Cell Metabolism, Volume 28

Supplemental Information

Integrated Pharmacodynamic Analysis

Identifies Two Metabolic Adaption

Pathways to Metformin in Breast Cancer

Simon R. Lord, Wei-Chen Cheng, Dan Liu, Edoardo Gaude, Syed Haider, Tom Metcalf, Neel Patel, Eugene J. Teoh, Fergus Gleeson, Kevin Bradley, Simon Wigfield, Christos Zois, Daniel R. McGowan, Mei-Lin Ah-See, Alastair M. Thompson, Anand Sharma, Luc Bidaut, Michael Pollak, Pankaj G. Roy, Fredrik Karpe, Tim James, Ruth English, Rosie F. Adams, Leticia Campo, Lisa Ayers, Cameron Snell, Ioannis Roxanis, Christian Frezza, John D. Fenwick, Francesca M. Buffa, and Adrian L. Harris

Supplemental information

Integrated pharmacodynamic analysis identifies two metabolic adaption pathways to

metformin in breast cancer

Authors:

Simon. R. Lord, Wei-Chen. Cheng, Dan. Liu, Edoardo. Gaude, Syed. Haider, Tom. Metcalf, Neel. Patel, Eugene. J. Teoh, Fergus. Gleeson, Kevin. Bradley, Simon. Wigfield, Christos. Zois, Daniel. R. McGowan, Mei-Lin. Ah-See, Alastair. M. Thompson, Anand. Sharma, Luc. Bidaut, Michael. Pollak, Pankaj. G. Roy, Fredrik. Karpe, Tim. James, Ruth. English, Rosie. F. Adams, Leticia Campo, Lisa. Ayers, Cameron Snell, Ioannis Roxanis, Christian. Frezza, John. D. Fenwick, Francesca. M. Buffa, Adrian. L. Harris

Inventory of Supplemental Information

SUPPLEMENTAL FIGURES:

Figure S1.

Figure S2.

Figure S3.

Figure S4.

Figure S5.

SUPPLEMENTAL TABLES:

Table S1.

Table S2.

- Table S3.
- Table S4.
- Table S5.

Table S6.

SUPPLEMENTAL FIGURES:

Fig. S1. Effect of metformin on standardised uptake value of primary breast tumour.

Related to Figure 1.

Change in the (**A**) maximum and (**B**) mean standardised uptake value normalised to lean body mass of the primary tumour in individual patients (upper panel) and overall (lower panel; data shown are mean \pm SEM) pre- and post-metformin (n=36). (**C**): Change in maximum standardised uptake value normalised to lean body mass of axillary nodes in individual patients pre- and post-metformin (n=27). (**D**): Correlation between change in K_{FDG-2cpt} (postmetformin minus pre-metformin) and SUL_{Max} for the breast primary tumour, respectively, and change in SUL_{Max} for FDG avid axillary lymph nodes. Spearman's rank correlation coefficient and significance, are shown. (**E**): ATP/AMP and ATP/ADP ratios pre- and post-metformin (n=29); data shown are mean \pm SEM. (**F**): Change in pAMPK of primary tumour measured by immunohistochemistry in individual patients pre- and post-metformin (n=32; red = increase, blue = decrease and green = no change). (**G**): Correlation between change in K_{FDG-2cpt} and pAMPK for the breast primary tumour (both post-metformin minus pre-metformin). Spearman's rank correlation coefficient and significance, are shown.

Fig. S2. Heatmaps of all expressed nuclear and mitochondrial encoded genes following metformin. Related to Figure 2.

Heatmaps of all expressed nuclear (**A**) and mitochondrial (**B**) encoded genes following metformin. Each row represents a gene and each column represents a single patient. Colours reflect the fold change for each gene post-metformin: Red = up-regulation, Blue = down-regulation. Samples were visually clustered using hierarchical clustering (n=36). Patients in OTR (orange) and FR (green) groups shown below. (**C**): Median log FC and interquartile range for metabolites in OXPHOS transcriptional response (OTR) and FDG response groups.

