohorts. 
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Supplementary Figure 3. Diagnostic bar-plots for the binary and ordinal features in the simulated and true 

medication and text search-based cohorts. 
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Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 
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Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 
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Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 
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Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 
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Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 
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Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 
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Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 
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Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 

  



27 
 

 

Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 
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Supplementary Figure 3 (continued). Diagnostic bar-plots for the binary and ordinal features in the 

simulated and true medication and text search-based cohorts. 

 