Fig. S3. Relationship between systemic effects of metformin and tumour metabolic response. Related to Figure 3.

(A): Scatter plot to show change in tumour aspartate levels for the OTR and FR groups (postmetformin minus pre-metformin). Data shown are mean ± SEM and p-value on unpaired ttest (n=29). (B): Pre- and post-metformin levels of serum leptin, adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 for individual patients (n=40). (C): Scatter plots to show for the OTR and FR groups change in the systemic metabolic markers, serum glucose, serum insulin, serum c-peptide, HOMA, leptin and adiponectin, and the systemic inflammatory markers, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 (all post-metformin minus pre-metformin). Data shown are mean ± SEM and pvalue on unpaired t-test (n=36). (D): Venn diagram to show overlap of all genes whose change in expression correlated with change in tumour K_{FDG-2cpt} and tumour acetylcarnitine and either HOMA, or systemic levels of circulating glucose or insulin. (E): Change in pAKT of primary tumour measured by immunohistochemistry in individual patients pre- and post-metformin (n=32; red = increase, blue = decrease and green = no change). (F): Relationship between change in tumour pAKT and circulating metabolic markers (all post-metformin minus premetformin). Spearman's rank correlation coefficient and significance, are shown (n=27). (G): Scatter plots to show change in pAKT and pAMPK of primary tumour for the OTR and FR groups (both post-metformin minus pre-metformin). Data shown are mean ± SEM and pvalue on unpaired t-test (n=32). (H): Examples of pAKT immunohistochemical staining for individual patients, upper panel: increase after metformin; lower panel: no change after metformin.

OTR = OXPHOS Transcriptional Response FR = FDG Response

Fig. S4. Relationship between systemic effects of metformin and tumour metabolic/proliferation response. Related to Figure 3.

(A): Scatter plots to show serum (n=35) and tumour metformin levels (n=29) for the OTR and FR groups. Data shown are mean ± SEM, on unpaired t-test. (B): Correlation between tumour metformin levels and OCT1 baseline expression, patient with highest OCT1 expression and metformin level indicated Venn diagram to show overlap of all genes whose change in expression correlated with change in tumour K_{FDG-2cpt} and tumour acetylcarnitine and either HOMA, or systemic levels of circulating glucose or insulin. (C): Scatter plot to show baseline OCT1 gene expression for the OTR and FR groups. Data shown are mean ± SEM, on unpaired t-test. (n=36) (D): Relationship between change in tumour K_{FDG-2cpt} and OCT1, OCT2, tumour and serum metformin levels (all post-metformin minus pre-metformin). Spearman's rank correlation coefficient and significance, are shown. (E): Scatter plot to show for the OXPHOS transcriptional response group (OTR) and FDG response group (FR) change in GLUT1, GLUT3, and GLUT4 expression (log2FC) for the breast primary tumour (GLUT2 not expressed in most tumours). Data shown are mean ± SEM, unpaired t-test (n=36). (F): Relationship between change in proliferation gene signature (log2FC) with circulating or tumour immunohistochemical markers, metformin levels, K_{FDG}, or significantly altered tumour metabolites. Spearman's rank correlation coefficient and significance, are shown.

Fig. S5. Mechanism and modelling of 18F-FDG. Related to 'Dynamic PET-CT analysis' of STAR methods section.

(A) 18F-FDG tumour uptake occurs via: ① trans-capillary exchange; ② diffusion through the tumour interstitium; ③ trans-membrane transport to tumour intracellular spaces; and ④ intracellular phosphorylation of 18F-FDG. (B): two- and three-tissue compartment models describing 18F-FDG tumour uptake. (C): example of an image-derived blood input function, and (D): fit of the irreversible 2-tissue compartment model (continuous curve) to FDG uptake time-course data (dots) extracted from dynamic images for one patient.

SUPPLEMENTAL TABLES:

Inclusion criteria	Exclusion criteria
Women with a histology proven in situ primary	Radiotherapy, major surgery, significant
breast cancer ≥2 cm in diameter	traumatic injury, endocrine therapy,
	immunotherapy, chemotherapy or experimental
	therapy during four weeks prior to starting or
	during trial
Eastern Cooperative Oncology Group (ECOG)	Pregnancy or breast feeding
performance status 0–1	
Age <u>></u> 18 years	History of type 1 or type 2 diabetes
Fasting or random serum glucose less than 7.0	Treatment with metformin in the past year
mmol/L	
No prior treatment for breast cancer and	Estimated glomerular filtration rate <45ml/min
scheduled to commence neoadjuvant	
chemotherapy in <u><</u> 3 weeks time	
Have given written informed consent and are	Acute or chronic metabolic acidosis
capable of cooperating with protocol	
Adequate bone marrow, renal and liver function	Known hypersensitivity to metformin

Table S1. List of key inclusion and exclusion criteria. Related to Figure 1.

			Number of patients
	Total patient recruitment to study		41
Possitment and	Number of paired PET-CT scans available for analysis		36
samples analysed	Number of paired tumour samples with sufficient material for	Metabolomics	29
	analysis	RNASeq	36
	ER positive		32
ER/HER2 status	ER negative		9
	HER2 positive		8
	HER2 negative		33
	Triple negative (ER negative and HER2 negative)		8
	Ductal carcinoma		32
	Lobular carcinoma		7
	Mixed ductal and lobular carcinoma		2
Tumour type	Grade 1		2
	Grade 2		24
	Grade 3		15
	Median tumour size (on magnetic resonance imaging)		49mm (range 30–147)
Patient	Median age at study entry		49 years (range 27–67)
characteristics	s Median body mass index		28.1 (range 19.6–45.3

Table S2. Tumour and patient characteristics (for the 29 paired samples included in the general metabolomics analysis). Related to Figure 1.

Dynamic Imaging	p-value			
Variable	Paired t-test	Wilcoxon	Mann-Whitney	
K1	0.145	0.162	0.341	
k2	0.055	0.128	0.521	
k3	0.343	0.053	0.392	
Kflux (KFDG-2cpt(min-	0.041	0.027	0.510	
1)				
SUVmean	0.918	0.271	0.356	
TBRmean	0.255	0.540	0.540	
MRglu	0.141	0.285	0.285	

Table S3. P-values for all dynamic imaging variables using 3 different statistical tests, 2-tailedpaired t-test; 2-sided Wilcoxon signed rank test; Mann-Whitney U-test. Related to Figure 1.

Pathway	KEGG ID	p-value*
Peroxisome	04146	<0.001
Arginine & proline metabolism	00330	<0.001
Valine, leucine & isoleucine degradation	00280	<0.001
Pyruvate metabolism	00620	0.001
Glutathione metabolism	00480	0.002
Citrate cycle	00020	0.004
Propanoate metabolism	00640	0.005
Fatty acid degradation	00071	0.005
Alanine & aspartate & glutamate metabolism	00250	0.005
Cysteine & methionine metabolism	00270	0.007
Lysine degradation	00310	0.009
Glycine, serine & threonine metabolism	00260	0.011
Huntingdon's disease	05016	0.016
Histidine metabolism	00340	0.023
PPAR signalling pathway	00320	0.030
Oxidative phosphorylation	00190	0.033
Ascorbate & aldarate metabolism	00053	0.033
Alzheimer's disease	05010	0.034
Glycolysis & gluconeogenesis	00010	0.040

Table S4. List of KEGG pathways linked to mitochondrial metabolism that were significantly

upregulated following metformin treatment. * corrected Hypergeometric p-value. Related to

Figure 2.

Circulating marker	Pre-metformin		Post-metformin		p-value*
	Mean	SEM	Mean	SEM	
Glucose (mmol/L)	4.94	0.08	4.82	0.45	0.032
Insulin (mU/L)	81.0	8.01	70.2	6.93	0.005
C-peptide (nmol/L)	0.59	0.04	0.50	0.03	<0.001
HOMA score	2.60	0.28	2.17	0.22	0.006
Leptin (ng/ml)	24.3	3.05	24.1	3.08	0.847
Adiponectin (ug/ml)	8.26	0.49	7.92	0.48	0.100
C-reactive protein (mg/L)	2.75	0.54	3.76	1.12	0.210
Tumour necrosis factor alpha	0.74	0.16	0.60	0.10	0.341
(pg/ml)					
Interleukin 6 (pg/ml)	1.50	0.26	1.82	0.40	0.184

Table S5. List of circulating markers tested. SEM, standard error of mean. * 2-tailed paired t-

test. Related to Figure 3.

Gene	Full name	Brite hierarchy	
СОХ7В	cytochrome c oxidase subunit 7B	Energy metabolism	Oxidative phosphorylation
NDUFA4	NDUFA4, mitochondrial complex associated	Energy metabolism	Oxidative phosphorylation
NDUFS4	NADH:ubiquinone oxidoreductase subunit S4	Energy metabolism	Oxidative phosphorylation
AMY2B	amylase, alpha 2B (pancreatic)	Carbohydrate metabolism	Starch and sucrose metabolism
FBP1	fructose- bisphosphatase 1	Carbohydrate metabolism	Glycolysis / Gluconeogenesis Pentose phosphate pathway Fructose and mannose metabolism
GALK1	galactokinase 1	Carbohydrate metabolism	Galactose metabolism Amino sugar and nucleotide sugar metabolism
GYS1	glycogen synthase 1	Carbohydrate metabolism	Starch and sucrose metabolism
MGAM2	maltase- glucoamylase 2 (putative)	Carbohydrate metabolism	Galactose metabolism Starch and sucrose metabolism
PLCG1	phospholipase C gamma 1	Carbohydrate metabolism	Inositol phosphate metabolism
DNMT3B	DNA methyltransferase 3 beta	Amino acid metabolism	Cysteine and methionine metabolism
GCLC	glutamate-cysteine ligase catalytic subunit	Amino acid metabolism	Cysteine and methionine metabolism Glutathione metabolism
POLR2J2			Purine metabolism

	RNA polymerase II	Nucleotide	Pyrimidine
	subunit J2	metabolism	metabolism
POLR3GL	RNA polymerase III	Nucleotide	Purine metabolism
	subunit G like	metabolism	Pyrimidine
			metabolism
UBP1	beta-	Nucleotide	Pyrimidine
	ureidopropionase 1	metabolism	metabolism
		Metabolism of other	beta-Alanine
		amino acids	metabolism
		Metabolism of	Pantothenate and
		cofactors and	CoA biosynthesis
		vitamins	
		Xenobiotics	Drug metabolism -
		biodegradation and	other enzymes
		metabolism	
HGSNAT	heparan-alpha-	Glycan biosynthesis	Glycosaminoglycan
	glucosaminide N-	and metabolism	degradation
	acetyltransferase		
MAN2A2	mannosidase alpha	Glycan biosynthesis	N-Glycan
	class 2A member 2	and metabolism	biosynthesis
ST3GAL1	ST3 beta-galactoside	Glycan biosynthesis	Mucin type O-glycan
	alpha-2,3-	and metabolism	biosynthesis
	sialyltransferase 1		Glycosaminoglycan
			biosynthesis -
			keratan sulfate
			Glycosphingolipid
			biosynthesis - globo
			and isoglobo series
			Glycosphingolipid
			biosynthesis -
			ganglio series
NADSYN1	NAD synthetase 1	Metabolism of	Nicotinate and
		cofactors and	nicotinamide
		vitamins	metabolism

Table S6. List of all KEGG annotated metabolism genes whose change in expression correlated

with both change in tumour $K_{FDG-2cpt}$ and tumour acetylcarnitine levels. Related to Figure 3.